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Home web: http://www.enama.org/
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V. Araújo, R. Demarque & L. Viana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Orbital stability of kink-type waves for a defocusing nonlinear Schrödinger model, by C. M. Medeiros &

A. J. Corcho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Decay rates for a weakly damped coupled wave equations in Rn, by G. de Martini & C. R. da Luz . . . . 27

Mild Solutions in one the fractional Navier-Stokes-Coriolis equation in Morrey spaces, by B. de Andrade,

C. B. Amorim & E. Mateus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Existence of stationary vortex patches for the gSQG in bounded domains, by V. Angulo-Castillo, E. Cuba

& Lucas C. F. Ferreira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Nonlinear difussion equation involving p(b(u))-Laplacian-like operator, by Eugenio Cabanillas L. . . . . . . 33

Existence and asymptotic properties for a generalized linear evolution equation under effects of a

logarithmic type dissipation, by Ruy C. Charão & Félix P. Q. Gómez . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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ON EXISTENCE OF SOLUTION FOR A THERMOELASTIC BEAM MODEL

C. N. CUNHA & M. R. CLARK

1Universidade Federal do Delta do Parnáıba, Parnáıba, Brazil,
2 Universidade Federal do Piaúı, Teresina, Brazil

Abstract

This paper addresses the Cauchy problem associated with the nonlinear thermoelastic beam featuring thermal

dissipation. We examine the problem in an open domain, which may be either bounded or unbounded. The

existence of a solution is derived through the diagonalization theorem for self-adjoint operators.

1 Introduction

This work addresses the Cauchy problem associated with the nonlinear thermoelastic beam featuring thermal

dissipation. The model is written as follows

u′′ +∆2u−M

(∫

Ω

|∇u(x, ·)|2dx
)
∆u+ θ = f,

θ′ −∆θ + u′ = g,
(1)

where ∆ denote the Laplace operator,∇ is the gradient operator andM is a positive real function defined on [0,+∞).

The system (1) describes the vibrations of an extensible thermoelastic beam, being composed of a hyperbolic

equation (elastic behavior) and a parabolic equation (thermal behavior of the medium). Physically, u = u(x, t)

represents the deflection at a point x of the beam at instant t (from the rest configuration) and θ = θ(x, t) the

variation of the temperature (relative to a reference value), while f = f(x, t) and g = g(x, t) are, respectively, the

lateral load distribution and an external heat source (see [5]). Concerning the additional damping in the parabolic

equation, it has been observed in the literature which plays a role in dissipating the energy of the system while

maintaining the amplitude of elastic and thermal oscillations. This is crucial to ensure the asymptotic stability of

the solution (see [4]). Furthermore, in [2], which considered one of the pioneers in the study of thermoelasticity, the

author emphasizes that the thermoelastic model is suitable for investigating the vibrations of certain elastic bodies.

Consequently, it can be concluded that the aforementioned model is physically viable.

In this paper, we study the system (1) without using the compactness method. Motivated by the papers [6] and

[7], we will consider the abstract formulation of system (1)

(P.1)

u′′ +A2u+M(·, |A1/2u|2)Au+ θ = f,

θ′ +Aθ + u′ = g,

u(0) = u0, u
′(0) = u1 and θ(0) = θ0,

where A is a positive self-adjoint operator in separable Hilbert space H, with inner product (·, ·) and the norm | · |,
andM is a positive real function. We prove the existence and uniqueness of the solution for the problem (P.1) under

appropriate assumptions on M , by making use of the diagonalization theorem. This strategy offers the advantage

of being applicable in both bounded and unbounded domains.

9
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2 Main Results

Let us fix a real number T > 0, a operator A as above and the real function M . Suppose that

M ∈ C1([0, T ]× [0,+∞);R), (2)

M(t, λ) ≥ m0 > 0, ∀ (t, λ) ∈ [0, T ]× [0,+∞), (3)

∂M

∂t
(t, λ) ≤ 0, ∀ (t, λ) ∈ [0, T ]× [0,+∞), (4)

{u0, u1, θ0} ∈ D(A)×H ×D(A1/2), (5)

{f, g} ∈
[
L2(0, T ;H)

]2
. (6)

Then, our main result is:

Theorem 2.1. Suppose (2)-(6) holds. Then, there exist exactly one pair u, θ : [0, T ] −→ H of vector functions

satisfying

u ∈ L∞(0, T ;D(A)), (7)

u′ ∈ L∞(0, T ;H), (8)

θ ∈ L2(0, T ;D(A1/2)), (9)

d

dt
(u′(t), z) + (Au(t), Az) +M(t, |A1/2u(t)|2)(A1/2u(t), A1/2z)

+(θ(t), z) = (f(t), z), ∀z ∈ D(A),
(10)

in the sense of L2(0, T ),

d

dt
(θ(t), z) + (A1/2θ(t), A1/2z) + (u′(t), z) = (g(t), z), ∀z ∈ D(A1/2), (11)

in the sense of L2(0, T ),

u(0) = u0, u
′(0) = u1 e θ(0) = θ0. (12)

The pair (u, θ) above is said to be a local weak solution of system (P.1). We prove Theorem 2.1 in steps. We

perturb the system (P.1) and we use of the unitary operator U , defined by Diagonalization Theorem (cf. [3]).

Finally, the solution is obtained through Arzelá-Áscoli Theorem, using an appropriate topology.
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Abstract

In the literature, one can find numerous modifications of Fourier’s law, the first of which is the Maxwell–

Cattaneo–Vernotte heat equation. Although this model has been known for decades and successfully used

to model low-temperature damped heat wave propagation, its nonlinear properties are rarely investigated.

This work presents the functional relationship between the transport coefficients and the consequences of their

temperature dependence, particularly focusing on thermal conductivity. Furthermore, we introduce a particular

implicit numerical scheme to solve such nonlinear heat equations reliably, free from artificial numerical errors.

1 Introduction

In recent years, numerous heat conduction models have been developed to provide a more efficient modeling tool

for complex problems related to wave propagation under low-temperature conditions [1], in rarefied media [2, 3], in

nanosystems [4, 5], or over-diffusion in complex heterogeneous material structures [6].

Here we derive a Maxwell-Cattaneo-Vernotte nonlinear model in which the temperature dependence is included

in the thermal conductivity, i.e.

ρcTt + qx = 0 in (0, ℓ)× (0,∞), (1)

τqt + q + aT Tx + λTx = 0 in (0, ℓ)× (0,∞), (2)

where q and T are the heat flux and temperature, τ , ρ, c, a and λ are physical constants. We consider two types

of boundary conditions:

Boundary type I:




q(0, t) = 0, for all t ≥ 0,

q(ℓ, t) = 0, for all t ≥ 0,
(3)

Boundary type II:





q(0, t) =




1− cos

(
2πt/tp

)
, if 0 < t ≤ tp, tp > 0,

0, if t > tp,

q(ℓ, t) = 0, for all t ≥ 0,

(4)

for which we also assign two types of initial conditions:

Initial condition I: T (x, 0) = T0(x), q(x, 0) = q0(x), x ∈ (0, ℓ), (5)

Initial condition II: T (x, 0) = T0, q(x, 0) = q0 ≡ 0, x ∈ (0, ℓ). (6)
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2 Main Results

Our main result is a numerical linearization method in finite differences given by

Boundary type I:





Φ+
r

ρc
AΨ = − r

ρc
AQn−1,

Ψ+
1

2
(
τ +∆t

)BΦ = − r

2
(
τ +∆t

)C
(
aD+ 2λIJ+1

)
Tn−1 − ∆t(

τ +∆t
)Qn−1,

(7)

where Φ is a vector related to T and Ψ, Qn−1 are vectors related to q. Furthermore, A, B, C, D and IJ+1 are

matrices.

Boundary type II:





Φ+
r

ρc
AΨ =




− r
ρcAQn−1 + r

ρc

(
1− cos

(
2πtn/tp

))
L, if 0 < n ≤ p, p ∈ N

− r
ρcAQn−1, if n > p,

Ψ+
1

2
(
τ +∆t

)BΦ = − r

2
(
τ +∆t

)C
(
aD+ 2λIJ+1

)
Tn−1 − ∆t(

τ +∆t
)Qn−1,

(8)

where Tn−1 is a vector related to T and L is a matrix. Below, we implement the same parameters and solve the

difference equations for types I and II (see Fig. 1 and 2).

We note that temperature-dependent thermal conductivity distorts the symmetric evolution. The present

asymmetry indicates how the thermal conductivity depends on the temperature (increasing or decreasing), also

proposing a method to observe this effect experimentally.
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Abstract

In this work, we present the existence of a positive solution to a second-order nonlinear problem with mixed

boundary conditions. The proofs of the main results are based on the Mawhin’s coincidence degree.

1 Introduction

The goal is to prove the existence of positive solutions for the problem

{
u′′ + b(t)g(u) = 0, 0 < t < T

u(0) = u(T ) and u′(0) = 0,
, (E)

where g : [0,+∞) → [0,+∞) is a continuous function such that

(g1) g(0) = 0, g(s) > 0 for s > 0.

The weight coefficient b : [0, T ] → R is a L1-function such that

(b1) there exists δ > 0 such that b(t) is essentially negative on [0, δ] and also on [T − δ, T ];

(b2) there exist m ≥ 1 intervals I1, . . . , Im, closed and pairwise disjoint, such that

b(t) ≥ 0, for a.e. t ∈ Ii, with b(t) ̸≡ 0 on Ii (i = 1, . . . ,m);

b(t) ≤ 0, for a.e. t ∈ [0, T ] \
m⋃

i=1

Ii;

(b3)

∫ s

0

b(t)dt < 0 for all 0 < s < T .

Let λi1, i = 1, . . . ,m, be the first eigenvalue of the eigenvalue problem

φ′′ + λb(t)φ = 0, φ|∂Ii = 0.

A function g : [0,+∞) → [0,+∞) satisfying (g1) is regularly oscillating at zero if

lim
s→0+
ω→1

g(ωs)

g(s)
= 1.

Before proving the existence of a positive solution to problem (E), we study the more general problem
{

u′′ + f(t, u, u′) = 0, 0 < t < T

u(0) = u(T ) and u′(0) = 0
, (1)

where f : [0, T ] × [0,+∞) × R → R be an Lp-Carathéodory function, for some 1 ≤ p ≤ ∞, satisfying certain

conditions named (f1), (f2) and (f3).

13
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2 Main Results

Theorem 2.1. Assume (f1), (f2), and (f3), and suppose that there exist two constants r,R > 0, with r ̸= R, such

that the following hypotheses are true.

(H1) The condition are satisfied:

∫ T

0

(∫ s

0

f(t, r, 0)dt

)
ds < 0.

are satisfied. Moreover, any solution u(t) of the problem
{

u′′ + ϑf(t, u, u′) = 0, 0 < t < T

u(0) = u(T ) and u′(0) = 0,
(2)

for 0 < ϑ ≤ 1, such that u(t) > 0 in [0, T ], satisfies ∥u∥∞ ̸= r.

(H2) There exist a non-negative function v ∈ Lp([0, T ],R) with v ̸≡ 0 and a constant α0 > 0, such that every

solution u(t) ≥ 0 of the problem
{

u′′ + f(t, u, u′) + αv(t) = 0, 0 < t < T

u(0) = u(T ) and u′(0) = 0,
(3)

for α ∈ [0, α0], satisfies ∥u∥∞ ̸= R.

(H3) There are no solutions u(t) of (3) for α = α0 with 0 ≤ u(t) ≤ R, for every t ∈ [0, T ].

Then the problem (1) has at least one positive solution u(t) with

min{r,R} < max
t∈[0,T ]

u(t) < max{r,R}.

Proof. The proof is given by a topological approach based on the Mawhin’s coincidence degree. Furthermore, to

ensure that the found solution is positive, we employ a maximum principle.

Theorem 2.2. Let g(s) and b(t) be as in the introduction. Suppose also that g(s) is regularly oscillating at zero

and satisfies

(g2) lim
s→0+

g(s)

s
= 0 and g∞ := lim inf

s→+∞

g(s)

s
> max
i=1,...,m

λi1.

Then problem (E) has at least one positive solution.

Proof. The proof is based on showing that the hypotheses about g(u) and b(t) allow us to apply Theorem 2.1.
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Abstract

In this talk, we discuss about double phase equations set in RN involving critical Sobolev terms and

logarithmic nonlinearities. More precisely, our equations are driven by the so-called double phase operator

given by

u ∈W 1,H(RN ) 7→ div
(
|∇u|p−2∇u+ µ(x)|∇u|p−2∇u

)
,

set on an appropriate Musielak-Orlicz-Sobolev space W 1,H(RN ), with 1 < p < q < ∞ and µ ∈ L∞(RN ) such

that µ(x) ≥ 0 a.e. in RN .

By variational methods, we provide different existence results for our equations. The main difficulty

arises from the presence of logarithmic nonlinearity, which is sign-changing, combined with a double lack of

compactness, due to the free action of translation group in RN and the critical Sobolev nonlinearity. Furthermore,

we have to deal with Luxemburg type norm of W 1,H(RN ), which complicates even the study of geometry for

the energy functional.

Our results are new even in the classical p-Laplacian case, that is when µ ≡ 0.

1 Introduction

In this talk, we present the following equation in RN

−div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
+ |u|p−2u+ µ(x)|u|q−2u = K1(x)|u|p

∗−2u+ λK2(x)|u|r−2u log(|u|)
+ γK3(x)|u|β−2u,

(1)

where the main operator on the left-hand side is the so-called double phase operator satisfying the structural

assumption:

(H1) 1 < p < q < N, q < p∗ = Np
N−p and µ : RN → [0,∞) is Lipschitz continuous such that µ ∈ L∞(RN ).

Here, we consider parameters λ, γ > 0 and exponents r ∈ [q, p∗), β ∈ (1, p∗). Concerning the functions K1, K2,

K3 : RN → R, we assume the following conditions:

(H2) K1 ∈ C(RN ) ∩ L∞(RN ), K1(x) > 0 for all x ∈ RN and if {An}n∈N ⊂ RN is a sequence of Borel sets such

that the Lebesgue measure |An| ≤ R for all n ∈ N and some R > 0, then

lim
n→∞

∫

An∩Bcρ(0)
K1(x) dx = 0,

for some ρ > 0.

(H3) K2 ∈ L1(RN ) ∩ L∞(RN ) with 0 < K2 < K1 on RN , and K3 ∈ L∞(RN ) with 0 < K3 < K1 on RN .
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(H4) there exists σ ∈ (q, β) such that

K2(x) ≤
e (r − β) r (β − σ)

β(r − σ)
K3(x), for any x ∈ RN .

(H̃3) K2 ∈ L1(RN ) ∩ L∞(RN ) with 0 < K2 < K1 on RN , and K3 ∈ L1(RN ) ∩ L q
q−β (RN ) with 0 < K3 < K1 on

RN .

2 Main Results

In this talk, we study equation (1) under two main cases: the superlinear case, with 1 < p < q < β < r < p∗; the

linear case, with 1 < β < p < r = q < p∗. By applying different variational methods, we provide existence results

for (1), proved in [1] and stated below.

Theorem 2.1. Let γ = λ. Let (H1) – (H4) be satisfied and let 1 < p < q < β < r < p∗. Then, there exists λ∗ > 0

such that, if λ ≥ λ∗, equation (1) admits at least one nontrivial weak solution.

Theorem 2.2. Let γ = 1. Let (H1) – (H2) and (H̃3) be satisfied and let 1 < β < p < r = q < p∗. Then, for any

λ > 0, there exists kλ > 0 such that if

max
{
∥K3∥1 , ∥K3∥ q

q−β

}
< kλ, (2)

equation (1) admits at least one nontrivial weak solution.

The weak solution of Theorem 2.1 is obtained by a mountain pass argument. In order to overcome the double lack

of compactness of (1), arising from the free action of translation group in RN and the critical Sobolev nonlinearity,

we exploit a tricky step analysis for the critical mountain pass level cλ. In particular, we first prove the asymptotic

property

lim
λ→∞

cλ = 0. (3)

In this direction, the restrictive assumption (H4) is crucial to prove (3) and to prove the validity of the Palais-Smale

compactness condition at level cλ.

While, the proof Theorem 2.2 is based on a suitable minimization argument. For this, we need to control the

β-exponent nonlinearity in (1) with hypothesis (2). However, it strongly forces the restriction β ∈ (1, p). It is still

an open problem the linear case r = q with β ∈ [p, q).

References

[1] A. Bahrouni, A. Fiscella and P. Winkert, Critical logarithmic double phase equations with sign-changing

potentials in RN , preprint available at https://www.researchgate.net/publication/379568725



ENAMA - Encontro Nacional de Análise Matemática e Aplicações
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Abstract

This study proved that the Cauchy problem for a one-dimensional reaction-diffusion-convection system is

locally and globally well-posed in H2(R). The system modeled a gasless combustion front through a multi-layer

porous medium when the fuel concentration in each layer was a known function. More information about the

physical modelling can be found in [2]. Here, we consider the continuity of the solution regarding the initial data

and parameters, unlike the current study. This proof uses a novel approach to combustion problems in porous

media. We follow the abstract semigroups theory of operators in the Hilbert space and the well-known Kato’s

theory for a well-posed associated initial value problem. See also [3].

1 Introduction

We study the following initial value problem is well-posed in H2(R),

{
ut + L(t)u = f(x, t, u), x ∈ R, t > 0,

u(x, 0) = ϕ(x).
(1)

Here, u = (u1, . . . , un) is an unknown vector of temperatures ϕ = (ϕ1, . . . , ϕn) is the given vector of the initial

temperatures, and L(t) is the partial differential operator defined by

L(t)u =
(
L1(t)u1, . . . , Ln(t)un

)
, (2)

where

Li(t)ui := −αi(x, t) ∂2xui + βi(x, t) ∂xui, i = 1, . . . , n, (3)

αi(x, t) =
λi(x)

ai(x) + bi(x) yi(x, t)
, βi(x, t) =

ci(x)

ai(x) + bi(x) yi(x, t)
. (4)

Functions ai, bi, ci, and λi for i = 1, . . . , n are defined depending on the physical parameters (see [2]), which are

known functions of the spatial variable x. The combustion reaction rate, heat transfer between two adjacent layers,

and heat loss to the external medium are all included in the source function f = (f1, . . . , fn), the components of
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which are defined by

f1(x, t, u) =
−(c1)x u1
a1 + b1y1

+
(K1b1u1 + d1)y1 g(u1)

a1 + b1y1
+
q1(u2 − u1)

a1 + b1y1

− q1(u1 − ue)

a1 + b1y1
,

fi(x, t, u) =
−(ci)x ui
ai + biyi

+
(Kibiui + di)yi g(ui)

ai + biyi
− qi−1(ui − ui−1)

ai + biyi
(5)

+
qi(ui+1 − ui)

ai + biyi
, i = 2, . . . , n− 1 ,

fn(x, t, u) =
−(cn)x un
an + bnyn

+
(Knbnun + dn)yn g(un)

an + bnyn
− qn−1(un − un−1)

an + bnyn

− q2(un − ue)

an + bnyn
,

where di is also a known function of the spatial variable x, and g is a function related to the Arrhenius law given

by

g(θ) =

{
e−

E
θ , se θ > 0

0, se θ ≤ 0 .
(6)

The other quantities Ki, qi, q1, q2, E are non-negative parameters, as defined in [2], and ue denotes the temperature

of the external environment, which is constant.

2 Main Results

Theorem 2.1 (Local solution). Assume that hypotheses (Hy6) and (Hy7) given in Section 3 (see [1]) are satisfied.

If ϕ = (ϕ1, . . . , ϕn) ∈ H2(R)n, then the initial value problem (1) has a unique local solution. Each component of this

solution is given in the following integral form:

ui(t) = Ui(t, 0)ϕi +

∫ t

0

Ui(t, τ) fi
(
τ, u(τ)

)
dτ, (7)

t ∈ [0, T ] for some T > 0, where Ui is the evolution propagation operator associated with Li(t).

Theorem 2.2 (Global solution). We assume that the hypothesis (Hy8) given in Section 3 (see [1]) is satisfied. If

ϕ = (ϕ1, . . . , ϕn) ∈ H2(R)n, then the initial value problem (1) has a unique global solution. Each component of this

solution is given in the integral form, as in (7), for any T > 0.

Theorem 2.3 (Continuous dependence). Let us assume the same hypotheses as in Theorem 2.1. Then, the

function that maps the initial data and the parameters into the solution given by this theorem is continuous in

the H2(R)n-norm. Similarly, let us assume the same hypotheses as in Theorem 2.1; then, the analogous result holds.
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Abstract

We consider a nonautonomous semilinear evolution problem that models some sort of propagation problem in

nonlinear elastic rods and nonlinear ion-acoustic waves. We investigate the existence and stability of a family of

pullback exponential attractors for our problem under suitable growth and dissipativeness conditions. Moreover,

we also prove the upper and lower semicontinuity of this family of pullback exponential attractors at time zero.

As a particular case, we obtain the existence of the pullback attractor in an appropriate space, we prove its

upper semicontinuity and, lastly, we obtain a regularity result of this pullback attractor.

1 Introduction

In this talk we are interested in the pullback dynamics (and so the asymptotic behavior in the pullback sense) for

the family of nonautonomous semilinear evolution problem of second order given by




utt −∆u− ηϵ(t)∆ut −∆utt = f(u), t > s, x ∈ Ω,

u = 0, t ≥ s, x ∈ ∂Ω,

u(s, x) = u0(x), ut(s, x) = v0(x), x ∈ Ω,

(1)

where Ω is a bounded smooth domain in RN with N ≥ 3, ϵ ∈ [0, 1] is a parameter, ηϵ : R −→ (0,∞) is a continuous

function satisfying 0 < a1 ≤ ηϵ(t) ≤ a2 < ∞ for all t ∈ R (and all ϵ ∈ [0, 1]) with lim
ϵ→0

∥ηϵ − η0∥L∞(R) = 0, and

f : R −→ R is a locally Lipschitz function satisfying suitable growth and dissipativeness conditions.

Let us denote by λ1 > 0 the first eigenvalue of −∆ with Dirichlet boundary conditions in Ω. The system (1)

is considered in the Hilbert space H1
0 (Ω)×H1

0 (Ω) and, in this space, we prove the local and global well posedness

of solutions and the existence and stability of a family of pullback exponential attractors under the following

assumptions:

lim sup
|s|→∞

f(s)

s
< λ1,

|f(s)| ≤ c(1 + |s|ρ), s ∈ R,

and

|f(s1)− f(s2)| ≤ c|s1 − s2|
(
1 + |s1|ρ−1 + |s2|ρ−1

)
, s1, s2 ∈ R,

for some c > 0 and some 1 < ρ < N+2
N−2 .

Our model (1) is motivated by an autonomous counterpart that has been considered by several authors in

the last years, but with emphasis in [2] and the references therein. This kind of model has significant physical

applications, for instance, it arises to represent some sort of propagation problem in nonlinear elastic rods and

nonlinear ion-acoustic waves. In addition, when the term ∆utt is dropped, equation (1) becomes the well-known

strongly damped wave equation.
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2 Main Results

Let us denote X = L2(Ω) and for any ϵ ∈ [0, 1] let
{
S(ϵ)(t, s) : t ≥ s

}
, with S(ϵ)(t, s) : X

1
2 ×X

1
2 −→ X

1
2 ×X

1
2 , be

the evolution process associated to (1). The main result of this work is given in the following and guarantees the

existence and stability of a family of pullback exponential attractors for the problem (1) (see Theorem 4.11 in [1]).

Theorem 2.1. For any θ ∈ (λ, 1) and ϵ ∈ [0, 1], there exists a pullback exponential attractor
{
Mϵ

θ(t) : t ∈ R
}
⊂

B ⊂ X
1
2 ×X

1
2 for the evolution process

{
S(ϵ)(t, s) : t ≥ s} with fractal dimension uniformly bounded by

dimF

(
Mϵ

θ(t);V
)
≤

ln
(
mV

(
2

θ−λ
))

− ln θ
, for all t ∈ R,

where V := X
1
2 ×X

1
2 , W := X

1
2−

γ
2 ×X

1
2−

γ
2 for γ := 1− ρN−2

N+2 and mV (R) denotes the maximal number of points

zi in the ball BV (0, R) such that κ∥zi − zj∥W > 1. Moreover, the map ϵ 7→ Mϵ
θ is stable in the following sense:

given ϵ0 ∈ [0, 1], if ϵ ∈ [0, 1] is such that

Γ(ϵ, ϵ0) := sup
u∈B

sup
t∈R

sup
r∈[0,T̃ ]

∥∥S(ϵ)(r + t, t)u− S(ϵ0)(r + t, t)u
∥∥
V
< 1

then

sup
t∈R

{
distsymm

V

(
Mϵ

θ(t),Mϵ0
θ (t)

)}
≤ cΓ(ϵ, ϵ0)

ζ ,

for some c > 0 and 0 < ζ < 1 which are independent of ϵ.

Moreover, as some of the consequences of Theorem 2.1 we have (see Corollary 4.12 and Theorem 4.15 in [1]):

Theorem 2.2. For any ϵ ∈ [0, 1], the evolution process
{
S(ϵ)(t, s) : t ≥ s

}
admits a pullback attractor

{Aϵ(t) : t ∈ R} in X
1
2 × X

1
2 such that for any given θ ∈ (λ, 1) it holds Aϵ(t) ⊂ Mϵ

θ(t) ⊂ B for all t ∈ R
with

dimF

(
Aϵ(t);V

)
≤

ln
(
mV (

2
θ−λ )

)

− ln θ
, for all t ∈ R.

Moreover,
⋃
ϵ∈[0,1]

⋃
s∈R Aϵ(s) is bounded in X

1
2 ×X 1

2 and the family of pullback attractors {Aϵ(t) : t ∈ R}ϵ∈[0,1]

is upper-semicontinuous at ϵ0 = 0, that is, for each t ∈ R it holds

lim
ϵ→0

[
dist

X
1
2 ×X

1
2

(
Aϵ(t),A0(t)

)]
= 0.
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LOCAL WELL-POSEDNESS AND SPATIAL REGULARITY TO A NON-AUTONOMOUS
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Abstract

Using the theory of evolution process generated by sectorial operators, we ensure sufficient conditions to

the well-posedness and spatial regularity of a non-autonomous strongly damped plate equation with a nonlinear

memory term involving singular and regular kernels.

1 Introduction

Damped plate equations with a memory term has been de subject of several research papers in the last years. In

this work, we consider the following non-autonomous damped plate equation with nonlinear memory effect




utt + β(t)ut = −∆2u+

∫ t

0

a(t− s)σ((−∆)γu(s, x))ds+ h(u), in [0,∞)× Ω,

u(t, x) = 0, on [0,∞)× ∂Ω,

u(0, x) = u0(x), ut(0, x) = u1(x), in Ω,

(1)

where Ω ⊂ RN is a bounded smooth domain and γ ≥ 0. The kernel a : (0,∞) → R verifies

|a(t)| ≤ ktρ, t > 0, (2)

with ρ > −1. The function β : R → R is a ϑ-Hölder continuous function such that

β0 ≤ β(t) ≤ β1, ∀ t ∈ R,

for some β0, β1 ∈ (0,∞). Furthermore, σ : R → R and h : R → R are continuous functions that verify

|σ(r)− σ(s)| ≤ C2(|r|p1−1 + |s|p1−1)|r − s|, ∀r, s ∈ R, (3)

and

|h(r)− h(s)| ≤ C1(|r|p2−1 + |s|p2−1)|r − s|, ∀r, s ∈ R, (4)

for some Ci > 0 and pi > 1, i = 1, 2.

Partial integrodifferential equations of type (1) arise in many physical contexts. For example, an autonomous

linear version of (1) was deduced by Ferreira et al. in the situation of a material that has viscoelastic properties

modeled by a Maxwell-Wiechert model. Similarly, in the one dimensional case, Nohel considers a version of (1)

(without damxping) as a mathematical model for the motion of nonlinear viscoelastic rods. Naturally, several

others researchers consider problems of type (1). It is important to note that almost all these works suppose that

the kernel a is a bounded function (regular kernels). Indeed, the typical hypothesis is to consider this function

as a linear combination of decaying exponentials with positive coefficients. Using the theory of evolution process

generated by sectorial operators, we ensure sufficient conditions to the well-posedness and spatial regularity of a

non-autonomous strongly damped plate equation with a nonlinear memory term involving singular and regular

kernels.
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2 Main Results

By using an abstract framework, problem (1) can be rewritten ia suitable Banch space as the following integro-

differential equation 



w′ = A(t)w +

∫ t

0

a(t− s)g(w(s))ds+ f(w(t)), t ≥ 0,

w(0) = w0,

(5)

where w =

(
u

u′

)
, A(t) is a suitable sectorial operator, and the functions g and f are given by

g(ψ) =

(
0

σ((−∆)γψ2)

)

andx

f(ψ) =

(
0

h(ψ2)

)
,

for all ψ =

(
ψ1

ψ2

)
∈ X1 = H1

0 (Ω)× L2(Ω).

The main result of this work ensures:

Theorem 2.1. Let max{1− N
2 , 0} < α < 1 < p1, p2 ≤ 1+ 2

N (1−α) and 0 ≤ γ ≤ 1−α
2p1

+ N(1−p1)
4p1

. Given v0 ∈ X1, we

can consider r > 0 and τ > 0 such that for any w0 ∈ BX1(v0, r) there exists a unique mild solution w ∈ C([0, τ ];X1)

to problem (5). Furthermore, for all 0 ≤ θ < α it follows that

w ∈ C((0, τ ];X1+θ)

and if θ > 0 then

lim
t→0+

tθ∥w(t, w0)∥X1+θ = 0.

Moreover, if w0, w1 ∈ BX1(v0, r), then there exists a constant C > 0 such that

tθ∥w(t, w0)− w(t, w1)∥X1+θ ≤ C∥w0 − w1∥X1 , ∀t ∈ [0, τ ], 0 ≤ θ ≤ θ0 < α.
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Abstract

In this paper, we present a new Carleman estimate for the adjoint equations associated to a class of super

strong degenerate parabolic linear problems. Our approach considers a standard geometric imposition on the

control domain, which can not be removed in general. Additionally, we also apply the aforementioned main

inequality in order to investigate the null controllability of two nonlinear parabolic systems. The first application

is concerned a global null controllability result obtained for some semilinear equations, relying on a fixed point

argument. In the second one, a local null controllability for some equations with nonlocal terms is also achieved,

by using an inverse function theorem.

1 Introduction

In this work we derive a new Carleman estimate for the linear super strong degenerate problem





ut − (xαux)x + xα/2b1(x, t)ux + b0(x, t)u = f1ω in Q,

u(1, t) = 0 and (xαux)(0, t) = 0 in (0, T ),

u(x, 0) = u0(x) in (0, 1),

(1)

where Q = (0, 1) × (0, T ), ω ⊂ (0, 1) is a non-empty open interval and 1ω is its associated characteristic function,

and α ≥ 2. Also, we take b0 ∈ L∞(Q), h ∈ L2(ω × (0, T )), u0 ∈ L2(0, 1), and b1 ∈ L∞(Q) satisfying

(xα/2b1(x, t))x ∈ L∞(Q). (2)

We also consider a geometrical condition on the control domain

∃d > 0; (0, d) ⊂ ω. (3)

We say that (1) is null controllable if, for any u0 ∈ L2(0, 1), there exists a control h ∈ L2(ω × (0, T )) such that

the solution u of (1) satisfies

u(·, T ) = 0.

The null controllability of (1) is well understood for α ∈ (0, 2), even without the geometric condition (3) being

imposed, see [1, 3] and references therein. Following the terminology adopted in these works, we say that (1) is

weakly degenerate if α ∈ (0, 1) and strongly degenerate if α ∈ (1, 2). Despite there are many works for the case

α ∈ (0, 2), little has been done for the super strong degenerate case, i.e. when α ≥ 2, although this is a very relevant

case of the degenerate problem. Indeed, when α = 2, the Black-Scholes equation can be obtained from (1) and this

equation has a key role in several financial applications.
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2 Main Results

First of all, let us consider the adjoint system associated to (1):





vt + (xαvx)x + (xα/2b1v)x − b0(x, t)v = h in Q,

v(1, t) = 0 and (xαvx)(0, t) = 0 in (0, T ),

v(x, T ) = vT (x) in (0, 1),

(4)

where h ∈ L2(Q) and vT ∈ L2(0, 1).

Now, for λ > 0, let us introduce some weight functions given by

θ(t) :=
1

(t(T − t))4
, η(x) := −x2/2, ξ(x, t) = θ(t)eλ(2|η|∞+η(x)) and σ(x, t) := θ(t)e4λ|η|∞ − ξ(x, t). (5)

The geometrical assumption (3) and the weight function η are the key points that allow us to build the following

Carleman estimate:

Theorem 2.1. Assume (2) and (3). There exists positive constants C, s0 and λ0, depending only on ω, ∥b0∥∞,

T , d and α such that, for any s ≥ s0, any λ ≥ λ0 and any solution v to (4), one has:

∫∫

Q

e−2sσ
[
s−1λ−1ξ−1(|vt|2 + |(xαvx)x|2) + sλ2ξxα|vx|2 + s3λ4ξ3|v|2

]
dx dt

≤ C

[
∥e−sσh∥2 + s3λ4

∫∫

ωT

e−2sσξ3|v|2 dx dt
]
, (6)

where ωT := ω × (0, T ).

As a consequence of Theorem 2.1 we have the following null controllability result:

Theorem 2.2. Assume (2) and (3). Then the system (1) is null controllable.

Following the ideas of [3] we can extend the Theorem 2.1 to semilinear problems. Sistems with nonlocal operators

can also be treated using the framework present in [2], where the authors obtain local null controllability results.
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Abstract

In this work we present a detailed proof of orbital stability for a family of kink standing waves solutions

for a non-linear Schrödinger equation on defocusing regime, which models several phenomena in Mathematical

Physics. The kink waves often called dark solitons in the literature are, in particular, non localized solutions

of the model non-vanishing at infinity. The proof we will give is based on the results presented by P. Zhidkov

in [1]. The theory is developed taking a specific nonlinearity in order to facilitate reading. However, the prove

presented in the particular case can be extended, with minor changes, to a more general context of nonlinearity

for the model.

1 Introduction

We are interested in studying the orbital stability of certain types of waves that are solutions to the initial value

problem (IVP) of the Nonlinear Schrödinger Equation (NLS):

iut + uxx + f(|u|2)u = 0, x ∈ R, t > 0, (1)

u(x, 0) = u0(x), x ∈ R, (2)

where u = u(x, t) ∈ C with (x, t) ∈ R2, f(·) being a sufficiently regular real function.

For our analysis we will assume u to be of the standing wave type, that is, u(x, t) = eiωtϕ(x). Substituting this

function into (1), we arrive at the following ODE ϕ′′ − ωϕ+ f(ϕ2)ϕ = 0. The main theorem also assumes that ϕ

is a kink with non-negative limits, that is, a solutions that do not vanish at infinity and have limits greater than or

equal to zero. Setting limx→±∞ ϕ(x) =: ϕ± it is demonstrated that the necessary and sufficient conditions for the

existence of these kinks for NLS are:

1. ϕ−, ϕ+ ≥ 0, ϕ− ̸= ϕ+;

2. −ω + f(ϕ2±) + 2ϕ2±f
′(ϕ2±) < 0;

3. −ωϕ± + f(ϕ2±)ϕ± = 0;

4. −ω
2 ϕ

2
− + U(ϕ2−) =

ω
2 ϕ

2
+ + U(ϕ2+);

5. −ω
2 s

2 + U(s2) < ω
2 ϕ

2
− + U(ϕ2−) for all s ∈ (ϕ−, ϕ+);

a classic model that satisfies these properties is the cubic-quintic model, that is, with f1(s) = s− s2.

For the proof of the theorem to be more instructive for readers who do not yet have an advanced understanding

of spectral theory and Sobolev embeddings, we will fix

f(s) := fω(s) = (
√
s− 1)(2−√

s) + ω, ω ∈ R, (3)

which, substituting into (2), we can obtain the kink-type solution ϕ(x) = 1 + tanh
(
x√
2

)
.

Then uω(x, t) = eiωtϕ(x) is a solution of (1) associated with f = fω with initial value uω(x, 0) = ϕ(x).

A suitable functional space to study the dynamics of kink-type solutions for (1) is the so-called Zhidkov spaces,

defined as follows:
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Definition 1.1. Given k ∈ N the space Xk(R) is the closure of the space
{
v ∈ L∞(R) ∩ Ck(R), v isÂ absolutelyÂ continuousÂ and v′ ∈ Hk−1(R)

}

with respect to the norm ∥v∥Xk = ∥v∥L∞ +
∑k−1
i=1

∥∥∥ divdxi
∥∥∥
L2
, where Hk−1(R) denotes the classical Sobolev space of

index k − 1, based on the space L2(R).

Now, note that fω(|z|2)z is not holomorphic, so the classical result of well-posedness for the IVP (1)-(2) presented

in [1] does not apply. To solve this problema, we use perturbations of uω by functions ψ(·, t) ∈ H1(R) and the

well-posedness theory developed in [2].

2 Main Results

Now let

R(τ) = ∥u(· − τ, t)− ϕ(·)∥H1 (4)

and τ0 such that R(τ0) is the minimum value of R(τ). Finally, we define

Definition 2.1. With τ0 defined above, we define

v(x, t) := u(x− τ0, t), (5)

z(x, t) := |v(x, t)| − ϕ(x). (6)

Now, let u ∈ X1 be a solution of (1) such that u(·, 0)− ϕ(x) ∈ H1. Additionally, let z be such that ∥z(·, t)∥H1

is small enough so that 0 < ϕ(x) + z(x, t) < c <∞ for all x, Then we can use the following complex representation

of v:

v(x, t) = (ϕ(x) + z(x, t))ei[ωt+ω̃(x,t), (7)

where ω̃(x, t) is a real absolutely continuous, bounded, and periodic function with period 2πm,m ∈ Z. Obviously

v ∈ X1 and

vx(x, t) = [ϕ′(x) + zx(x, t) + i(ϕ(x) + z(x, t))ω̃(x, t)]e[i[ωt+ω̃(x,t). (8)

Now, we use the above representations and the following energy functional

E(u) =

∫

R

{
1

2
|ux(x)|2 − U(|u(x)|2) + ω

2
|u(x)|2 +D

}
dx (9)

where U(s) = 1
2

∫ s
0
f(r)dr and D = −ω

2 ϕ
2
− + U(ϕ2−), to prove the main theorem:

Theorem 2.1. Let f ∈ C2(R+) and suppose that conditions 1-5 are satisfied. Then the kink uω(x, t) = eiωtϕ(x) of

the NLS (1) is stable in the following sense:

For every ϵ > 0 there exists δ > 0 such that if u0 ∈ X1, |u0(·)|−ϕ(·) ∈ H1, ∥z(·, 0)∥H1 < δ and ∥ω̃x(·, 0)∥L2 < δ,

then the solution u(x, t) ∈ X1 of the problem (1)-(2) is global. Moreover,

|u(·, t)| − ϕ(·) ∈ H1, ∥z(·, t)∥H1 < ϵ and ∥ω̃x(·, t)∥L2 < ϵ, for all t > 0. (10)
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Abstract

An important research matter is the search for minimal damping in such a way that the total energy associated

to the model decays uniformly to zero as the time tends to infinity. We say that a system is weakly dissipative

when as least one of the equations that make up the system has no dissipative term. In this work, we consider

the a coupled wave equations in Rn without a damping term in the second equation. We studied the asymptotic

behavior of the total energy associated to the linear system (1)-(2). The method developed in this work is based

on the energy of the Fourier space, the monotonicity of the local and total energy in the Fourier space and the

property of integrability of certain singularities around the origin. The approach developed in this work can be

applied in the study of the asymptotic behavior of other linear, weakly dissipative, systems in Rn.

1 Introduction

In our discussion we consider the following evolution system:

utt(t, x)−∆u(t, x) + βut(t, x) + λu(t, x)− κv(t, x) = 0,

vtt(t, x)−∆v(t, x) + µv(t, x)− κu(t, x) = 0,
(1)

for all (t, x) ∈ R+ × Rn, where β, λ, µ, κ are constants. The initial data are given by

u(0, x) = u0(x) and ut(0, x) = u1(x),

v(0, x) = v0(x) and vt(0, x) = v1(x),
(2)

for all x ∈ Rn. The above model can be used to describe the evolution of a system consisting of two elastic

membranes subject to an elastic force that attracts one membrane to the other.

In order to obtain decay rates for the total energy, we work with the system (1) in the Fourier space. For each

fixed t > 0, we apply the Fourier transform with respect to the space variable x:

ûtt(t, ξ) + |ξ|2û(t, ξ) + βût(t, ξ) + λû(t, ξ)− κv̂(t, ξ) = 0, (3)

v̂tt(t, ξ) + |ξ|2v̂(t, ξ) + µv̂(t, ξ)− κû(t, ξ) = 0, (4)

for all ξ ∈ Rn and t > 0. The initial data in the Fourier space are given by

û(0, ξ) = û0(ξ) and ût(0, ξ) = û1(ξ),

v̂(0, ξ) = v̂0(ξ) and v̂t(0, ξ) = v̂1(ξ),

for all ξ ∈ Rn.
We multiply both sides of (3) by ût and multiply (2) by v̂t. Then, taking the real part and adding the resulting

equations, we obtain the following identity

d

dt
(E(t, ξ)) + β|ût(t, ξ)|2 = 0, ξ ∈ Rn and t > 0,
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where

E(t, ξ) = 1

2

{
|ût(t, ξ)|2 +

(
|ξ|2 + λ

)
|û(t, ξ)|2 + |v̂t(t, ξ)|2 +

(
|ξ|2 + λ

)
|v̂(t, ξ)|2 − κRe

[
û(t, ξ) v̂(t, ξ)

]}
.

We define the total energy of the system, in Fourier space, as

E(t) :=
1

2

∫

Rn

(
|ût(t, ξ)|2 +

(
|ξ|2 + λ

)
|û(t, ξ)|2 + |v̂t(t, ξ)|2 +

(
|ξ|2 + λ

)
|v̂(t, ξ)|2 − κRe

[
û(t, ξ) v̂(t, ξ)

] )
dξ,

for any t ≥ 0.

2 Main Results

The main result of this work is the following theorem on the asymptotic behavior of solutions (with decay rates)

for the system (1)-(2).

Theorem 2.1. Let n ≥ 1 and β, λ, µ, κ constants satisfying suitable conditions. If [u0, u1, v0, v1] ∈ H1+ 1
α (Rn) ×

H
1
α (Rn)×H1+ 1

α (Rn)×H
1
α (Rn), then there exists a constant Cα > 0 depending on α, such that the total energy

of the system (1)-(2), in Fourier space, satisfies

E(t) ≤ Cα
{
∥u0∥2

H1+ 1
α
+ ∥u1∥2

H
1
α
+ ∥v0∥2

H1+ 1
α
+ ∥v1∥2

H
1
α

}
t−1/α,

for all t ≥ T0 where T0 is a constant depending on the initial data.

As an immediate consequence of Theorem 2.1 the following result follows:

Corollary 2.1. Considering the same assumptions of Theorem 2.1 then there exists a constant Cα > 0 depending

on α, such that the unique solution (u(t, x), v(t, x)) of the system (1)-(2) satisfy:

∥u(t)∥2H1 + ∥ut(t)∥2L2 + ∥v(t)∥2H1 + ∥vt(t)∥2L2 ≤ Cα
{
∥u0∥2

H1+ 1
α
+ ∥u1∥2

H
1
α
+ ∥v0∥2

H1+ 1
α
+ ∥v1∥2

H
1
α

}
t−1/α,

for all t ≥ T0 where T0 is a constant depending on the initial data.
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Abstract

We establish the local well-posedness of the fractional Boussinesq-Coriolis system on Morrey Space. For

this,we used of the Mittag-Leffler families {Eα(t)}t≥0 and {Eα,α(t)}t≥0 for equation (1.1), establish their behavior

on the scale of Morrey spaces and obtain asymptotic estimates for such families.

1 Introduction

In this work we are interested in studying the initial value problem for the fractional equations





∂αt u+ ν(−∆)βu+Ωe3 × u+ (u · ∇)u+∇p = gωe3, (t, x) R× R3,

∂αt θ + µ(−∆)βθ + (u · ∇)θ = −Nu3, (t, x) R+ × R3,

∇ · u = 0,

u(0, x) = u0(x), x ∈ R,

(1)

where ∂αt is Caputo’s fractional derivative of order α ∈ (0, 1] and 1
2 ≤ β < 5

2 . When α = 1, these equations represent

the 3D fractional Boussinesq-Coriolis equations with stratification. In this context µ is the viscosity, p = p(x, t)

is the pressure of the fluid and θ is a scalar function that represents the buoyancy density in the fluid (in the

case of the ocean this function depends temperature and salinity, and in the case of the atmosphere it depends

on temperature). The initial data u0 = u0(x) = (u10(x), u
2
0(x), u

3
0(x)) denotes the initial velocity field satisfying

the compatibility condition ∇ · u = 0.The constants ν, µ and g are related to viscosity, diffusivity and gravity,

respectively. The constant Ω ̸= 0 represents the speed of rotation around the vertical unit vector e3 = (0, 0, 1)

and is called the Coriolis parameter. The stratification parameter N is a non-negative constant that represents

the frequency of the Brunt-Väisälä wave. The proportion P = µ
ν is known as the Prandtl number and B = Ω

N is

essentially the Burger number of geophysics.

The main objectives of this work are to guarantee the existence of local mild solutions for equation (1.1) on the

scale Morrey spaces finds solutions based on estimates of the functions of of the Mittag-Leffler families {Eα(t)}t≥0

and {Eα,α(t)}t≥0 for equation (1.1). These families have behavior on the scale of Morrey spaces and asymptotic

estimates .

Morrey spaces are defined as follows. Let Bd (x0) be the open ball in Rn centered at x0 and with radius d > 0.

For 1 ≤ q <∞ and 0 ≤ µ < n, the homogeneous Morrey space Mq,µ = Mq,µ (Rn) is the space of all f ∈ Lqloc such

that

∥f∥q,µ = sup
x0∈Rn,d>0

d−
µ
q ∥f∥Lq(Bd(x0)) <∞.

In the case q = 1,M1,µ is a subspace of Radon measures and the L1-norm in (2.1) should be understood as the

total variation of the measure f on Bd (x0). The space Mq,µ endowed with ∥ · ∥q,µ is a Banach space. For more

details, we refer the reader to [2] and their references.
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2 Main Results

Considering N = N√
g, v =

(
v1, v2, v3, v4

)
=
(
u1, u2, u3,

√
gθ/N

)
, v0 =

(
v10 , v

2
0 , v

3
0 , v

4
0

)
=
(
u10, u

2
0, u

3
0,
√
gθ0/N

)
, and

∇̃ = (∂1, ∂2, ∂3, 0), we can convert the above system as





∂αt v +Av + Bv + ∇̃p = −(v · ∇̃)v, in R3 × (0,∞)

∇̃ · v = 0, in R3 × (0,∞)

v(x, 0) = v0(x), in R3

where

A =




ν(−∆)β 0 0 0

0 ν(−∆)β 0 0

0 0 ν(−∆)β 0

0 0 0 k(−∆)β


 and B =




0 −Ω 0 0

Ω 0 0 0

0 0 0 −N
0 0 N 0


 .

A mild solution of this problem is a function that verifies the integral equation

v(t) = Eα(t)v0 −
∫ t

0

(t− s)α−1Eα,α(t− s)P(v · ∇̃)vds, t ≥ 0, (2)

where P is the Leray Projector.

Theorem 2.1. Let α ∈ (0, 1], I = (0,+∞), 2 ≤ q ≤ ∞, max {0, 3− q} < µ < 3. For each par (Ω,N ) ∈ (R−{0})2,
consider L = max

{
2, |Ω|

N√
g ,

N√
g

|Ω|

}
. Then, there exist a local mild solution de (1.1) in BC((0, T ),Mq1,µ)
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Abstract

We show the existence of time-periodic vortex patches for the generalized surface quasi-geostrophic equation

within a bounded domain. This construction is carried out for values of γ in the range of (1, 2). The resulting

vortex patches possess a fixed vorticity and total flux, and they are located in the neighborhood of critical points

that are non-degenerate for the Kirchhoff-Routh equation. The proof is accomplished through a combination

of analyzing the linearization of the contour dynamics equation and employing the implicit function theorem as

well as carefully selected function spaces.

1 Introduction

In this talk, we study the generalized surface quasi-geostrophic (gSQG) equation, which are defined within a bounded

domain defined by 



∂tω + v · ∇ω = 0 in Ω× (0, T ),

v = ∇⊥(−∆)−1+ γ
2 ω in Ω× (0, T ),

ω
∣∣
t=0

= ω0 in Ω,

(1)

where Ω is a bounded domain in two-dimensional space, and we consider a parameter γ satisfying the condition

0 ≤ γ < 2. The variable ω(x, t), defined for x within Ω and t in the interval (0, T ), represents an active scalar

being advected by a velocity field v(x, t). This velocity field is generated by ω, and ∇⊥ = (∂2,−∂1). The operator

denoted by (−∆)−1+ γ
2 is defined as

(−∆)−1+ γ
2 ω(x) =

∫

Ω

Kγ(x,y)ω(y), dy,

where the termKγ(x,y) represents the Green function associated with the fractional Laplacian in bounded domains

with smooth boundaries. It is defined for each pair of points x,y ∈ Ω, where x ̸= y, as follows:

Kγ(x,y) =




− 1

2π log |x− y|+K0
0 (x,y), γ = 0,

Cγ
|x−y|γ +K0

γ(x,y), γ ∈ (0, 2),

with Γ(·) being the Euler gamma function and Cγ =
2γ−1Γ( γ2 )

Γ(1− γ
2 )

. Additionally, K0
γ belongs to the class of infinitely

differentiable functions C∞(Ω× Ω), as discussed in [1, Lemma 2.3].

Hmidi et al. in [1] proved for the gSQG equation (1) the existence of the V-states with γ ∈ (0, 1) in the unit

disc, and then, Cao et al. in [1] demonstrated the existence of stationary vortex patches. These patches maintained

both fixed vorticity and a consistent total flux for each patch. They achieved this within the context of the SQG

equation, considering a general bounded domain.
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For a collection of m real numbers κ1, κ2, . . . , κm, we establish the Kirchhoff-Routh function on Ωm in the

following manner

Wm(x1, x2, .., xm) = −
m∑

i̸=j

κiκjK
1
γ(xi, xj) +

m∑

i=1

κ2iK
0
γ(xi, xi), (2)

where Ωm is the set of vectors x = (x1, x2, . . . , xm) such that each xi belongs to the set Ω for i = 1, 2, . . . ,m and

K1
γ(x, y) =

Cγ
|x−y|γ .

2 Main Results

Theorem 2.1. Consider a bounded domain Ω ⊂ R2 with a smooth boundary and m given positive values κi

(i = 1, . . . ,m). Assume that x0 = (x0,1, . . . , x0,m) ∈ Ωm, with x0,i ̸= x0,j for i ̸= j, is an isolated critical point of

Wm as defined in (3) and satisfies the nondegeneracy condition: deg (∇Wm,x0) ̸= 0. Under these conditions, there

exists ε0 > 0 such that, for all 0 < ε < ε0, a stationary vortex patch solution ωε can be constructed, which exhibits

the following characteristics:

(i) ωε =
∑m
i=1

1
ε2χΓi within specific domains Γi ⊂ Ω, i = 1, . . . ,m.

(ii) The boundaries ∂Γi for i = 1, . . . ,m can be defined using the subsequent parameterization

∂Γi =

{
xε,i + ε

(√
κi
π

+ o(1)

)
(cosβ, sinβ) | β ∈ [0, 2π)

}
,

where xε,i = x0,i + o(1) as ε→ 0.

(iii) The total flux for each patch remains fixed as

1

ε2
|Γi| = κi, ∀i = 1, . . . ,m.

(iv) As ε→ 0+, one has the following convergence in the sense of measures

ωε →
n∑

i=1

δ (x− x0,i) weakly,

where δ (x− x0,i) represents the Dirac delta function concentrates at the point x0,i.

(v) The interior of each domain Γi is convex, for every i = 1, . . . ,m.
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Abstract

The aim of this paper is to study the existence of weak solutions for a nonlinear difussion equation involving

p(u)-Laplacian-like operators. We establish our results by using the time-discretization method and energy

methods combined with a singular perturbation technique and Schauder’s fixed-point theorem.

1 Introduction

This article is concerned with the existence of weak solutions for the following local p(u)-Laplacian problem

ut − div

(
|∇u|p(b(u))−2∇u+

|∇u|2p(b(u))−2∇u√
1 + |∇u|2p(b(u))

)
+ g(u) = f in Ω,

u = 0 on ∂Ω, (1)

where Ω is a bounded domain in Rn with a smooth boundary ∂Ω, and N ≥ 2, p ∈ C(Ω) for any x ∈ Ω; f, g are

given functions. Nonlinear boundary value problems with nonlinearities and nonstandard p(x)-growth conditions

arise from a variety of physical phenomena such as non-Newtonian fluids, reaction-diffusion problems, petroleum

extraction, flow through porous media, etc. Thus, the study of such problems and their generalizations have

attracted numerous attention in recent years. Our main interest in this research is when the function p is composed

with another function that depends on the unknown solution u (see [1, 5]). Thus, the problem becomes nonlocal

and particularly interesting. Parabolic equations involving the p(u)-Laplacian have been proposed in the study of

image restoration (see [2, 6]) as well as in some model of electrorheological fluids (see [1]). As far as the parabolic

type p(u)-Laplacian equations are concerned, only very few papers have appeared (see [2]).

2 Notations and Main Results

Let p : R → [1,+∞[ be the nonlinear exponent function such that

p is a Lipschitz-continuous function , and 1 < α < p(x) ≤ β <∞ for a.e. x ∈ Ω. (2)

We consider a mapping b :W 1,α
0 (Ω) → R such that

b is continuous and bounded . (3)

Here, we note that p(b(u)) is here a real number and not a function, then the Sobolev spaces involved in this work

are the classical ones. We will consider the well-known Sobolev space W 1,p
0 (Ω) with the norm

∥u∥1,p = ∥∇u∥p.
We will need the space

W
1,p(b(u))
0 (Ω) = {u ∈W 1,1(Ω)} :

∫

Ω

|∇u|p(b(u)) dx <∞}.
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Also, we introduce the functional space

X(Q) = {u ∈ L∞(0, T ;L2(Ω)) : |∇u| ∈ Lp(b(u))(Q), u(., t) ∈ Vt(Ω) a.e. t ∈]0, T [},

where

Vt(Ω) = {u ∈ L2(Ω)} ∩W 1,α
0 (Ω) : |∇u| ∈ Lp(b(u(.,t)))(Ω)},

in which we will prove the existence of weak solutions for the nonlocalÂ´problem (1).

Theorem 2.1. Provided that (2) and (3) hold together with α > 2N/(N + 2), u0 ∈ L2(Ω),

(A0) g : R → R is a nondecreasing continuous function, surjective, with g(0) = 0 and |g(s)| ≤ C|s|
and f ∈ Lα

′
(Q), then (1) has a weak solution in u ∈ X(Q) ∩ C([0, T ];L2(Ω)).

Proof We will semi-discrete (1) in time t and solve the related nonlinear elliptic problem. Based on the

semidiscrete problem, we construct the corresponding approximate solutions via a singular perturbation technique

combined with the theory of Sobolev spaces with exponent variables and the Schauder fixed-point theorem. The

key procedure is to establish necessary energy estimates for finding the limit of the approximate solutions via a

compactness argument.
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Abstract

We consider a dissipation model of a logarithmic type to study a linear second order evolution equation. The

associated Cauchy problem for this new model in Rn and study decay rates of solutions as t → ∞ in L2-sense.

The operator Lθ considered in this paper was first introduced to dissipate the solutions of the wave equation in

the paper studied by Charão-Ikehata [1]. We will discuss the asymptotic property of the solution as time goes

to infinity to the linear Cauchy problem.

1 Introduction

We consider in this work a generalized type evolution equations under effects of a dissipative mechanism based on

an operator Lθ, that combines the composition of logarithm function with the Laplace operator as follows,

∂2t u+ (−∆)δ∂2t u+ (−∆)αu+ Lθ∂tu = β(−∆)γ(∂tu)
p, (t, x) ∈ ]0, ∞[ × Rn, (1)

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ Rn, (2)

where u = u(t, x), 0 < δ ≤ α with β ̸= 0, p > 1 integer and the linear operator Lθ is as follows

Lθ : D(Lθ) ⊊ L2(Rn) → L2(Rn), θ > 0,

with

D(Lθ) :=



f ∈ L2(Rn) :

∫

Rn

log2
(
1 + |ξ|2θ

) ∣∣f̂(ξ)
∣∣2dξ < +∞



 ,

and for f ∈ D(Lθ),

Lθ f(x) := F−1
ξ→x

[
log
(
1 +

∣∣ξ
∣∣2θ
)
f̂(ξ)

]
that is, F [Lθf ](ξ) = log

(
1 + |ξ|2θ

)
f̂(ξ).

We note that the term Lθ∂tu in the equation (1) given by the logarithmic function is natural because logarithmic

function appears in many natural phenomena.

Here, one has just denoted the Fourier transform Fx→ξ[f ](ξ) of f(x) by

Fx→ξ[f ](ξ) = f̂(ξ) :=
1

(2π)1/n

∫

Rn

e−ix·ξf(x) dx, ξ ∈ Rn,

as usual with i :=
√
−1 and F−1

ξ→x expresses its inverse Fourier transform. We also need the Sobolev Space,

�

Hs(Rn) =
{
u ∈ S ′(Rn)

∣∣
∫

Rn
|ξ|2s |û|2 dξ <∞

}
.

Symbolically writing, one can see

Lθ = log
(
I + (−∆)θ

)
,

where ∆ is the usual Laplace operator defined on H2(Rn).
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2 Main Results

In order to introduce our main results we should define function spaces such that for s ≥ 0

Y s =




f ∈ L2(Rn) :

∫

Rnξ

(
1 + |ξ|2

)s |f̂(ξ)|2 dξ <∞





with its natural norm

∥f∥Y s :=



∫

Rnξ

(
1 + |ξ|2

)s ∣∣f̂(ξ)
∣∣2 dξ




1/2

, f ∈ Y s, (3)

and its corresponding inner product. Then our results read sd follows.

Theorem 2.1 (Existence and Uniqueness). Let n ≥ 1, 0 ≤ θ ≤ δ ≤ α and (u0, u1) ∈ Y 2α−δ × Y α. Then the

problem (1)–(2) with β = 0 admits a unique solution in the class

u ∈ C
(
[0, ∞[ ; Y 2α−δ) ∩ C1

(
[0, ∞[ ; Y α

)
∩ C2

(
[0, ∞[ ; Y δ

)
.

Moreover, for initial data (u0, u1) ∈ X = Y α × Y δ the problem (1)–(2) admits a unique weak solution in the

class

u ∈ C
(
[0, ∞[ ; Y α

)
∩ C1

(
[0, ∞[ ; Y δ

)
∩ C2

(
[0, ∞[ ; L2

)
.

Proposition 2.1 (Asymptotic Behaviour). Let n ≥ 3, α > 2θ, δ > 0 and let u(t, ξ) be the solution to problem

(1)–(2) with β = 0. Suppose that u0 ∈ L1(Rn) ∩
�

Y
δ
(
n−2δ
2α−2θ

)

, u1 ∈ L1(Rn) ∩
�

Y
δ
(
n−2δ
2α−2θ

)
− α

. Then, the following estimate

holds, ∫

Rn
|u(t, x)|2 dx ≤ C t−

n−2α
2α−2θ

[
∥u1∥2L1 + ∥u1∥2

�

Y
δ
(
n−2δ
2α−2θ

)
− α

+ ∥u0∥2
�

Y
δ
(
n−2δ
2α−2θ

) + ∥u0∥2L1

]
, t > 0,

where C is positive constants depending only on n.
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Abstract

We study rates of decay for C0-semigroups on Banach spaces under the assumption that the norm of the

resolvent of the semigroup generator grows with |s|β log(|s|)b, β, b ≥ 0, as |s| → ∞, and with |s|−α log(1/|s|)a,
α, a ≥ 0, as |s| → 0. Our results do not suppose that the semigroup is bounded.

1 Introduction

An important question in the theory of differential equations refers to the asymptotic behavior (in time) of their

solutions; more specifically, if they reach an equilibrium and, if so, with which speed. For those linear partial

differential equations which can be conveniently analyzed by rewriting them as evolution equations, it is well known

that the long-term behavior of the solutions of each one of these equations is related to some spectral properties

(and behavior of the resolvent) of the generator of the associated semigroup.

The asymptotic theory of semigroups provides tools for investigating the convergence to zero of mild and classical

solutions to the abstract Cauchy problem

{
u′(t) +Au(t) = 0, t ≥ 0

u(0) = x,
(1)

We know that (1) has a unique mild solution for every x ∈ X, and that the solution depends continuously on x if,

and only if, −A generates a C0-semigroup (T (t))t≥0 on X.

The works of Lebeau [3] (and some others authors) raised the question of what is the relation between the

growth rates for norm of the resolvent and the decay rates of the norm of semigroup orbits. More precisely,

assuming a spectral condition under the generator, σ(A) ⊂ C+ in (1), and ∥R(is, A)∥L(X) → ∞ as |s| → ∞,

then (T (t))t≥0 is not exponentially stable and one typically obtains other asymptotic behavior. Until 2010, much

attention has been paid to polynomial decay rates of the norm of semigroup orbits. In the work of [2], BÃ¡tkai,

Engel, Prüss and Schnaubelt proved that for uniformly bounded semigroups, a polynomial growth rate of the norm

of the resolvent implies a specific polynomial decay rate for classical solutions to (1). more precisely, let (T (t))t≥0

be a bounded semigroup on a Banach space X with infinitesimal generator −A such that σ(A)∩ iR = ∅. Let s ≥ 0

and set M(s) := sup|ξ|≤s ∥(iξ + A)−1∥L(X). If there exist constants C, β > 0 such that M(s) ≤ C(1 + s)β , then

for each ε > 0, there exists a positive constant Cε such that for each t > 0, ∥T (t)(1 + A)−1∥L(X) ≤ Cεt
− 1
β+ε.

In [1], Batty and Duyckaerts extended this correspondence to the case where the resolvent growth is arbitrary;

they were also able to reduce the loss ε > 0 to a logarithmic scale: if M : (0,∞) → (0,∞) is a continuous

non-decreasing function of positive increase such that ∥R(is,−A)∥L(X) ≤ M(|s|); then, there exists a positive

constant C such that ∥T (t)(1 + A)−1∥L(X) = O

(
1

M−1
log (Ct)

)
, t → ∞, where M−1

log is the right inverse of

Mlog(s) := M(s)(log(1 + M(s)) + log(1 + s)). In particular, if M(s) ≤ C(1 + s)β for any β > 0 and C > 0,

then ∥T (t)(1 + A)−1∥L(X) = O
(

log(t)
t

)1/β
, t → ∞. Until this point, we have presented some of the main results

of the asymptotic theory of bounded C0-semigroups. Nevertheless, there are many natural classes of examples
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where the norm of the resolvent of the generator grows with a power-law rate as |s| → ∞, for example, but the

semigroup is not uniformly bounded, or where it is unknown whether the semigroup is in fact bounded. To the

best of our knowledge, the following result due to BÃ¡tkai, Engel, Prüss and Schnaubelt is the first in the literature

that proves polynomial decay for not necessarily bounded semigroups. More precisely, let (T (t))t≥0 be a semigroup

defined in a Banach space X with generator −A such that ∥(λ + A)−1∥L(X) ≤ Cβ(1 + |λ|)β with C− ⊂ ρ(A)

and there exists β > 0 such that with λ ∈ C−. Then, there exists a positive constant Cn,δ such that for each

n ∈ N, δ ∈ (0, 1] and t > 0, ∥T (t)(1 + A)−β(n+1)−1−δ∥L(X) ≤ Cn,δt
−n. Then, by using geometrical properties of

the underlying Banach space (like its Fourier type), Rozendaal and Veraar have shown the following result (see

Theorem 4.9 in [4]). Let (T (t))t≥0 be a C0-semigroup with generator −A defined in a Banach space X with Fourier

type p ∈ [1, 2], and let 1
r = 1

p − 1
p′ (where 1

p +
1
p′ = 1). Suppose that C− ⊂ ρ(A) and that there exist β,C ≥ 0 such

that ∥(λ+A)−1∥L(X) ≤ C(1 + |λ|)β for each λ ∈ C−. Let τ > β +1; then, for each ρ ∈
[
0, τ−1/r

β − 1
)
, there exists

Cρ ≥ 0 such that for each t ≥ 1, ∥T (t)(1 +A)−τ∥L(X) ≤ Cρt
−ρ.

2 Main Results

We have obtained decay rates for C0-semigroups, by assuming that the norm of the resolvent of the generator

behaves as a function of type |s|β log(|s|)b as |s| → ∞ (a particular example of a regularly varying function).

Under these assumptions on the resolvent and without the assumption of boundedness of the semigroup, to the

best knowledge of the authors, these estimates are new. The proofs of the following Theorems can be found in our

work [5].

Theorem 2.1. Let β > 0, b ≥ 0 and let (T (t))t≥0 be a C0-semigroup defined in the Banach space X with Fourier

type p ∈ [1, 2], with −A as its generator. Suppose that C− ⊂ ρ(A) and that for each λ ∈ C with Re(λ) ≤ 0,

∥(λ + A)−1∥L(X) ≲ (1 + |λ|)β(log(2 + |λ|))b. Let r ∈ [1,∞] be such that 1
r = 1

p − 1
p′ , and let τ > 0 be such that

τ > β + 1
r . Then, for each δ > 0, there exist constants cδ,τ ∈ [0,∞) and t0 ≥ 1 such that for each t ≥ t0,

∥T (t)(1 +A)−τ∥L(X) ≤ cδ,τ t
1− τ−r−1

β log(1 + t)
b(τ−r−1)

β + 1+δ
r .

Theorem 2.2. Let β, b, A, (T (t))t≥0 and X be as in the statement of Theorem 2.1. Suppose A injective,

C− \ {0} ⊂ ρ(A) and that there exist α ≥ 1, β, a, b > 0 and positive constants C1 and C2 such that

∥(λ + A)−1∥L(X) ≤ C1|λ|−α log(1/|λ|)a, |λ| ≤ 1, ∥(λ + A)−1∥L(X) ≤ C2|λ|β log(|λ|)b, |λ| ≥ 1, with λ ∈ C− \ {0}.
Let σ, τ be such that σ > α − 1 and τ > β + 1/r. Then, for each ρ ∈

[
0,min

{
σ+1
α − 1, τ−r

−1

β − 1
}]

and each

δ > 1 − 1/r, where r ∈ [1,∞] is such that 1
r = 1

p − 1
p′ , there exist Cδ,ρ > 0 and t0 ≥ 1 so that for each t ≥ 1,

∥T (t)Aσ(1 +A)−σ−τ∥L(X) ≤ Cδ,ρt
−ρ log(1 + t)c(⌈ρ⌉+1)+1/r+δ, with c = max{a, b}.
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Abstract

In this paper we investigate the problem for a model of the viscoelastic fluid system coupled. In our analysis

we consider a fluid of the navier-stokes-voigt type. Thus, using the Faedo-Galerkin’s approximations we establish

our result on existence of weak solutions. Uniqueness of solutions is also analyzed.

1 Introduction

The equation below describe the motion of non-Newtonian fluid to which a small quantity of polymers is added:

ut − α∆ut − ν∆u+ (u · ∇)(u− α∆u) +∇p = f in QT ,

∇ · u = 0 in QT , u = 0 on ΣT , u(0) = u0 in Ω, (1)

where u = (u1, u2, ..., un) is the velocity, p represents the pressure, f = (f1, f2, ..., fn) stands for the given external,

ν > 0 is the constant kinematic viscosity parameter of the fluid and α is called the relaxation coefficient of fluid.

The system (1) is known in the literature as Navier-Stokes-Voigt, as already been studied by A. P. Oskolkov [1, 2]

and Amrouche [3], for example. We observe that if α = 0 in (1), we find the Navier-Stokes equations.

The equations that describes the motion of micropolar fluids are

u′ − (ν + νr)∆u+ (u · ∇)u+∇p = 2νr rot w + f in QT ,

w′ − (ca + cd)∆w + (u · ∇)w − (co + cd − ca)∇(∇ · w) + 4νrw,= 2νr rot u+ g, in QT ,

∇ · u = 0 in QT , u = 0 on ΣT , w = 0 on ΣT ,

(2)

where u(x, t), w(x, t) and p(x, t), denotes, respectively, the unknown velocity, the micro-rotational velocity and the

hydrostatic pressure of the fluid. The constants ν and νr are, respectively, the Newtonian and micro-rotational

viscosity; the positive constants c0, ca and cd are called coefficients of angular viscosities and satisfies c0 + cd > ca.

These systems have been mainly analyzed in the book of G. Lukaszewicz [4].

In the present work, we propose a similar problem to that of G. Lukaszewicz (2), for the fluid Naver-Stokes-Voigt

type, where we establish existence (n = 3) and uniqueness (n = 2) theorems:

ut − α∆ut − (ν + νr)∆u+ (u · ∇)u+∇p = 2νrrot w + f in QT ,

wt −∆wt − ν1∆w + (u · ∇)w − ν2∇(∇ · w) + 4νrw = 2νrrot u+ g in QT ,

∇ · u = 0 in QT , u = 0 on ΣT , w = 0 on ΣT , u(x, 0) = u0(x) in Ω, w(x, 0) = w0(x) in Ω,

(3)

2 Main Results

Definition 2.1. We suppose n = 3, u0 ∈ H, w0 ∈ L2(Ω)3, f, ft ∈ L2(0, T ;H) and g, gt ∈ L2(0, T ;L2(Ω)3. A weak

solution to the boundary value problem (3) is a pair of functions {u,w}, such that u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H),

w ∈ L2(0, T ;H1
0 (Ω)

3) ∩ L∞(0, T ;L2(Ω)3), for T > 0, satisfying the identity

(ut, φ) + αa(ut, φ) + (ν + νr)a(u, φ) + b(u, u, φ) = 2νr(rot w,φ) + (f, φ)

(wt, ϕ)+a(wt, φ)+ν1a(w, ϕ)+b(u,w, ϕ)+ν2(div w, div ϕ)+4νr(w,φ)=(rot u, ϕ)+(g, ϕ) ∀ φ ∈ V, ϕ ∈ H1
0 (Ω)

3

∇ · u = 0, u(0) = u0, w(0) = w0.

(4)
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Theorem 2.1. If f, ft ∈ L2(0, T ;H), g, gt ∈ L2(0, T : L2(Ω)3, u0 ∈ V and w0 ∈ H1
0 (Ω)

3, then there exists a pair

of functions {u,w} defined for (x, t) ∈ QT , solution to the boundary value problem (3) in the sense of Definition

2.1.

Idea of the proof In the first estimate we multiply the approximate equation associated with (4)1 and equation

(4)2 by um and wm respectively. We obtain the following estimates

um is bounded in L∞(0, T ;V ) and wm is bounded in L∞(0, T ;H1
0 (Ω)

3) (5)

In the second estimate we take the derivative with respect t only in the approximate equation associated with (4)1

and multiply by umt and the approximate equation associated with (4)2 we multiply by wmt . We obtain the following

estimates

(wmt ) is bounded in L2(0, T ;H1
0 (Ω)

3) and (umt ) is bounded in L∞(0, T ;V ). (6)

It follows from the above estimates that

umi → ui strongly in L2(0, T ;L2(Ω)) and a.e. in Q and wmi → wi strongly in L2(0, T ;L2(Ω)) and a.e. in Q,

therefore, umi u
m
j → uiuj a.e. in Q and wmi w

m
j → wiwj a.e. in Q. (7)

If n = 3, we have umi ∈ L4(0, T ;H1
0 (Ω)) ↪→ L4(0, T ;L4(Ω)), then

∥umiumj∥2L2(0,T ;L2(Ω)) ≤ C, therefore

umi u
m
j → uiuj weak in L2(0, T ;L2(Ω)).

Follows from the previous convergences and the Lebesgue dominated convergence theorem that

(umj φi)
2 → (ujφi)

2 strong in L1(Q), therefore

(umj φi) → (ujφi) strong in L2(Q).

Using the convergences above, we conclude that

b(um, um, ϕ) = −b(um, ϕ, um) = −
n∑

i,j=1

∫

Ω

umi
∂ϕj
∂xi

umj dx→ −
n∑

i,j=1

∫

Ω

ui
∂ϕj
∂xi

ujdx = b(u, u, ϕ).

b(um, wm, ϕ) =

n∑

i,j=1

∫

Ω

umi
∂wmj
∂xi

ϕjdx→
n∑

i,j=1

∫

Ω

ui
∂wj
∂xi

ϕjdx = b(u,w, ϕ).

Uniqueness follows from the method of energy.
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Abstract

In this paper, we investigate the uniqueness of solutions for the double nonlinear isotropic degenerate

fractional parabolic problem within bounded domains, subject to homogeneous. To this end, we double variables

as Kružkov [1] to obtain this contraction. Since this technique is by now well understood for scalar conservation

laws in bounded domains,

1 Introduction

We study in this paper the existence of solutions for the following initial-boundary value problem




∂tu+ div f(u) + (−∆)sΩ,pA(u) = 0 in ΩT ,

u|t=0 = u0 in Ω and u = 0 on ΓT ,
(1)

where

(−∆)pu = −div(|∇u|p−2∇u),

and u : ΩT → R is the unknown function that is sought, ΩT := (0, T ) × Ω, ΓT = (0, T ) × Γ for any real number

T > 0 and Ω ⊂ Rd is a bounded open set having smooth (C2) boundary Γ. Moreover, the flux function f : R → Rd is
in C1(R) and f′ is locally Lipschitz and A ∈ C1(R) is a nondecreasing function and A′ is locally Lipschitz (without

loss of generality A(0) = 0). The initial data u0 ∈ W 1,p
0 (Ω) ∩ L∞(Ω) and (−∆)sΩ,p is the Regional Fractional

p-Laplacian, that is to say

(−∆)sΩ,pA(u) = lim
ϵ→0

Cd,s,p

∫

Ω\Bϵ(x)
|A(u)(x)−A(u)(y)|p−2A(u)(x)−A(u)(y)

|x− y|d+ps dy

where Cd,s,p is the normalized constant (see [2]).

Different particular cases of this problem have been studied by several researchers. The author, Andreianov and

Neves [6] investigated the existence of solution for p = 2, while Cifani and Jakobsen [9] studied the problem over

the entire space. Other important work includes that of Wei, Duan, and LV [3], where they study the existence

of kinetic solution. Furthermore, the extremal cases of s = 1 and p = 2 have been thoroughly researched, with

important work. Mascia, Porretta, and Terracina [5], Michel and Vovelle [4]. Other case, in which p > 1, has

received considerable attention from researchers. Bendahmane and Karlsen’s work on establishing the uniqueness

of entropy solutions is an important contribution to this field [8]. Additionally, Igbida and Urbano’s research in the

context of multiple dimensions is noteworthy [7]. Another notable situation arises when A′ = 0. In this specific

case, the problem (1) takes on the characteristics of a well-known nonlinear hyperbolic problem, which has been

extensively investigated by Kružkov [1].
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2 Main Results

The aim of this section is to establish the uniqueness of weak entropy solution for the isotropic degenerate equations

∂tu+ div f(u) + (−∆)sΩ,pA(u) = 0,

posed in QT = (0, T )×Ω, and for any p ∈ (1,∞) and max{ 1
p⋆ ,

1
p} < s < 1. Our main result is the following theorem

Theorem 2.1. Let u and v be two entropy solutions of (1), with initial data u0, v0 ∈ L∞(Ω) respectively. Then

for a.e. t ∈ (0, T ) ∫

Ω

|u(t, x)− v(t, x)|+dx ≤
∫

Ω

|u0(x)− v0(x)|+dx.

Consequently ∥u(t, ·) − v(t, ·)∥L1(Ω) ≤ ∥u0 − v0∥L1(Ω). If u0 ≤ v0 a.e. in Ω, then u ≤ v a.e. in QT . Finally, if

u0 = v0 a.e. in Ω, then u = v a.e in QT .
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Abstract

We investigate the existence of solutions of linear and semilinear second-order equations involving time scales.

To obtain such results, we make use of the equivalence between the second-order equations with its self-adjoint

equation and fixed point results. Also, we present some examples and applications to illustrate our main results.

1 Introduction

It is known in the real world that continuously varying processes can be modeled by differential equations, and

that processes that vary discretely can be modeled by difference equations. But there are other processes that

vary both continuously and discreetly, which was a challenge for mathematicians, but in 1988 Stefan Hilger in his

Ph. D. dissertation [1], achieves start the continuous and discrete analysis, giving in this way, the beginning of the

theory of calculus in time scales and dynamic equations on time scales (see [2, 3] and references cited therein), its

main features being those of unification and extension, providing us with a powerful tool to deal with such mixed

processes.

The theory of periodic functions has achieved a considerable development so far [4, 5, 6, 7], but the investigations

related to the existence of periodic solutions in dynamic second-order equations on time scales are still scarce.

Motivated by these facts, we focus our attention to investigate in this paper the semilinear and linear second order

dynamic equations on time scales, respectively, given by:

x∆∆(t) = A(t)x∆(t) +B(t)x(t) + g(t), t ∈ T, (1)

and

x∆∆(t) = A(t)x∆(t) +B(t)x(t) + f(t, x(t)), t ∈ T, (2)

where A,B ∈ R(T,Rn×n), g ∈ Crd(T,Rn) and f ∈ Crd(T × Rn,Rn). Also, we assume that A, B, g and f are

ω-periodic functions on T and C(t) = AT (t)− µ(t)BT (t) such that it is satisfied

eC(t, s) and (⊖C)(t) commute. (3)

Φ(t) = [⊖ (C)] (t) (4)

2 Main Results

The following three results are related to the existence of ω−periodic solutions of equation (1).

Let Pω = {φ ∈ Crd(T,Rn) : φ(t+ ω) = φ(t)} be and ∥φ∥ = sup
t∈T

|φ(t)| for φ ∈ Pω.
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Lemma 2.1. Let T be a ω−periodic time scale and assume that A,B and g are ω−periodic on T. Then

eΦ(t, s)Φ(t) = Φ(t)eΦ(t, s), for t, s ∈ T, (1)

KΦ := (eΦ(t+ ω, t)T − I)−1, (2)

is independent of t ∈ T whenever Φ ∈ R(T,Rn×n). Furthermore, if x ∈ Pω, we have x∆ ∈ Pω.

Lemma 2.2. Let T be a ω−periodic time scale and assume that A,B and g are ω−periodic on T. If x ∈ Pω, then

x is a solution of following equation
(
eΦ(t, t0)

Tx∆(t)
)∆ − eσΦ(t, t0)

TB(t)xσ(t) = eσΦ(t, t0)
T g(t), (3)

if, and only if

x(t) = KΦ

∫ t+ω

t

{
eΦ(τ, t)

TΦT (τ)xσ(τ) +

∫ τ

−∞
eΦ(σ(s), t)

TG(s, xσ(s))∆s

}
∆τ, (4)

where Φ, KΦ are given by (4) and (2) respectively and G(t, y) := B(t)y + g(t) for y ∈ Rn.

Theorem 2.1. Let T be a ω−periodic time scale and assume that A,B and g are ω−periodic on T. Assume further

that G(t, x) := B(t)x+g(t) is bounded with respect to both variables on T×Rn, that is there exists a positive constant

M such that

∥G(t, x)∥ ≤M, (t, x) ∈ T× Rn.

Then equation (3) has a ω−peridic solution.

The following theorem is related with the existence of ω−periodic solutions of equation (2)

Theorem 2.2. Let T be a ω−periodic time scale and assume that A,B are ω−periodic on T. Assume further that

f is ω-periodic with respect to the first variable and that there exists constants, L > 0 such that

∥f(t, x)− f(t, y)∥ ≤ L∥x− y∥, x, y ∈ Rn, t ∈ T, (5)

Then equation (
eΦ(t, t0)

Tx∆(t)
)∆ − eσΦ(t, t0)

TB(t)xσ(t) = eσΦ(t, t0)
T f(t, x(t)), (6)

has a ω−periodic solution.
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Abstract

A function f → Rn is said to be Henstock-Kurzweil Integrable on I if there exists a vector B ∈ Rn such

that for every ϵ > 0, there exists a gauge γϵ on I such that if Ṗ := (Ii, ti)
n
i=1 is any tagged partition of I with

l(Ii) < γϵ(ti) for i = 1, ..., n, then

||S(f ; Ṗ )−B|| ≤ ϵ

The model proposed by Henstock began with the investigation of an integration process aimed at

reconstructing a derived function and is responsible for encompassing a broader class of functions than those in

the Riemann and Lebesgue models, without the need to work with measure theory as in Lebesgue integrable

functions. At the same time, but completely independently, Jaroslav Kurzweil introduced an equivalent

integration concept in 1957 to investigate results of continuous dependence.

This type of integration naturally pays more attention to taggings than the more traditional integration

concepts. Therefore, the definition is constructed by allowing the γϵ > 0 used in the Riemann integral definition

to be any positive function, which allows a broader class of functions to be integrable.

Using this type of integral, it is possible to study many important problems in physics with highly oscillatory

behavior, such as the Kapitza pendulum.

1 Introduction

The concept of the integral arises from the attempt to calculate areas and volumes of figures, and one of the

techniques employed is precisely approximation by known figures. Over time, it becomes evident that the process

of integration also has a strong connection with differentiation.

Its development goes through Riemann in the 1850s, who separates these concepts again using limits and

summations, and is equivalent to the concept presented by Darboux when working with bounded functions, which

uses the concept of upper and lower integrals of a bounded function over an interval. Thus, when considering all

functions over an interval where the integration process could be defined, we have:

A function f → R is said to be Riemann-integrable on I if there exists a number A ∈ R such that for every

ϵ > 0, there exists a γϵ > 0, such that if Ṗ := (Ii, ti)
n
i = 1 is any tagged partition of I, where l(Ii) < γϵ(ti), with

i = 1, ..., n, then we have

|S(f ; Ṗ )−A| ≤ ϵ

By the early 20th century, Lebesgue proposed a new concept of the integral, more general and capable of

integrating a larger number of functions, which solves several problems related to integrals, such as the validity

of the Fundamental Theorem of Calculus. According to Lebesgue, for the Fundamental Theorem to be valid, it

is necessary for the function to have a bounded derivative. From this, it was natural to question a new concept

of the integral, where if f is integrable and differentiable according to this concept, then its derivative f ′ is also

integrable, and the Fundamental Theorem holds. The development of this problem gives rise to the Generalized

Riemann Integral, or Henstock-Kurzweil Integral, a subject of study in this work, which presents a simpler and

more general formulation than the Lebesgue Integral.
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2 Main Results

The Henstock-Kurzweil integral naturally focuses more on taggings than traditional integration models. Thus, this

concept is built by allowing the γϵ > 0 used in the Riemann definition to be any positive function. This permits

a broader class of functions to be integrable. Such γϵ > 0 is called a gauge, and we have the following definitions

found in [1]:

Definition 1

If I : [a, b] ⊂ R, a function δ → R is a gauge on Is and δ(t) > 0 for all t ∈ I. The interval around t ∈ I is

controlled by the gauge δ in the interval:

B[t, δ(t)] := [t− δ(t), t+ δ(t)]

Definition 2

If I ⊂ [a, b] is an interval and Ṗ = (Ii, ti)
n
i = 1 is a tagged subpartition. If δ is a gauge on I, Ṗ is δ-fine; then

for all i = 1, ..., n:

Ii ⊂ [ti − δ(ti), ti + δ(ti)]

From there, considering the definitions of gauge functions, we have that the Henstock-Kurzweil Integral is given

by the following definition:

Definition 3

A function f → R is said to be Henstock-Kurzweil-integrable on I if there exists a number B ∈ R such that for

every ϵ > 0, there exists a gauge function γϵ on I such that if Ṗ := (Ii, ti)
n
i = 1 is any tagged partition of I, where

l(Ii) < γϵ(ti), with i = 1, ..., n, then we have

|S(f ; Ṗ )−B| ≤ ϵ

The existence of the gauge function in the definition of the Henstock-Kurzweil integral motivates its generality

and is the main difference compared to the Riemann integral.

3 Conclusion

Advances in integration theory were driven by attempts to generalize the integral concept addressed by Riemann and

Lebesgue. While some methods used the Lebesgue integral as a particular case, Henstock started by investigating

an integration process aimed at reconstructing the function using the derivative, employing the concepts of Riemann

and Darboux. This process, which we refer to as the Henstock-Kurzweil Integral or Generalized Riemann Integral,

encompasses a broader class of functions than those covered by Riemann and Lebesgue, without the need to use

measure theory as required for Lebesgue integrable functions.

In this project, the focus was on the study of the Henstock-Kurzweil Integral, also known as the new integration

theory, as well as its properties and specifications for the Fundamental Theorem of Calculus, starting from

differentiated integration models such as the Riemann Integral.
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Abstract

The theory of generalized ordinary differential equations (generalized ODEs, for short) is a very powerful

theory once several types of equations can be regarded as them. In this lecture, we aim present a new concept

of stability, which we call decreasing stability, and deal with some Lyapunov techniques on decreasing and

exponential stability.

1 Introduction

A. M. Lyapunov, in 1892, developed two methods for analyzing the stability of differential equations. One can

consider direct and converse Lyapunov Theorems. A direct Lyapunov Theorem states that if a Lyapunov functional

exists then an equilibrium point is stable. On the other hand, a converse Lyapunov Theorem claims that if an

equilibrium point is stable then a Lyapunov functional exists.

In what concerns generalized ordinary differential equations (we write generalized ODEs for short), the study of

stability has recently increased. This is due the fact that generalized ODEs encompass several types of equations,

as for instance, functional differential equations of neural type, measure functional differential equations, dynamic

equations on time scales, integral equations and a class of partial differential equations. See [2].

Motivated by these facts, we are interested in presenting stability criteria for generalized ODEs. At first,

we introduce two new concepts of stability, called decreasing stability and asymptotic stability, which generalize

exponential stability (we will show this during the lecture). This lecture is based on the submitted paper [1].

Definition 1.1. Let s0 ≥ t0 ≥ 0, x0 ∈ X and x : [s0,+∞) → X be the global forward solution of the generalized

ODE
dx

dτ
= DF (x, t), (1)

with initial condition x(s0) = x0. The trivial solution of the generalized ODE (1) is called

1. exponentially stable, if there exist positive constants ρ, α, β such that

∥x(t)∥ = ∥x(t, s0, x0)∥ < αe−β(t−s0), for all t ∈ [s0,+∞),

whenever ∥x0∥ < ρ;

2. decreasingly stable, if there exist δ > 0 and a decreasing function σ : [0,+∞) → R+ such that σ(0) <∞ and,

if ∥x0∥ < δ, then ∥x(t)∥ = ∥x(t, s0, x0)∥ < σ(t− s0) for all t ∈ [s0,+∞);

3. decreasingly asymptotically stable, if it is decreasingly stable if σ(t) → 0 as t→ ∞.

Furthermore, we will present a Lyapunov-type Theorem in the context of decreasing stabilities and we obtain

converse Lyapunov Theorems for these stabilities and for exponential stability.
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2 Main Results

Our main results are

Theorem 2.1. If there exists a functional V : [t0,+∞)×X → R such that

1. V (t, z) ≥ 0 for every (t, z) ∈ [t0,+∞)×X;

2. the mapping [s0,+∞) ∋ t 7→ V (t, x(t)) is nonincreasing along every solution x : [s0,+∞) → X of the

generalized ODE (1);

3. there exists a positive constant γ such that γ∥z∥ ≤ V (t, z) for all (t, z) ∈ [t0,+∞)×X;

then the trivial solution of the generalized ODE (1) is decreasingly stable.

Corollary 2.1. If there exists a functional V : [t0,+∞) ×X → R satisfying conditions 1, 2 and 3 from Theorem

2.1 such that the mean of V is zero along every maximal solution, that is,

lim
t→∞

1

t− s0

∫ t

s0

V (τ, x(τ))dτ = 0,

where x : [s0,+∞) → X is a solution of the generalized ODE (1). Then, the trivial solution of the generalized ODE

(1) is decreasingly asymptotically stable.

Theorem 2.2. If the trivial solution of the generalized ODE (1) is decreasingly stable, then there exist δ > 0 and

a functional V : [t0,+∞)×Bδ → R+, Bδ = {x ∈ X; ∥x∥ < δ}, such that

1. V (t, y) ≥ 0 for all (t, y) ∈ [t0,+∞)×Bδ;

2. V (·, y) : [t0,+∞) → R+ is left-continuous on (t0,+∞) for all y ∈ Bδ;

3. there exists a monotonically increasing and continuous function a : R+ → R+ such that ∥y∥ ≤ V (t, y) ≤ a(∥y∥)
for all (t, y) ∈ [t0,+∞)×Bδ;

4. the mapping [s0,+∞) ∋ t 7→ V (t, x(t)) is nonincreasing along every solution x : [s0,+∞) → Bδ of the

generalized ODE (1).
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Abstract

Generalized stochastic equations (GSEs) are described by the Kurzweil-belated integral which extends the

Itô-Henstock integral to include a larger class of equations. This enables one to deal with highly oscillatory

(operator valued) functions of unbounded variation. The main goal of this work is concerned with stabilization

of nonlinear dynamical systems by means of Lyapunov functionals.

1 Introduction

As the workhorse of modern analysis, integrals are, without question, among the most familiar calculus tools.

The first integral that comes to our mind when we think about calculus is the Riemann integral. However, this

integral has several limitations and the class of Riemann integrable functions is quite limited. To overcome these

limitations, Henri Lebesgue used a considerably amount of measure theory to create a new notion of integral.

Decades later, independently, Ralph Henstock (1955) and Jaroslav Kurzweil (1957) came up with a new and much

simpler formulation of integral which encompasses the Riemann, Newton and Lebesgue integrals. In their definition,

the intuitive approach of the Riemann integral is preserved, but unlike the latter, Henstock and Kurzweil considered

a strictly positive function δ (called gauge) to calibrate the length of each subintervals of the domain. By making

this “small adjustment”, it turned out that their integral, known as the Henstock-Kurzweil integral, recovers all

primitives as integrals. Moreover, this integral allows us to deal with highly oscillating integrands.

Usually, in stochastic calculus, the integrators and the integrands are highly oscillatory. Therefore, it is

impossible to define stochastic integrals using the Riemann or Lebesgue absolute integration theories. One well-

known stochastic integral, namely the Itô integral, reminds us the Lebesgue approach of integrable functions through

elementary ones. The concept of Itô-Henstock integral, on the other hand, has been studied since 1969 and reduces

technicalities in the classical way of defining stochastic integrals.

Generalized ordinary differential equations are described by the Henstock-Kurzweil integral and they have been

shown to act as a unifying theory for many equations. In order to create a similar environment to the non-

deterministic case, the authors in [4] defined a new class of equations, called generalized stochastic equations (we

write GSEs for short), whose solutions are described by the Kurzweil-belated integral. The idea of this integral is to

use belated partial divisions and adapt the classic Kurzweil integral so that it not only it contains the Itô-Henstock

integral but it also provides a general setting for many stochastic equations.

It is well-known that stability conditions for solutions of differential equations can be obtained using an

appropriate Lyapunov functional. Moreover, the construction of different Lyapunov functionals allows obtaining

different stability conditions and the reciprocal is true. Stability theory for GSEs in the framework of Lyapunov

functionals can be found in [1, 2]. Lyapunov theorems have a long history and have been frequently used in nonlinear

control problems to establish robustness of asymptotic stability. Indeed, control Lyapunov function is a central tool

in stabilization and generalizes an abstract energy function-a Lyapunov functional-to the case of controlled systems.

This paper aims to provide a general framework for stabilization by means of nonsmooth control Lyapunov

functionals using sampled controls. Stabilization here was meant as practical stabilization, i.e., the system state

could be stabilized into any desirable vicinity of the equilibrium, provided that the sampling time be sufficiently

small. Our main result generalizes the related results to the stochastic case [3].
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2 Generalized Stochastic Equations

In this section, we provide the basic background on GSEs introduced in [4].

Definition 2.1. Let δ : [a, b] → [0,+∞) be a non-negative function (called gauge on [a, b]). A δ-belated partial

division of [a, b] is any finite collection of point-interval pairs, D = {(xi−1, (xi−1, xi]) : i = 1, 2, . . . , |D|}, such that

(xi−1, xi], i = 1, 2 . . . , |D|, are disjoint left-open subintervals of [a, b] and (xi−1, xi] ⊂ (xi−1, xi−1 + δ(xi−1)), for all

i = 1, 2 . . . , |D|. If, in addition, for a given η > 0,
∣∣∣b− a−∑|D|

i−1(xi − xi−1)
∣∣∣ ≤ η, then D = {(xi−1, (xi−1, xi]) :

i = 1, 2, . . . , |D|}, is called a (δ, η)-belated partial division of [a, b], that is, D fails to cover [a, b] by at most a set o

Lebesgue measure η.

Definition 2.2. Let F(Ω, V ) be the space of all operators from Ω to a Hilbert space V . Assume that

G : [a, b] × [a, b] → F(Ω, V ) is a {Ft}-adapted process on (Ω,F , {Ft}t∈I ,P). We say that G is Kurzweil-belated

integrable over [a, b], if for every ϵ > 0, there exist an element K ∈ Lp(Ω, V ), a gauge δ on [a, b] and η > 0

such that
∫
Ω

∥∥∥
∑|D|
i=1[G(si−1, si)−G(si−1, si−1)](ω)−K(ω)

∥∥∥
p

V
dP < ϵ, for every (δ, η)-fine belated partial division

D = {(si−1, (si−1, si]) : i = 1, 2 . . . , |D|} of [a, b]. In this case, we write K =
∫ b
a
G(τ, s).

Definition 2.3. Let F : Lp(Ω, V )× J → F(Ω, V ). A {Ft}-adapted process X = {Xt : t ∈ J} on (Ω,F , {Ft}t∈I ,P),
with Xt ∈ Lp(Ω, V ), for all t ∈ J , is a solution of the GSE

Xt = Xs +

∫ t

s

F (Xr, τ), t, s ∈ J, (1)

on J , whenever Xt(ω) ∈ V for every t ∈ J and P-almost every ω ∈ Ω and the integral equation (1) holds, where the

integral is in the sense of the Kurzweil-belated integral with G(r, τ) = F (Xr, τ).

Definition 2.4. A functional V : [t0,+∞)×Lp(Ω, V ) → R+ is said to be positive definite (in the sense of Lyapunov)

if V (t, 0) ≡ 0 and, for some µ ∈ K, V (t, Z) ≥ µ(∥Z∥Lp), for all (t, Z) ∈ [t0,+∞) × Lp(Ω, V ). On the other hand,

V is said to be negative definite, if −V is positive definite.

3 Main Results

Theorem 3.1. Consider the GSE (1) and suppose there exists a control Lyapunov functional V : [t0,+∞) ×
Lp(Ω, V ) → R+ such that c1E[∥Xt∥pV ] ≤ V (t,Xt) ≤ c2E[∥Xt∥pV ] for some positive constants c1, c2 and all t ≥ s0.

Then, there is a unique solution of (1) for each X̃ ∈ Lp(Ω, V ) and the trivial solution is globally stable in probability.
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Abstract

This paper presents a fractional model of oxygen diffusion in cellular tissue. We will start with a technique

that proposes an approximate problem, as seen in [2]. Through the ideas described in the papers [5, 6], we will

introduce a fractional operator in time using the Riemann-Liouville fractional derivative. A numerical study

will be presented with these approximate solutions, focusing on formulating this fractional model as a nonlinear

complementarity problem. We will use the FDA-NCP algorithm to obtain the numerical solution of the model

and the curve representing the moving boundary.

1 Introduction

The oxygen diffusion model is a classic problem and has been studied for over 50 years. We will briefly describe

the physical part of the model and present the equations that describe it in dimensionless form. More details can

be found in [1, 2]. The problem consists of determining the concentration c(x, t) at each instant and monitoring

the movement of the boundary that delimits the presence of oxygen in the tissue, known as the moving boundary,

S0(t).
∂c

∂t
=
∂2c

∂x2
− 1 , 0 ≤ x ≤ S0(t) , t ≥ 0. (1)

c =
∂c

∂x
= 0 , x = S0(t) , t ≥ 0 ; (2)

∂c

∂x
= 0 , x = 0 , t ≥ 0 ; (3)

c =
1

2
(1− x)2 , 0 ≤ x ≤ 1 , t = 0. (4)

Our proposal for constructing a fractional model is based on the approach presented in [5, 6]. Thus, we will use

the kernel K(t) = e−r1tEα(−rα2 tα), with r1 + r2 = 1 where the function Eα(z) is the one-parameter Mittag-Leffler

function. After calculations similar to [5] we define a fractional model by replacing equation (1.1) with

∂c

∂t
= ∗Dα

[
∂2c

∂x2

]
− 1 , and keeping equations (1.2)-(1.4). (5)

Where ∗Dα[y(t)] = r1y(t) + rα2 e
−r1t RLD1−α

t [er1ty(t)] and RLD1−α
t is the Riemann-Liouville derivative

RLD1−α
t [y(t)] =

1

Γ(α)

d

dt

∫ t

0

y(τ)

(t− τ)1−α
dτ , 0 < α ≤ 1. (6)

As done in [2], the solution is given by

c(x, t) = a0(t) +

∞∑

k=1

ak(t)cos(kπ(1− x)). (7)
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2 Main Results

Replacing (7) in the fractional model (1.5) we obtain:

c(x, t) =
1

6
− t+

2

π2

∞∑

k=1

(−1)ke−r1ktEα(−rα2ktα)
cos(kπ(1− x))

k2
, where r1k + r2k = k2π2. (8)

The complementarity problem version is presented below, as discussed in [4]. The FDA-NCP algorithm [3], was

used to determine the numerical solution(C ≡ c(x, t)).

∂C

∂t
− ∗Dα

[
∂2C

∂x2

]
+ 1 ≥ 0 , C ≥ 0 and

(
∂C

∂t
− ∗Dα

[
∂2C

∂x2

]
+ 1

)
C = 0. (9)

We use the values α = 0.8 , r1k = 0.4(kπ)2 and r2k = 0.6(kπ)2 to generate Figures 1(a) − (b). In Figure 1(a),

we see the surface generated by the solution given by equation (8) where we can see the intersection of the surface

with the XoY plane that defines the free boundary curve. In Figure 1(b), we see the solution c(x, t) found by

the FDA-NCP algorithm, of the complementarity problem (9) for the following time values: t = 0 (black, initial

condition), t = 0.03 (red), t = 0.06 (blue), t = 0.09 (green), t = 0.12 (cyan), t = 0.15 (yellow).

0
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Figure 1: (a)-(b)

The results obtained are promising and studies on the effects of this fractional operator in the model are already

advanced. We hope that this work contributes to the study of fractional models.
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Abstract

The object of this work is to study the existence of solutions for a nonlocal p(u)-Laplacian Dirichlet problem

with a nonlocal nonlinearity. Firstly, we establish our results applying the degree theory for (S+) type mappings

together with the technique of Zhikov for passing to the limit in a sequence of p(un)-Laplacian problems, then

we conclude our result by using a fixed point theorem.

1 Introduction

This research is devoted to the study of the following nonlocal p(u)-Laplacian problem

−A(u)div(|∇u|M(
∫
Ω
|∇u|2 dx)−2∇u) = B(u)f(x, u) in Ω

u = 0 on ∂Ω,
(1)

where Ω ⊂ RN is a bounded smooth domain, A,B are two functionals defined on a Sobolev sapce, M and f are

functions that satisfy conditions which will be stated later. In [1, 5, 3] the authors consider the problem (1), with

A(u) = 1 = B(u), M
(∫

Ω
|∇u|2 dx

)
= p(b(u)) with p, b continuous functions and f(x, u) = f(x). They showed

existence of solutions via the theory of monotone operators and the Brouwer fixed-point theorem. Motivated by the

above references, we deal with the existence of solutions for nonlocal p(u)-Laplacian problem(1), but we are facing

serious difficulties when we want to apply the theory of monotone operators in the Banach space W 1,p(b(.))(Ω) to

prove the existence of weak solutions. Therefore, we use the degree theory for (S+) type mappings to obtain some

useful convergence results and the approximation procedure employed by Zhikov [4]. Next, the mentioned fixed

point theorem allows us to conclude our result.

2 Notations and Main Results

We note that M
(∫

Ω
|∇u|2 dx

)
is here a real number and not a function, then the Sobolev spaces involved in this

work are the classical ones. We will consider the well-known Sobolev space W 1,p
0 (Ω) with the norm

∥u∥1,p = ∥∇u∥p. Assume that the following assumptions hold:

(M0) M : [0,+∞[→]m0,m1[ is a continuous function with m0 > 0.

(A0) A : X → [0,+∞[, B : X → R are continuous and bounded on any bounded subset of X =

W
1,M(

∫
Ω
|∇u|2 dx)

0 (Ω), with A(0) > 0 for all u ∈ X \ {0} and for any bounded sequence {uν} ⊂ X for

which A(uν) → 0 we have uν → 0 in X.

(F1) f : Ω× R → R satisfies the Carathéodory and there exists η with 1 < η < m1 − 1 such that

|f(x, u)| ≤ c1 + c2|u|η a.e. x ∈ Ω, all u ∈ R, c1, c2 > 0
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Theorem 2.1. Let (M0), (A0) , (F1) and the following conditions hold:

(A1) There are constants α ∈ R, M > 0 and c3 > 0 such that A(u) ≥ c3∥u∥α all u ∈ X with ∥u∥ ≥M.

(B1) There are constants β ∈ R, M > 0 and c4 > 0 such that |B(u)| ≤ c4∥u∥β all u ∈ X with ∥u∥ ≥M.

(H1) α+m0 > β + η and α+m0 > 0

Then (1) has a weak solution in X.

Proof We employ the degree theory for (S+) type mappings combined with the technique of Zhikov, and the

Brouwer fixed-point theorem.
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Abstract

Let Ω be a bounded, smooth domain of RN , N ≥ 2. For p > N and 1 ≤ q(p) <∞ set

λq(p) := inf

{∫
Ω

|∇u|p dx : u ∈W 1,p
0 (Ω) and

∫
Ω

|u|q(p) dx = 1

}
and let uq(p) denote a corresponding positive extremal function. We prove that if lim

p→∞
q(p)
p

= ∞, then each

sequence uq(pn), with pn → ∞, admits a subsequence converging uniformly in Ω to a viscosity solution to the

problem 
−∆∞u = 0 in Ω \M
u = 0 on ∂Ω

u = 1 in M,

where M is a closed subset of the set of all maximum points of the distance function to the boundary of Ω.

1 Introduction

We study the asymptotic behavior, as p→ ∞, of the pair
(
λq(p), uq(p)

)
where

λq(p) := inf
{
∥∇u∥pp : u ∈W 1,p

0 (Ω) and ∥u∥q(p) = 1
}

and uq(p) is a positive minimizer, which is also a weak solution to the Dirichlet problem

{
−∆pu = λq(p) |u|q(p)−2

u in Ω

u = 0 on ∂Ω

(Ω is a smooth, bounded domain of RN , N ≥ 2).

The introductory case q(p) = p was studied by Juutinen, Lindqvist and Manfredi [3]. They first showed that

lim
p→∞

λ1/pp = Λ∞ := ∥dΩ∥−1
∞

where dΩ denotes the distance function to the boundary of Ω. Then, they proved that any sequence upn , with

pn → ∞, admits a subsequence that converges uniformly in Ω to a viscosity solution u∞ ∈ C0(Ω) ∩W 1,∞(Ω) to

the Dirichlet problem {
min {|∇u| − Λ∞u,−∆∞u} = 0 in Ω

u = 0 on ∂Ω.

Such a function is known as a first eigenfunction of the ∞-Laplacian.

Charro and Peral in [2] and Charro and Parini in [1], studied the asymptotic behavior, as p→ ∞, of the positive

weak solutions up to the problem {
−∆pu = µp |u|q(p)−2

u in Ω

u = 0 on ∂Ω,
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under the assumption that µp > 0 is such that

Λ := lim
p→∞

µ1/p
p ∈ (0,∞).

Let us set

Q := lim
p→∞

q(p)

p
.

In [2] it is considered the subdiffusive case: Q ∈ (0, 1) whereas in [1] it is considered the superdiffusive case:

Q ∈ (1,∞). In both works it is proved that any sequence upn , with pn → ∞, admits a subsequence converging

uniformly to a viscosity solution to the problem
{

min
{
|∇u| − ΛuQ,−∆∞u

}
= 0 in Ω

u = 0 on ∂Ω.

2 Main Results

Theorem 2.1. If limp→∞ q(p) = ∞, then

lim
p→∞

λ
1/p
q(p) = Λ∞ and lim

p→∞

∥∥uq(p)
∥∥
∞ = 1.

Moreover, each sequence uq(pn), with pn → ∞, admits a subsequence that converges uniformly to a function

u∞ ∈ C0(Ω) ∩W 1,∞(Ω) which enjoys the following properties:

1. 0 ≤ u∞(x) ≤ Λ∞dΩ(x) for all x ∈ Ω.

2. ∥u∞∥∞ = 1 and Λ∞ = ∥∇u∞∥∞ .

3. M := {x ∈ Ω : u∞(x) = 1} ⊆MΩ := {x ∈ Ω : dΩ(x) = ∥dΩ∥∞} .

4. u∞ is infinity superharmonic in Ω and (consequently) positive in Ω.

Corollary 2.1. If Q = 1, then the function u∞ ∈ C0(Ω)∩W 1,∞(Ω) obtained in Theorem 1 is a first eigenfunction

to the ∞-Laplacian.

Our main result, stated in the sequence, focuses on the limit problem satisfied by the limit function u∞ in the

case not yet treated in the literature, which we call hyperdiffusive case: Q = ∞.

Theorem 2.2. If Q = ∞, then the function u∞ ∈ C0(Ω)∩W 1,∞(Ω) obtained in Theorem 1 is a viscosity solution

to the problem 



−∆∞u = 0 in Ω \M
u = 0 on ∂Ω

u = 1 in M.

Moreover, u∞ = dΩ
∥dΩ∥∞

if and only if M =MΩ = ΣΩ := {x ∈ Ω : dΩ is not differentiable at x} .
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Abstract

In this paper, we consider a class of Schrödinger-Poisson systems on bounded domains that depend on

a parameter η. These systems have variable supercritical exponents and a singular term as part of their

nonlinearity. For η = 1, we proved the existence and uniqueness of a solution using variational methods.

In the case η = −1, the structure of the problem changes significantly, and we proved the existence of a solution

using non-variational methods based on an approximating scheme. In both cases, we faced difficulties handling

the loss of compactness because the variable exponents involve supercritical growth. The supercritical variable

growth not only causes the system to lose its homogeneity but also its compactness properties.

1 Introduction

Consider the following system



−∆u+ u+ qϕf(u) = g(x, u), inR3,

−∆ϕ = 2F (u), inR3.
(1)

This type of system has been the subject of intensive research because of its strong application relevance. From

a physical point of view, it describes systems of identically charged particles interacting with each other in cases

where magnetic effects can be neglected. The nonlinear term g(x, u) models the interaction between the particles,

while the coupled term ϕf(u) concerns the interaction with the electric field (see [1, 2] for details). System (1), also

known as the nonlinear Schrödinger-Maxwell problem, was proposed in [3] as a model describing solitary waves for

the nonlinear stationary Schrödinger equations interacting with the electrostatic field.

Recent research has focused on the existence, nonexistence, multiplicity results, and ground state or sign-

changing solutions of system (1) under various assumptions on the nonlocal term f and the nonlinear term g.

The Schrödinger-Poisson system in a bounded domain has also been extensively studied in the literature. In this

article, we study a class of Schrödinger-Poisson systems in a bounded domain with variable supercritical exponents

and a singular term. More precisely, we consider the following problem:





−∆u+ 2(2∗ + rα − 1) η ϕu2
∗+rα−2 = λ

uγ in Ω,

−∆ϕ = u2
∗+rα−1 in Ω,

u > 0, ϕ > 0 in Ω,

u = ϕ = 0 on ∂Ω,

(2)

where Ω is the ball in RN centered at the origin and of radius one, N ≥ 3, 2∗ = 2N
N−2 is the critical Sobolev

exponent, r = |x|, η = ±1, α, λ > 0 are real parameters, and γ ∈ (0, 1).

Schrödinger-Poisson systems with a singular term have garnered significant attention recently due to the added

complexities introduced by this term, such as challenges in analyzing the behavior of solutions near singularities and

the non-smoothness of associated energy functionals. For example, the energy functional associated with the system

57



58

is not of class C1, prompting researchers to seek new techniques for obtaining solutions via critical point theory. In

[4], the authors considered the following Schrödinger-Poisson system with singularity and critical exponent:





−∆u+ η ϕu2
∗−2 = λ

uγ in Ω,

−∆ϕ = u2
∗−1 in Ω,

u > 0, ϕ > 0 in Ω,

u = ϕ = 0 on ∂Ω,

(3)

where Ω is a bounded domain in RN , N ≥ 3, 2∗ = 2N
N−2 is the critical Sobolev exponent, η = ±1, λ > 0 is a real

parameter, and γ ∈ (0, 1). For η = 1, the authors demonstrated that system (3) has a unique solution, and for

η = −1, they demonstrated that system (3) has at least two different solutions. There are fewer articles on the

matter when considering the supercritical exponent in Sobolev’s sense. Nonetheless, in a recent paper [5], do Ó et

al. studied a second-order elliptic equation involving variable supercritical exponents in the unit ball, achieving an

unexpected result of existence.

As far as we know, quasilinear Schrödinger-Poisson systems with singular terms and variable supercritical

exponents have not been studied. Motivated by the references mentioned above, specifically [4] and [5], we propose

in this article to study the problem of obtaining a solution for system (1), which has a singular term and variable

supercritical exponent. Besides the fact that we cannot directly apply critical points theory to study the energy

functional associated with system (1), the second equation of the system has a term with variable supercritical

growth. This term presents a significant difficulty in control, as it not only lacks compactness due to its growth but

also loses any type of homogeneity in this equation.

2 Main Results

The main results of this article are given by the following theorems whose proof can be found in [6].

Theorem 2.1. If η = 1, then for each λ > 0, system (1) has a unique radial solution (u, ϕ) ∈ H1
0 (Ω)×W

2, 2
∗+1
2∗

0 (Ω).

Theorem 2.2. If η = −1, then there exists Λ > 0 such that for all λ ∈ (0,Λ), system (1) has at least one radial

solution (u, ϕ) ∈ H1
0 (Ω)×W

2, 2
∗+1
2∗

0 (Ω).
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Abstract

In this work, we study existence of positive solutions to a class of (2, q)-equations in the zero mass case in R2.

We establish weighted Sobolev embedding and we introduce a new Trudinger-Moser type inequality. Moreover,

since we work on a suitable radial Sobolev space, we prove a version of the Symmetric Criticality Principle.

Finally, we study regularity of solutions applying Moser iteration scheme.

1 Introduction

We consider a class of (2, q)-equations in the zero mass case, namely

−∆u−∆qu = Q(|x|)f(u), in R2, (P)

where 1 < q < 2, Q : (0,∞) → R is a radially symmetric weight function and

(Q)Q is continuous, Q > 0, and there exist b0, b ∈ R such that

lim sup
r→0+

Q(r)

rb0
<∞ and lim sup

r→∞

Q(r)

rb
<∞.

Inspired by [1], we consider the space Eq, defined as the completion of C∞
0 (R2) with respect to the norm

∥u∥Eq :=
(
∥∇u∥2L2(R2) + ∥∇u∥2Lq(R2)

)1/2
.

We also consider the space Eqrad := {u ∈ Eq : u is radial} with the norm induced by Eq. Moreover, for 1 ≤ p <∞,

we define the weighted Lebesgue space LpQ(R2) :=
{
u : R2 → R measurable :

∫
R2 Q(|x|)|u|pdx <∞

}
, with norm

∥u∥LpQ(R2) :=

(∫

R2

Q(|x|)|u|p dx
)1/p

.

Regarding the nonlinearity f , we consider the following assumptions:

(f1) f : R → R is continuous and there exists α0 > 0 such that lim|s|→∞
|f(s)|
eαs2

=

{
0, if α > α0,

∞, if α < α0;

(f2) f(s) = o(|s|q̃−1), as s→ 0, where q̃ := max
{
q∗, q∗

(
b
2 + 1

)}
, with q∗ := 2q/(2− q);

(f3) there exists µ > q̃ such that, for any s ̸= 0, we have 0 < µF (s) := µ
∫ s
0
f(t) dt ≤ f(s)s;

(f4) there exist ξ > 0 and ν > q̃ such that, for any s ∈ (0, 1], one has F (s) ≥ ξsν .

Remark 1.1. We suppose that f(s) = 0, for s ≤ 0. An example satisfying our assumptions is F (s) = |s|νeα0s
2

for

s > 0 and F (s) = 0 for s < 0.
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2 Main Results

Theorem 2.1 (Weighted Sobolev embedding). Assume that (Q) holds with b0, b > −2. Then, the embedding

Eqrad ↪→ LpQ(R2) is continuous for q̃ ≤ p < ∞. Furthermore, the embedding Eqrad ↪→ LpQ(R2) is compact, for

q̃ < p <∞.

In the next proposition, we clarify more precisely where the embedding holds or not.

Proposition 2.1. Suppose that (Q) holds.

(i) If b < −2, then Eqrad is not continuously embedded into LpQ(R2) for 0 < p <∞;

(ii) If b > −2, then Eqrad is not continuously embedded into LpQ(R2) for 0 < p < q∗(b/2 + 1);

(iii) If b > −2, then the embedding Eqrad ↪→ LpQ(R2) is continuous for q∗ (b/2 + 1) < p <∞.

Remark 2.1. In view of Theorem 2.1 and Proposition 2.1 (iii), if b ≥ 0, then q∗(b/2 + 1) is a sharp exponent to

the Sobolev embedding.

Consider the function Φα(s) := eαs
2 −∑j0−1

j=0
αj

j! s
2j , where s ∈ R, α > 0, and j0 := inf {j ∈ N : j ≥ q̃/2}.

Theorem 2.2 (Sharp Trudinger-Moser type inequality). Suppose that (Q) holds with b0, b > −2. For each

α > 0 and u ∈ Eqrad, we have that Q(| · |)Φα(u) ∈ L1(R2). Furthermore,

L(α,Q) := sup
{u∈Erad:∥u∥Eq≤1}

∫

R2

Q(|x|)Φα(u) dx <∞,

whenever 0 < α ≤ 4π (b0/2 + 1). In addition, if

lim inf
r→0+

Q(r)

rb0
> 0, (1)

then L(α,Q) = ∞, when α > 4π (b0/2 + 1).

Theorem 2.3 (Existence of weak solutions). Assume that (Q) holds with b0, b > −2 and (f1)−(f4) hold. There

exists ξ0 > 0 such that if (f4) holds for ξ ≥ ξ0, then Problem (1) admits a non-negative weak solution u ∈ Eqrad \{0}.

Remark 2.2. (Non-existence result) The condition b > −2 is strongly necessary to obtain weak solutions for

(1).

We are also interested in studying regularity and positivity of weak solutions.

Theorem 2.4. Assume the conditions of Theorem 2.3 and let u be a weak solution of (1). Then:

(i) If (1) holds, then u ∈ L∞(R2);

(ii) If (1) holds and Q(| · |) ∈ L∞
loc(R2), then u is positive and belongs to C1,σ

loc (R2), for some σ ∈ (0, 1);

(iii)
(
∇u+ |∇u|q−2∇u

)
∈ C1(R2 \ {0}) and u solves (1) pointwise in R2 \ {0}.
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Abstract

In this work, we study the existence of solutions for the following eigenvalue problem:

(LP)


(−∆+ d1)(−∆+ d2)u+m(x)u = λa(x)u in Ω

u ̸≡ 0, u ≥ 0 in Ω

∆u = u = 0 on ∂Ω

where Ω ⊂ RN is a smooth bounded domain, d1, d2 ∈ R, and a(·),m(·) ∈ L∞(Ω) may have indefinite sign.

1 Introduction

Let a(·), m(·) ∈ L∞(Ω) and Lu := (−∆+ d1)(−∆+ d2)u+m(x)u. In this paper, we shall be concerned with the

existence of solution for the following linear eigenvalue problem:

(LP)





Lu = λa(x)u in Ω

u ̸≡ 0, u ≥ 0 in Ω

∆u = u = 0 on ∂Ω

where Ω ⊂ RN is a smooth bounded domain with N ≥ 1 and d1, d2 ∈ R. Here and after λ1 := λ1(Ω) represents

the first eigenvalue for (−∆,H1
0 (Ω)), and the functions m(·) and a(·) may have an indefinite sign. By solution, we

mean a function u ∈W 4,2(Ω) ∩ C3(Ω) that satisfies (LP).

Weighted eigenvalue problems have extensive applications in various fields, including engineering, physics, and

applied mathematics. Notably, they find relevance in the study of transport theory, reaction-diffusion equations,

fluid dynamics, and selection-migration models in population dynamics, among others. Over the past four decades,

there has been a growing interest in solving eigenvalue problems of the following form:





Lu := −
N∑

j,k=1

ajk(x)
∂2u

∂xj∂xk
+

N∑

j=1

aj(x)
∂u

∂xj
+ a0(x)u = λa(x)u in Ω

u = 0 on ∂Ω.

In this equation, Ω ⊂ RN represents a smooth domain, and L is a strongly uniformly elliptic differential operator

of second order. The coefficient functions ajk(·) = akj(·), aj(·), and a0(·) are real-valued and non-negative, while

a(·) is a given function that may change sign. The parameter λ ∈ R is an eigenvalue.

Despite the substantial literature on second-order operators, few works have addressed weighted eigenvalue

problems involving fourth-order operators or higher-order operators under Navier boundary condition ( ∆u = u = 0

on ∂Ω for fourth-order operators) or even other boundary conditions.
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As far as we know, the work [2, Proposition 2.3] is the only one in the literature that establishes the existence of

a positive eigenfunction for the problem (LP) with m(·) ≡ 0 and d1, d2 > λ1(Ω). However, the condition imposed

on a(·) is extremely restrictive.

In this work, we present a result on the existence of a nonnegative eigenfunction and also results on the existence

of a positive solution for a fourth-order operator with Navier boundary conditions and a weight function that can

have an indefinite sign. It is worth noting that we demonstrate that the Krein-Rutman theory is not sufficient to

solve this type of problem.

2 Main Results

Theorem 2.1. Let µ∗ = minn∈N(λn+d1)(λn+d2), a(·) ∈ L∞(Ω)\{0} satisfying a(x) ≥ 0 in Ω and m(·) ∈ L∞(Ω)

satisfying m(x) ≤ 0 in Ω. If the following hypotheses are valid:

(i) d1 + d2 > −2λ1;

(ii) there exists c1 > 0 such that c1a(x) +m(x) + µ∗ ≥ 0 in Ω.

Then the linear problem below admits solution in W 1,2
0 (Ω) ∩W 4,2(Ω) ∩ C3(Ω)

(LP12)





(−∆+ d1)(−∆+ d2)u+m(x)u = λa(x)u in Ω

u > 0 in Ω

∆u = u = 0 on ∂Ω

where λ = λ12(a) is given by λ12(a) := inf

{
Im(φ)

Ja(φ)

∣∣∣∣∣ φ ∈ H and Ja(φ) ̸= 0

}
> −∞, with

Im(φ) := ∥φ∥2 + (d1 + d2)|∇φ|22 + d1d2|φ|22 +
∫

Ω

m(x)φ2 and Ja(φ) :=

∫

Ω

a(x)φ2dx.

Theorem 2.2. Suppose N > 4, a(·), m(·) ∈ L∞(Ω), a+ ̸≡ 0, d1, d2 > −λ1, and ∥m−∥∞ < (λ1 + d1)(λ1 + d2).

Under these conditions, the problem below admits solution in W 1,2
0 (Ω) ∩W 4,2(Ω) ∩ C3(Ω)

(LP4)





(−∆+ d1)(−∆+ d2)u+m(x)u = λma1a(x)u in Ω

u ̸≡ 0, u ≥ 0 in Ω

∆u = u = 0 on ∂Ω

where λma1 is given by 0 <
1

λma1
= sup





∫

Ω

a(x)φ2dx

∥φ∥2∗ +
∫

Ω

m(x)φ2dx

∣∣∣∣∣ φ ∈ H \ {0}




.
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Abstract

In the present work, we consider existence and multiplicity of solutions for nonlocal elliptic problems driven

by the Stein-Weiss problem with concave-convex nonlinearities defined in the whole space RN . More precisely,

we consider the following nonlocal elliptic problem:

−∆u+ V (x)u = λa(x)|u|q−2u+

∫
RN

b(y)|u(y)|pdy
|x|α|x− y|µ|y|α b(x)|u|

p−2u, in RN , u ∈ H1(RN ),

where λ > 0, α ∈ (0, N), N ≥ 3, 0 < µ < N, 0 < µ+2α < N . Furthermore, we assume also that V : RN → R is a

bounded potential, a ∈ Lr(RN ), a > 0 in RN and b ∈ Lt(RN ), b > 0 in RN for some specific r, t > 1. We assume

also that 1 ≤ q < 2 and 2α,µ < p < 2∗α,µ where 2α,µ = (2N − 2α−µ)/N and 2∗α,µ = (2N − 2α−µ)/(N − 2). Our

main contribution is to find the largest λ∗ > 0 in such way that our main problem admits at least two positive

solutions for each λ ∈ (0, λ∗). In order to do that we apply the nonlinear Rayleigh quotient together with the

Nehari method. Moreover, we prove a Brezis-Lieb type Lemma and a regularity result taking into account our

setting due to the potentials a, b : RN → R.

1 Introduction

In the present work, we consider existence and multiplicity of solutions for nonlocal elliptic problems for the Stein-

Weiss type problem. More specifically, we shall consider the following nonlocal elliptic problem:





−∆u+ V (x)u = λa(x)|u|q−2u+

∫

RN

b(y)|u(y)|pdy
|x|α|x− y|µ|y|α b(x)|u|

p−2u, in RN ,

u ∈ H1(RN ),

(Pλ)

where λ > 0, α ∈ (0, N), N ≥ 3, 0 < µ < N, 0 < µ+ 2α < N . Furthermore, we assume also that a ∈ Lr(RN ), a > 0

in RN and b ∈ Lt(RN ), b > 0 in RN for some r, t > 1. Here we assume also that 1 ≤ q < 2 and 2α,µ < p < 2∗α,µ
where 2α,µ = (2N − 2α − µ)/N and 2∗α,µ = (2N − 2α − µ)/(N − 2). It is important to stress that several works

have been done in the last years considering the Stein-Weiss problem with different kind of nonlinearities, see [1].

2 Main Results

Throughout this work, we shall assume the following hypotheses:

(H1) There exists V0, V∞ > 0 such that 0 < V0 ≤ V (x) ≤ V∞, x ∈ RN . Assume also that λ > 0, α ∈ (0, N), N ≥
3, 0 < 2α+ µ < N.

(H2) Suppose that a > 0 and b > 0 in RN . Assume also that 1 ≤ q < 2, 2α,µ < p < 2∗α,µ where

2α,µ =
2N − 2α− µ

N
and 2∗α,µ =

2N − 2α− µ

N − 2
.
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(H3) It holds a ∈ Lr(RN ), b ∈ Lst(RN ) where 2∗ = 2N/(N − 2) and

r =
2∗

2∗ − q
and ts =

2N

2N − 2α− µ− p(N − 2)
.

(H4) It holds a ∈ LN/2(RN ), b ∈ Lβ(RN ) ∩ Lγ(RN ). Furthermore, we assume that

β > max

{
N

2− (N − 2)(p− 1)− (2α+ µ) +N
,

N

2− (N − 2)(p− 1)

}

and

γ =
Nβ

β[2− (N − 2)(p− 1) + (N − 2α− µ)]−N
.

Now, we mention that the energy functional Jλ : H1(RN ) −→ R is associated to the Problem (Pλ) which is

defined by

Jλ(u) =
1

2
∥u∥2 − λ

q

∫

RN
a(x)|u(x)|qdx− 1

2p

∫

RN

∫

RN

b(y)|u(y)|pb(x)|u(x)|p
|x|α|x− y|µ|y|α dxdy. (1)

Furthermore, we shall consider the Nehari manifold as follows:

Nλ =
{
u ∈ H1(RN ) \ {0}, J ′

λ(u)(u) = 0
}
. (2)

Now, we are stay in position to state our main result as follows:

Theorem 2.1. Suppose (H1) − (H4). Then we obtain that 0 < λ∗ < λ∗ < ∞. Furthermore, the Problem (Pλ)

admits at least two positive solutions uλ, vλ ∈ H1(RN ) for each λ ∈ (0, λ∗). Moreover, the solutions uλ, vλ satisfy

the following assertions:

a) J ′′
λ (uλ)(uλ, uλ) > 0 and J ′′

λ (vλ)(vλ, vλ) < 0.

b) The function uλ is a ground state solution and Jλ(uλ) < 0.

c) The function vλ is a bound state solution which has the following properties:

i) For each λ ∈ (0, λ∗), we obtain that Jλ(vλ) > 0.

ii) For λ = λ∗ it holds Jλ(vλ) = 0.

iii) For each λ ∈ (λ∗, λ
∗) there holds Jλ(vλ) < 0.
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Abstract

In this work we establish an abstract method that allows us to study the existence of a ground state solution

for some classes of elliptic problems with continuous nonlinearities. Such solutions are found via minimization

on the Nehari manifold which, in the abstract situation, is contained in a suitable open cone.

1 Introduction

In [2], among other things, A. Szulkin and T. Weth study a series of elliptic partial differential problems involving

continuous (and possibly non-differentiable) nonlinearities whose primitives satisfy the so called superquadratic

condition at infinity. In order to apply the Nehari method to find ground-state and other kind of solutions, the

authors introduce an interesting approach to overcome the lack of a C1 structure for the Nehari set. In fact,

under suitable conditions on the functional I : E → R and on the Banach space E, is proved the existence of a

homeomorphism between the Nehari set N associated to I and the unit sphere S of E. Such a homeomorphism

allows them to define an auxiliary functional Ψ : S → R with the convenient property that the existence of critical

points for Ψ implies in the existence of critical points of I. Due to conditions imposed on the Banach space E, the

unit sphere S is a C1 manifold and, for this reason, the task of looking for critical points of Ψ is a more treatable

problem.

Still in [2], it is revisited a classical paper of Benci and Cerami (see [1]) which relate the number of solutions

of a certain elliptic PDE with the topology of the domain where the equation is considered. The authors are able

to improve the main results in [1] by assuming weaker conditions on the nonlinearity. However, since the idea is

to obtain positive solutions, the Nehari set in this case is no longer homeomorphic to the hole unit sphere S, but
to an open subset S+ of S. As observed in [2], this new situation brings together some technical difficulties, as for

instance the fact that S+ has a nonempty boundary in S and, therefore, the behaviour of minimizing sequences

need to be carefully controlled near the boundary.

In this work, we generalize the ideas in [2] to find positive solutions of the Benci-Cerami problem for an abstract

situation where the same sort of technical difficulty is occurring. In the general context, we establish an abstract

method that allows us to study the existence of solutions for some classes of elliptic problems with continuous

nonlinearities. The referred method is used to find ground state solutions to a sort of elliptic problems under

different mathematical contexts.
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2 Main Results

2.1 An integro-differential problem: Perturbation of the logistic function

In this subsection, we are interested in studying the existence of a ground state solution for the following problem





−∆u+ a

∫

Ω

u dx = λu− u2 + g(u) in Ω,

u = 0 on ∂Ω,

(P2)

where Ω ⊂ RN is a bounded domain with smooth boundary, 1 ≤ N < 6, a > 0, λ < λ1(a) and g ∈ C(R) satisfying:

(g1) lim
s→0

g(s)

s
= 0 and lim

|s|→+∞

g(s)

s
= g∞ < λ1(a);

(g2) The map s 7→ g(s)/|s| is nondecreasing;

Theorem 2.1. Let a ∈ (0, (λ2 − λ1)/|Ω|), λ < λ1(a) and suppose (g1)− (g2) occur. Then, problem (P2) admits a

ground state solution that changes sign or is negative.

2.2 An integro-differential problem: Superquadratic nonlinearity on a subdomain

In this subsection, we are interested in studying the existence of a ground state solution for the following problem





−∆u+ a

∫

Ω

u dx = λu+ (1−XΩ0
(x))g(u) + XΩ0

(x)f(u) in Ω,

u = 0 on ∂Ω,

(P3)

where Ω ⊂ RN is a bounded domain with smooth boundary, a > 0, λ < λ1(a), Ω0 ⊂⊂ Ω is an open set and

f, g ∈ C(R) satisfies:

(g1) g = 0, in (−∞, 0), lim
s→0

g(s)

s
= 0 and lim

|s|→+∞

g(s)

s
= g∞ < λ1(a);

(g2) s 7→ g(s)/|s| is a nondecreasing function;

(f1) f = 0, in (−∞, 0), lim
s→0

f(s)

s
= f0 < λ1(a) and lim

|s|→+∞

F (s)

s2
= +∞, F (s) :=

∫ s

0

f(τ) dτ ;

(f2) s 7→ f(s)/|s| is increasing in (0,+∞);

Theorem 2.2. Let a ∈ (0, (λ2 − λ1)/|Ω|), λ < λ1(a) and suppose (g1)− (g2) and (f1)− (f2) occur. Then, problem

(P3) admits a non-trivial ground state solution.

Other applications to problems involving the p-laplacian and Kirchhoff operators are also provided.
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Abstract

In this work we analyze the asymptotic behaviour as p→ 1+ of solutions up to{
−∆pup = λ

|x|p |up|p−2up + f in Ω,

up = 0 on ∂Ω,

where Ω is a bounded open subset of RN with Lipschitz boundary, λ ∈ R+, and f is a nonnegative datum in

LN (Ω). Under sharp smallness assumptions on the data λ and f , we estimate the family (up)p>1 uniformly in

BV (Ω) and then we let p → 1+ in order to completely characterize its limit u. As a consequence of this limit

procedure, we prove that u suitably solves the homogeneous Dirichlet problem{
−∆1u = λ

|x|Sgn(u) + f inΩ,

u = 0 on ∂Ω,

where ∆1u = div
(

Du
|Du|

)
is the 1-Laplace operator. The main assumptions are further discussed through explicit

examples in order to show their optimality.

1 Introduction

Consider the problem {
−∆1u = λ

|x|
u
|u| + f in Ω,

u = 0 on ∂Ω,
(1)

where ∆1u = div ( Du|Du| ) is the 1−Laplacian operator, Ω ⊂ RN (N ≥ 2) is an open set with bounded Lipschitz

boundary containing the origin, 0 < λ < N − 1, and f belongs to LN (Ω) satisfying the following assumption

∥f∥LN (Ω)SN +
λ

N − 1
≤ 1. (2)

The standard space to study the problem above is the bounded variation functions space BV and since the

quotient Du
|Du| is not defined when Du = 0 nor is it meaningful since Du is Radon vector measure, it is replaced

by a suitable vector field through the Anzellotti theory, which, in turn, allows to employ the concept of solution

introduced in [1] to give a definition of solution to (1).

Problems involving the 1−Laplacian operator are applied, for instance, in image restoration models [6], torsional

problems [3], magnetic resonance electrical impedance tomography [4].

The case λ = 0 and f = 1 in (1) is studied in [3]. The author studied solutions for problem above by means of

solutions up to the problem {
−∆pu = 1 in Ω,

u = 0 on ∂Ω,

as p → 1+, under the smallness condition of the domain. Already in [2], the authors studied this issue under the

condition smallness on data f in the Lebesgue space LN (Ω) or in the Lorentz space LN,∞(Ω).
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The main objective of this work is to provide a complete and optimal description of problem (1) under the

assumption (2) by analyzing the asymptotic behaviour of the solutions up of the problem
{

−∆pu = λ
|x|p |u|p−2u+ f in Ω

u = 0 on ∂Ω,
(3)

as p→ 1. In order to do so, the family (up)p>1 is estimated uniformly in p and so, the convergence of such family is

studied. It is worth noting that for this purpose, due to the presence of zero order term in this problem, truncation

arguments and a relation of the parameter λ with the best constant of Hardy inequality are required.

2 Main results

Our main results are as follows.

Theorem 2.1. Let 0 < λ < N − 1. Let f ∈ LN (Ω) satisfy (2). Then there exist u ∈ BV (Ω), z ∈ L∞(Ω,RN ) with

∥z∥∞ ≤ 1 and s(x) ∈ Sgn (u(x)) a.e. x ∈ Ω such that

(1) −div z = λ
|x|s(x) + f in D′(Ω);

(2) (z, DTk(u)) = |DTk(u)| as measures on Ω, for all k > 0;

(3) [z, ν](x) ∈ Sgn(−u(x)) HN−1 − a.e. x ∈ ∂Ω,

where Sgn(s) = s
|s| if s ̸= 0, Sgn(0) = [−1, 1] and Tk(s) = s if |s| ≤ k, Tk(s) = k s

|s| if |s| > k.

Proof Use up as test function in (3) to uniformly estimate on p to the family (up)p>1 and so, letting p→ 1+, by

truncation arguments, the limit of this family satisfies conditions (1)− (3).

Theorem 2.2. If assumption (2) is strictly less than 1,

up → 0 a.e. on Ω as p→ 1+

and if this assumption is equal to 1, there exist u ∈ BV (Ω) such that

up → u in Ls(Ω), s ∈ [1, 1∗) as p→ 1+.

Proof Use again up as teste function in (3) to find uniformly estimate on p to the family (up)p>1 and so, considering

the two cases of the assumption (2), we analyze the asymptotic behaviour of this family as p→ 1+.
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Abstract

In this talk, we consider some critical Brézis-Nirenberg problems in dimension N ≥ 3 that do not have a

solution. We prove that a supercritical perturbation can lead to the existence of a positive solution. More

precisely, we consider the equation:
−∆u = λuq−1 + u2∗+rα−1 in B,

u > 0 in B,

u = 0 on ∂B,

where B ⊂ RN is a unit ball centered at the origin, N ≥ 3, r = |x|, α ∈ (0,min{N/2, N − 2}), λ is a fixed real

parameter and q ∈ [2, 2∗). This class of problems can be interpreted as a perturbation of the classical Brézis-

Nirenberg problem by the term rα at the exponent, making the problem supercritical when r ∈ (0, 1). More

specifically, we study the effect of this supercritical perturbation on the existence of solutions. In particular,

when N = 3, an interesting and unexpected phenomenon occurs. We obtain the existence of solutions for λ in

a range where the Brézis-Nirenberg problem has no solution.

1 Introduction

In 1983, Brézis and Nirenberg in [1] studied the following problem:




−∆u = λuq−1 + u2
∗−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1)

where Ω ⊂ RN is a bounded domain, N ≥ 3, λ is a fixed real parameter, q ∈ [2, 2∗) and 2∗ = 2N/(N − 2) is the

critical exponent in the sense of Sobolev’s embedding.

Brézis and Nirenberg proved the following results:

(a) For q = 2 and N ≥ 4, problem (1) has a solution for every λ ∈ (0, λ1), where λ1 denotes the first eigenvalue

of −∆. Moreover, it has no solution if λ ̸∈ (0, λ1) and Ω is star-shaped.

(b) When q = 2, N = 3, and Ω is a ball, problem (1) has a solution if and only if λ ∈
(
λ1

4 , λ1
)
.

(c) For q ∈ (2, 2∗) and N ≥ 4, problem (1) has a solution for every λ > 0.

(d) When N = 3 and 4 < q < 6, problem (1) has a solution for every λ > 0.

(e) When N = 3 and 2 < q ≤ 4, problem (1) has a solution only for sufficiently large values of λ.

Recently, do Ó, Ruf and Ubilla in [2] studied the following problem:




−∆u = u2
∗+rα−1 in B,

u > 0 in B,

u = 0 on ∂B,

(2)
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where B ⊂ RN is the unit ball centered at the origin, N ≥ 3, r = |x| and α ∈ (0,min{N/2, N − 2}).
The authors demonstrated that problem (2) has a radial solution, which is surprising because it corresponds to a

supercritical perturbation of the equation −∆u = u2
∗−1, which has no solution due to the known Pohozaev identity.

In this same line of reasoning, in the context of the situation of item (b), we studied the effect of a supercritical

perturbation for the case of non-existence λ ∈ (0, λ1

4 ], which also generated the existence of a positive solution. We

will also have the same conclusion for situation (e), in which, due to the supercritical perturbation, we will obtain

a solution for all positive λ and not just for sufficiently large λ. Motivated by the results of [1] and [2], we studied

this problem in a more general context, more precisely, let us consider the following problem:





−∆u = λuq−1 + u2
∗+rα−1 in B,

u > 0 in B,

u = 0 on ∂B,

(3)

where B ⊂ RN is a unit ball centered at the origin, N ≥ 3, r = |x| and α ∈ (0,min{N/2, N − 2}) and λ is a fixed

real parameter and q ∈ [2, 2∗].

We will now present the main result.

Theorem 1.1. If q = 2, λ ∈ [0, λ1) and N ≥ 3, then the problem (3) has a radial weak solution. If q ∈ (2, 2∗],

problem (3) has a radial weak solution for every λ ≥ 0 and N ≥ 3.

We also consider some perturbations of Problem (1) that become superlinear on the ball and subcritical for

r ∈ (0, δ), for some small δ. However, it can be supercritical away from r = 0, as in the following equation:





−∆u = λuq−1 + u2
∗+f(r)−1 in B,

u > 0 in B,

u = 0 on ∂B,

(4)

where B ⊂ RN is a unit ball centered at the origin, N ≥ 3, r = |x|, λ is a fixed real parameter, q ∈ [2, 2∗) and

f : [0, 1) → R is a continuous function satisfying:

(f) f(0) < 0 and inf
r∈[0,1)

(2∗ + f(r)) > 2.

The next result involves the assumption (f):

Theorem 1.2. Let q ∈ [2, 2∗), N ≥ 3 and f : [0, 1) → R a continuous function satisfying condition (f). Then the

problem (4) has a radial weak solution in the following cases:

(i) q = 2 and λ ∈ [0, λ1).

(ii) q ∈ (2, 2∗) and λ ≥ 0.
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Abstract

In this paper we study the existence and multiplicity of solutions for the following class of nonlinear Dirac

equations

(P ) −iε
3∑

k=1

αk∂ku+ aβu+ V (x)u = f(|u|)u, in R3,

where V : R3 → R and f : [0,+∞) → R are continuous functions. It is proved that the number of solutions is

at least the number of global minimum points of V when ε is small enough.

1 Introduction

This paper concerns the existence and multiplicity of solutions for the following class of nonlinear Dirac equations

(P ) −iε
3∑

k=1

αk∂ku+ aβu+ V (x)u = f(|u|)u, in R3,

where V : R3 → R and f : R → R are continuous functions. Here, x = (x1, x2, x3) ∈ R3, ∂k = ∂
∂xk

, a > 0 is a real

constant, α1, α2, α3 and β are 4× 4 complex matrices:

β =

(
I 0

0 −I

)
, αk =

(
0 σk

σk 0

)
, k = 1, 2, 3,

with

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0

0 −1

)
.

Related to the potential V we assume the following hypothesis:

(V1) V : R3 → R is a continuous function such that

lim
|x|→∞

V (x) = V∞ > V0 = min
x∈RN

V (x),

with −a < V0 ≤ V (x) ≤ V∞ < a, for all x ∈ R3.

(V2) There exist l points z1, z2, · · · , zl ∈ R3 with z1 = 0 such that

V (zi) = V0, for 1 ≤ i ≤ l.

Hereafter, the nonlinearity f : R → R is a continuous function satisfying:

(f1) f(0) = 0, f ∈ C1((0,∞),R), f ′(t) > 0 for t > 0, and there exist p ∈ (2, 3) and c1 > 0 such that

0 ≤ f(t) ≤ c1(1 + tp−2), ∀t ≥ 0.
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(f2) There exists θ > 2 such that

0 < θF (|t|) ≤ f(|t|)|t|2, ∀t ̸= 0,

where F (|t|) =
∫ t
0
f(|s|)sds.

The present work has been motivated by results found in [1], [2] and [3]. In [1], Ding showed the existence and

concentration of solution for the following class of nonlinear Dirac equation

−iε
3∑

k=1

αk∂ku+ aβu = P (x)|u|p−2u, in R3, (1)

for p ∈ (2, 3), where the concentration phenomena holds around the maximum points of P . In [2], Ding and Liu

established the existence and concentration of solution for problem (P ) when f(t) = |t|p−2t and ε is small enough

around the minimum point of the potential V , which satisfies the following condition

0 < V0 = min
x∈R3

V (x) < lim inf
|x|→+∞

V (x). (2)

Our main goal of the present paper is to complement the results found in [2] in the following sense: We intend

to prove that the number of global minimum points of V is directly related with the numbers of solutions when ε

is small, more precisely, if V has l local minimum as in assumption (V1), then problem (P ) has at least l nontrivial

solutions when ε is small enough.

2 Main Result

Our main result is the following:

Theorem 2.1. Assume (V1) − (V2) and (f1) − (f2). Then, there is ε0 > 0 such that (P ) has at least l nontrivial

solutions for all ε ∈ (0, ε0).
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Abstract

In this we establish existence of solutions for nonlocal elliptic problems driven by the fractional (p, q)−
Laplacian. More specifically, we shall consider the following nonlocal elliptic problem :{

(−∆)s1p u− µ(−∆)s2q = λ|u|r−2u in Ω

u = 0 in RN \ Ω,
(Pµ)

whereN > s1p , N > s2q , s1 > s2 and r > p > q. The main feature is to find sharp parameters λ > 0 and

µ > 0 where the Nehari method can be applied finding the largest positive number µ∗ > 0 such that our main

problem admits at least two distinct solutions for each µ ∈ (0, µ∗). A crucial part of this work is the fact that

we consider the term −µ(−∆)s2q in the problem (Pµ)

1 Introduction

In the present work we shall consider nonlocal elliptic problems driven by the fractional (p, q)− Laplacian defined

in bounded domanin. Namely, we shall consider the following nonlocal elliptic problem

{
(−∆)s1p u− µ(−∆)s2q = λ|u|r−2u in Ω

u = 0 in RN \ Ω, (Pµ)

where Ω ⊂ RN is a smooth bounded domain, N > s1p , N > s2q , s1 > s2 and r > p > q.

In order to do that we employ the nonlinear Rayleigh quotient together a fine analysis on the fibering maps

associated to the energy functional. It is important to mention also that for each parameters λ > 0 and µ > 0 there

exist degenerate points in the Nehari set which give serious difficulties.

2 Main Results

The working space is defined by X = {u ∈ W s,p(RN ); u = 0 inRN \ Ω} and the energy functional J : X → R
associated to Problem (Pµ) is given by

Jλ,µ(u) =
1

p
[u]pp −

µ

q
[u]qq −

λ

r
∥u∥rr,

where

[u]pp := [u]ps,p =

∫

Ω

∫

Ω

|u(x)− u(y)|p
|x− y|N+sp

dxdy, u ∈ X.

In this work, we study the fibers maps of two functionals based on the parameter µ. The first defined for the

case where J ′
λ,µ(u) = 0 and the second, considering µ, for which J(u) = 0. In short, we consider the functionals

Rn, Re : X \ {0} → R associated with the parameter µ > 0 in the following form

Rn(u) =
[u]pp − λ∥u∥rr

[u]qq
and Re(u) =

q
p [u]

p
p − λ qr∥u∥rr
[u]qq

, u ∈ X \ {0},
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the nonlinear Rayleigh quotients. In association with these, based on work [1], we define the following coefficients

µ∗ := inf
u∈X\{0}

inf
t>0

Rn(tu) and µ∗∗ := inf
u∈X\{0}

inf
t>0

Re(tu). (1)

The subset of X, in which the Jλ,µ function will be minimized, well known and studied in recent years for Nehari

is

Nλ,µ = {u ∈ X, u ̸= 0 :
〈
J ′
λ,µ(u), u

〉
= 0}.

Under these conditions, by using the same ideas considered in [2], we shall split the Nehari manifold Nλ,µ into three

disjoint subsets in the following way:

N+
λ,µ = {u ∈ Nλ,µ : J ′′

λ,µ(u)(u, u) > 0},
N−
λ,µ = {u ∈ Nλ,µ : J ′′

λ,µ(u)(u, u) < 0},
N 0
λ,µ = {u ∈ Nλ,µ : J ′′

λ,µ(u)(u, u) = 0}.

We shall state our first main result as follows:

Theorem 2.1. Suppose µ ∈ (0, µ∗), where µ∗ follows from (1). Then there are two solutions u1, u2 ∈ X \ {0} that

satisfy the following statements:

i) J ′′
λ,µ(u1, u1) < 0, that is, u1 ∈ N−

λ,µ;

ii) J ′′
λ,µ(u2, u2) > 0, that is, u2 ∈ N+

λ,µ;

iii) Jλ,µ(u2) < 0, for all µ ∈ (0, µ∗).

Moreover, the weak solution u2 ∈ X satisfies the following assertions:

a) For each 0 < µ < µ∗∗, we obtain Jλ,µ(u2) > 0;

b) For µ = µ∗∗ it follows that Jλ,µ(u2) = 0

c) For each µ∗∗ < µ < µ∗ we obtain also that Jλ,µ(u2) < 0
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JESÚS LUQUE R.1

1Universidad Nacional Mayor de San Marcos, GI-EDOACBI. FCM, Lima - Perú,
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Abstract

The purpose of this article is to obtain weak solutions for the nonlinear problems for p(u)−Laplacian-like

operators, originated from a capillary phenomena, with a nonlinearity which depends on the gradient. First, we

solve a associated boundary-value local problem are given by using a singular perturbation technique and then

we use the Schauder fixed-point theorem for obtain our result, in the framework of variable exponent Sobolev

spaces.

1 Introduction

The main objective of this work is to look into the existence of weak solutions for the following local p(u)-Laplacian

problem

− div

(
|∇u|p(u)−2∇u+

|∇u|2p(u)−2∇u√
1 + |∇u|2p(u)

)
= f + g(u)|∇u|p(u)−1 in Ω,

u = 0 on ∂Ω, (1)

where Ω is a bounded domain in Rn with a smooth boundary ∂Ω, and N ≥ 2, p ∈ C(Ω) for any x ∈ Ω; f is a given

function and g : R → R is a bounded and continuous function that belongs to L1(R). The study of differential

and partial differential equations with variable exponent has been received considerable attention in the last two

decades, recently it was extended to the case when the exponent depend both on the space variable x and on

the unknown solution u (see [1, 5]). Thus, the problem becomes local and more complicated. Problems of the

type (1) can be presented as model for many physical applications, for instance mathematical image processing and

computer vision (see [2, ?]). As far as we are aware, the authors have studied problems only with p(x)-Laplacian-like

operators, in the context of the study of capillarity phenomena (see [3, 4] and references therein).

2 Notations and Main Results

We need some theorems on W 1,p(x)(Ω) which we call a variable exponent Sobolev space.

Let

p : R → [1,+∞[ (2)

be the nonlinear exponent function. Set C+(Ω) = {p(x) ∈ C(Ω) : p(x) > 1, ∀x ∈ Ω}; p+ = max{p(x);x ∈ C(Ω)},
p− = min{p(x);x ∈ C(Ω)}, M(Ω) = { u: u is a real-valued measurable function on Ω } and

Lp(x)(Ω) = {u ∈M(Ω) :

∫

Ω

|u(x)|p(x)dx <∞}.
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We can introduce a norm on Lp(x)(Ω)

|u|p(x) = inf{λ > 0 :

∫

Ω

|u(x)
λ

|p(x)dx ≤ 1}

and (Lp(x)(Ω), |.|p(x)) becomes a Banach Space. The space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}

with the norm

∥u∥1,p(x) = |u|p(x) + |∇u|p(x) ∀u ∈W 1,p(x)(Ω).

We denote by W
1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω). Of course the norm ∥u∥ = |∇u|Lp(x)(Ω) is an

equivalent norm to natural norm in W
1,p(x)
0 (Ω). Also, we have the space

W
1,p(u)
0 (Ω) = {u ∈W 1,1

0 (Ω)} :

∫

Ω

|∇u|p(u) dx <∞} such that 1 < p(u) <∞ for all u ∈ R

in which we will prove the existence of weak solutions for the local Â´problem (1). It is a Banach space for the

norm ∥u∥
W

1,p(u)
0 (Ω)

when p(u) ∈ C(Ω) . Since p is continuous, from a Sobolev embedding we have that W
1,p(u)
0 (Ω)

is separable and reflexive.

Theorem 2.1. Assume that

p : R → R is a Lipschitz-continuous function

and that n < α ≤ p(u) ≤ β <∞ ∀u ∈ R. If f ∈W−1,α′
(Ω), then (1) has a weak solution in u ∈W

1,p(u)
0 (Ω).

Proof We apply using a singular perturbation technique combined with the theory of Sobolev spaces with exponent

variables and the Schauder fixed-point theorem .
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Abstract

We prove the existence of a signed ground state solution in the mountain pass level for a class of asymptotically

linear elliptic problems via Pankov manifold method. The main difficulty is due to the fact that the mountain

pass geometry is not satisfied in the hole space. We overcome this technical problem by introducing a new

approach involving the Pankov manifold contained in open cones.

1 Introduction

We are interested in the existence of ground state and other nontrivial solutions to the following class of semilinear

problems {
−∆u = λu+ f(u) in Ω,

u = 0 on ∂Ω,
(P)

where Ω ⊂ RN is a bounded smooth domain, N ≥ 1, λ ≥ λ1 where λ1 denotes the first eigenvalue of the Laplacian

operator and f ∈ C(R) which is asymptotically linear at the origin and at infinity, that is,

lim
t→0

2F (t)/t2 = α > 0, lim
|t|→∞

2F (t)/t2 = η > 0 and f satisfies (f1)

(a) (f2) t 7→ f(t)/|t| is increasing

(b) (f3) 0 < α < λm+1 − λm for some m > 1 and λj < η with j > 1 .

It is well known in the literature that asymptotically linear problems can be classified as resonant at infinity (if

λm = λ+ η for some m ∈ N) or non-resonant at infinity (if λm ̸= λ+ η for all m ∈ N), where λm denotes the m-th

eivenvalue of the Laplacian operator.

A. Sulkin and T. Weth [1] studied (1) when f(t) = f(x, t) is continuous and satisfies

(SW1) |f(x, t)| ≤ c(1 + |u|p−1) for some c > 0 and p ∈ (2, 2∗);

(SW2) f(x, t) = 0(t) uniformly in x as |t| → 0;

(SW3) F (x, t)/t
2 → ∞ uniformly in x ∈ Ω as |t| → ∞;

(SW4) t→ f(x, t)/|t| is strictly increasing on (∞, 0) and on (0,∞).

Under these assumptions, the authors, using the Pankov manifold method were able to prove the existence of

solution to (1). It is important to highlight that nonlinearity satisfies the superquadraticity condition at infinity

(SW3), which is essential to obtain proposition (2.1). In the case of asymptotically linear nonlinearities, obtaining

the proposition (2.1) is not an easy task. Not only that, there are other difficulties to be overcome. In order to

cite the main difficulties, we point out that the method consists in proving the existence of a homeomorphism m

between Pankov manifold M and a noncomplete submanifold S+
A = S+ ∩ A of H1

0 (Ω) where S+ = S ∩ H+ and

A =
{
u ∈ H\F : ∥u+∥2λ − ∥u−∥2λ < η

∫
Ω
u2dx

}
. This fact brings additional problems. Indeed, it is important to

assure that minimizing sequences {un} for Ψ are not near the boundary of S+
A .
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2 Main Results

The corresponding functional energy (1) is

I(u) =
1

2

∫

Ω

(|∇u|2 − λu2)dx−
∫

Ω

F (u)dx

it is class C1 in H = H1
0 (Ω). Setting H = H+ ⊕ H0 ⊕ H− and u = u+ + u0 + u−, where H+, H0, H−

correspond to the positive, zero and negative part of the spectrum of −∆ − λ in H. The number β given by

β = lim|t|→∞ [(1/2)f(t)t− F (t)] is well defined and

β >
ηC2(τ

+
A )2(C1η)

N/2

2λ1(Ω)S(Ω)N/2
, (β)

Proposition 2.1. Suppose that f satisfies (f1)− (f3) then For each w ∈ A there exists a unique nontrivial critical

point m̂(u) of I|Ê(w). Moreover, m̂(w) is the unique global maximum of I|Ê(w).

The map m̂ : A → M that each u ∈ A associates the only critical point m̂(u) of I|Ê(u) is continuous and

m := m̂|S+
A
is a homeomorphism between S+

A and M . Moreover, m−1(u) = u+/∥u+∥λ.
Let us consider the maps Ψ̂ : H+\{0} → R and Ψ : S+

A → R, given by Ψ̂(u) = I(m̂(u)) and Ψ := Ψ̂|
S+
A
. These

maps will be very important in our arguments mainly because of their properties, which will be presented in the

next result. The proof of such a result can be found in [3].

Proposition 2.2. Suppose that f satisfies (f1)− (f3). Then,

(i) If {un} is a (PS)c sequence for Ψ then {m(un)} is a (PS)c sequence for I. If {un} ⊂ M is a bounded (PS)c

sequence for I then {m−1(un)} is a (PS)c sequence for Ψ.

(ii) u is a critical point of Ψ if, and only if, m(u) is a nontrivial critical point of I. Moreover,

cM := inf
u∈M

I(u) = inf
u∈A

max
t>0
v∈F

I(tu+ v) = inf
u∈S+

A

max
t>0
v∈F

I(tu+ v) = inf
u∈S+

A

Ψ(u).

Proposition 2.3. Suppose that f satisfies (f1)− (f3).

(i) If λm+k ̸= λ+ η for all k ∈ N , then Ψ satisfies the (PS)c condition in S+
A , for all c ≥ cM;

(ii) If λm+k = λ + η for some k ∈ N and (β) hold, then Ψ satisfies the (PS)c condition in S+
A , for all

c ∈ [cM, infu∈∂S+
A
|[u ̸= 0]|).

Theorem 2.1. Suppose that f satisfies (f1)− (f3) and (β), then there exists a signed mountain pass ground-state

solution for problem (1).
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Abstract

In this work we characterize the dual topolic of space of the right λ-compact operators between Banach

spaces via Borel transform.

1 Introduction

L(E;F ) we denote the Banach space of continuous linear operators T : E −→ F endowed with the usual operator

norm ∥T∥ = sup∥x∥≤1 ∥T (x)∥.
We denote by L0(E;F ) and K(E;F ) the subspaces of operators of finite rank and compact operators respectively.

A Banach sequence λ is a pair (λ, ∥ · ∥λ), where λ is a linear subspace of KN with the coordinatewise operations,

Banach space equipped with the norm ∥ · ∥λ.
The Köthe dual of λ, which is also a sequence space, is defined by

λ× =



(bj)

∞
j=1 ∈ KN :

∞∑

j=1

|ajbj | <∞ for every (aj)
∞
j=1 ∈ λ





Banach sequence space (λ, ∥ · ∥λ) is said to be a BK-space if each coordinate projection mapping (λj)
∞
j=1 7−→ λi

is continuous.

Banach sequence space λ is said to have the AK-property (minimal see [4]) if all its elements can be approximated

by their sections. That is, for every sequence (xn)
∞
n=1 ∈ KN, (xn)

∞
n=1 ∈ λ if and only if lim

n−→∞
∥x−

n∑
j=1

xj · ej∥λ = 0.

Let λ Banach sequence AK-BK-space whit ∥ej∥λ = 1 for every j ∈ N,
λw(E) : =

{
(xj)

∞
j=1 ∈ EN : (x′(xj))

∞
j=1 ∈ λ for every x′ ∈ E′

}
, λs(E) : =

{
(xj)

∞
j=1 ∈ EN : (∥(xj)∥E)∞j=1 ∈ λ

}
, and

λw,∗(E
′) : =

{(
x′j
)∞
j=1

∈ (E′)N : (x′j(x))
∞
j=1 ∈ λ for every x ∈ E

}
are Banach spaces with the norms

∥(xj)∞j=1∥λw(E) = sup
x′∈BE′

{
∥((x′(xj))∞j=1∥λ

}
, ∥(xj)∞j=1∥λ(E) = ∥(∥(xj)∥E)∞j=1∥λ, ∥(xj)∞j=1∥λw,∗(E′) = sup

x∈BE

{
∥((x′j(x))∞j=1∥λ

}
For λ× we denote (λ×)w,∗(E

′) by λ×w,∗(E
′).

In [1] a Banach sequence λ is spherically complete if (αjxj)
∞
j=1 ∈ λ and ∥(αjxj)∞j=1∥λ = ∥(xj)∞j=1∥λ whenever

(xj)
∞
j=1 ∈ λ and (αj)

∞
j=1 ∈ KN, with |αj | = 1 for every j.

Definition 1.1. An operator u ∈ L(E;F ) is right λ-nuclear operator if u can be written in the form

u(x) =

∞∑

j=1

x′j(x)yj ∀x ∈ E (1)

whit (x′j)
∞
j=1 ∈ λ×w,∗(E

′) and (yj)
∞
j=1 ∈ λs(F ). There may be representations de u in the above form. We define

∥u∥Nλ = inf
{∥∥(x′j)∞j=1

∥∥
λ×
w,∗(E′)

·
∥∥(yj)∞j=1

∥∥
λs(F )

}
.

where the infimum is taken over all possible representations of u in the form in (1). Let us denote by N λ(E;F ) the

set of all right λ-nuclear operator on E into F .

79



80

Definition 1.2. [3] An operator T ∈ L(E;F ) is said to be absolutely λ-summing if for each (xj)
∞
j=1 ∈ λw(E), the

sequence (T (xj)
∞
j=1 ∈ λs(F ). Πλ(E;F ) denote the collection of all λ-summing with quasi norm

∥T∥Πλ = inf{C > 0 : ∥(T (xj)∞j=1∥λs(F ) ≤ C∥(xj)∞j=1∥λw(E), for (xj)
∞
j=1 ∈ λw(E) }.

2 Main Results

Theorem 2.1. Let λ a Banach sequence AK-property, spherically complete whit ∥ · ∥λ monotone. The following

conditions are equivalent:

(a) u ∈ N λ(E;F ).

(b) There are s ∈ L(ℓ1;F ), v ∈ L(E;λ×), (αj)
∞
j=1 ∈ λ and Dα ∈ L(λ×, ℓ1) with Dα

[
(bj)

∞
j=1

]
= (αjbj)

∞
j=1 such

that

E

v

��

u // F

λ×
Dα // ℓ1

s

OO

In this case ∥u∥Nλ = inf
{
∥v∥ ·

∥∥(αj)∞j=1

∥∥
λ
· ∥s∥

}
, with the infimum taken for all possible such factorizations.

Since every T ∈ L0(E;F ) has a finite representation of the form T =
n∑
j=1

αjx
′
j(·)bj (2), with αj ∈ K, x′j ∈ E′

it is natural to define the following (tn) norm on L0(E;F ), ∥T∥0λ = inf
{∥∥(x′j)nj=1

∥∥
λ×
w,∗(E′)

·
∥∥(yj)nj=1

∥∥
λs(F )

}
, with

the infimum taken for all finite representations of T as in (2). Of course we have ∥T∥Nλ ≤ ∥T∥0λ. An operator

T ∈ L(E;F ) is right λ-compact if T ∈ N λ(E;F ) and moreover, we put ∥T∥Nλ = ∥T∥0λ for all T ∈ L0(E;F ). The

symbols Kλ(E;F ) , denote respectively the collection of all right λ-compact operators.

Theorem 2.2. Let λ is a symmetric, spherically complete, equipped with a k-symmetric, monotone norm

∥ · ∥λ such that (λ, ∥ · ∥λ) is an AK-BK space.. The dual
(
Kλ(E;F ), ∥ · ∥Nλ

)′
is isomorphic isometrically to(

Πλ×(E′;F ′), ∥ · ∥Πλ×
)
through the Borel transform

β(Ψ)(x′)(y) = Ψ(x′ ⊗ y),

for all y ∈ F , x′ ∈ E′, and Ψ in the required dual.
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Abstract

We discuss the structure of Banach spaces of finite dimension embedded in a quasilinear space. In particular,

when considering the quasilinear space of fuzzy numbers RF , vector spaces endowed with mirrored arithmetic

operations with the Euclidean space have interesting interpretations. More precisely, the arithmetic operations

of ψ−cross product and ψ−cross division can generate Cauchy sequences of fuzzy numbers under two distinct

scenarios: with decreasing and increasing diameter.

1 Introduction

Quasilinear spaces have the feature of quasi-distributive law concerning addition and scalar multiplication. The

structure of a quasilinear space is intrinsically related to vector spaces, as proved in [4]. This manuscript focus

on the space of fuzzy numbers, denoted by RF , widely studied in the setting of fuzzy and interval analysis. We

henceforth denote a finite set of fuzzy numbers Ai ∈ RF by A = {A1, . . . , An}. We assume A has the property of

Strong Linear Independence (SLI, for short) ([1]), so that the arithmetic operations on the so-called S(A)−linearly

correlated fuzzy numbers are defined from the isomorphism ψ : Rn → S (A) [1, 5].

Since (S (A) ,Dψ) is a metric space for any finite SLI set A = {A1, . . . , An} ⊂ RF , we say that the sequence

{Bi}i∈N ⊂ S (A) converges to B ∈ S (A) w.r.t. Dψ if, for all ε > 0, there exists N = N(ε) > 0 such that

Dψ (Bi, B) < ε (1)

for all i > N . We denote Bi
ψ−→ B in this case. Similarly, the sequence of S(A)−linearly correlated fuzzy numbers

{Bi}i∈N ⊂ S (A) is a Cauchy sequence in S (A) if for all ε > 0, there exists N = N(ε) > 0 such that the inequality

Dψ (Bi, Bj) < ε

holds for all i, j > N .

Proposition 1.1. [3] Let A = {A1, . . . , An} be an SLI set of fuzzy numbers such that R ⊆ S (A) ⊆ R∧
F , and

A ∈ S (A) with [A]1 = {a1}. Then for all n ≥ 1, the equalities follow:

i) A⊙kψ =
(
kak−1

1

)
A−ψ (k − 1)ak1 ;

ii) A⊙−k
ψ =

(
k

ak−1
1

)
A−1
ψ −ψ k−1

ak1
whenever a1 ̸= 0.
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2 Main Results

The next theorem follows immediately from the fact that for a given SLI set A, the spaces (S (A) ,+ψ, ·ψ, ∥ · ∥ψ)
and (R,+, ·, ∥ · ∥∞) are isometric.

Theorem 2.1. Let A ⊂ RF be an SLI set and {Bi}i∈N ⊂ S (A) be a sequence given by Bi = qi1A1+ . . .+qinAn for

all i ∈ N. Then, the sequence {Bi}i∈N converges to B ∈ S (A) w.r.t. Dψ if, and only if, the sequence (qi1, . . . , qin)

converges to (q1, . . . , qn) in Rn, that is, the following equivalence holds:

Bi
ψ−→ B ⇔ (qi1, . . . , qin) → (q1, . . . , qn), (2)

where B = q1A1 + . . .+ qnAn.

Proof. The proof is immediate.

The next result establishes a condition to the sequences of power hedges of an S(A)-linearly correlated fuzzy

number w.r.t. ⊙ψ to be Cauchy sequences in S (A).

Proposition 2.1. Let A be a finite SLI set satisfying R ⊆ S (A) ⊆ R∧
F and A ∈ S (A) with [A]1 = {a1}. The

following properties hold true:

i)
{
A⊙iψ

}
i∈N

⊂ S (A) is a Cauchy sequence whenever a1 ∈ (−1, 1). Moreover, A⊙iψ ψ−→ 0;

ii)
{
A⊙−i

ψ

}
i∈N

⊂ S (A) is a Cauchy sequence whenever a1 ∈ (−∞,−1) ∪ (1,∞). Moreover, A⊙−i
ψ

ψ−→ 0,

where 0 ∈ RF is regarded as a singleton.

Proof. i) Let [A]1 = {a1} with a1 ∈ (−1, 1). By Proposition 1.1, we have that for all j, k ∈ N,

Dψ
(
A⊙jψ , A⊙kψ

)
=
∥∥∥A⊙jψ −ψ A⊙kψ

∥∥∥
ψ
=
∥∥∥
(
jaj−1

1 A−ψ (j − 1)aj1

)
−ψ

(
kak−1

1 A−ψ (k − 1)ak1
)∥∥∥
ψ

=
∥∥∥
(
jaj−1

1 − kak−1
1

)
A−ψ

(
jaj1 − kak1

)∥∥∥
ψ
.

Suppose wlog that j ≤ k. Then,

Dψ
(
A⊙jψ , A⊙kψ

)
=

∥∥∥∥ja
j−1
1

(
1− k

j
ak−j1

)
A−ψ jaj1

(
1− k

j
ak−j1

)∥∥∥∥
ψ

=
∣∣∣jaj−1

1

∣∣∣
∣∣∣∣1−

k

j
ak−j1

∣∣∣∣ ∥A−ψ a1∥ψ → 0

whenever j, k → ∞. In addition,

Dψ
(
A⊙iψ , 0

)
= Dψ

((
iai−1

1

)
A−ψ (i− 1)ai1, 0

)
=
∥∥(iai−1

1

)
A−ψ (i− 1)ai1

∥∥
ψ

≤
∣∣iai−1

1

∣∣ ∥A∥ψ −
∣∣(i− 1)ai1

∣∣→ 0 when i→ ∞,

that is, A⊙iψ ψ−→ 0.

ii) The proof is analogous to item i).
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A SUFFICIENT CONDITION FOR A TWISTED G-SUM OF TWO GTOP -BANACH SPACES TO
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Abstract

Let G be a topological group. In this work, we introduce the notion of GTop-Banach space (which is a

generalization of Castillo and Ferenczi’s concept of G-Banach space) and present a sufficient condition for a

twisted G-sum of two GTop-Banach spaces to be a GTop-Banach space. More specifically, we state that, if

(G,Z, λ) is a twisted G-sum of two GTop-Banach spaces such that Z is either super-reflexive or reflexive and

separable, then (G,Z, λ) is also a GTop-Banach space. 1 2

1 Introduction

Let G be a topological group, and let eG and τG be, respectively, its identity element and its topology. The main

objective of this work is to introduce the concept of GTop-Banach space (which is a generalization of Castillo and

Ferenczi’s concept of G-Banach space) and present a sufficient condition for a twisted G-sum of two GTop-Banach

spaces to be a GTop-Banach space

2 G-Banach spaces and GTop-Banach spaces

In this section, we recall Castillo and Ferenczi’s notion of G-Banach space, introduced in [1], and present the concept

of GTop-Banach space. To do so, let us start by making a preliminary definition.

Definition 2.1. A bounded left action of G on a normed space X is a map u from G into the set B(X) of the

bounded linear maps from X into X such that: i) u(eG) = idX ; ii) for each (g, h) ∈ G×G, u(g · h) = u(g) ◦ u(h);
and iii) u(G) is a bounded subset of B(X). If u is a bounded left action of G on a normed space X such that u(G)

is a subgroup of the isometry group of X, we say that || · ||X is u-invariant.

Definition 2.2 (see [1]). A G-Banach space is an ordered triple (G,X, u), where X is a Banach space, and u is

a bounded left action of G on X.

Definition 2.3. We say that a G-Banach space (G,X, u) is a GTop-Banach space if u is (τG, SOT )-continuous.

Next, let us recall the notions of G-equivariant map and G-operator.

Definition 2.4. We say that a G-Banach space (G,X, u) is a GTop-Banach space if u is (τG, SOT )-continuous.

Next, let us recall the notions of G-equivariant map and G-operator.

Definition 2.5. Given G-Banach spaces (G,X, u) and (G,Y, v), we say that a map T : X → Y is G-equivariant

if, for each g ∈ G, T ◦ u(g) = v(g) ◦ T . If, in addition to being G-equivariant, T is linear and continuous, we say

that T is a G-operator.

1Advisor: V. Ferenczi, Universidade de São Paulo, IME, USP, SP, Brazil, ferenczi@ime.usp.br
2We also present a more technical and slightly more general theorem, from which this result can be proven (see theorem 2.1).
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From the notions of G-Banach space and G-operator, we can now define the category of G-Banach spaces.

Definition 2.6. The category of G-Banach spaces is the category that has G-Banach spaces as objects and

G-operators as morphisms.

3 Twisted G-sums of G-Banach spaces

Now that we have presented the concept of G-Banach space, we can introduce the notion of twisted G-sum of two

G-Banach spaces.

Definition 3.1. Let (G,X, u) and (G, Y, v) be G-Banach spaces. We say that a G-Banach space (G,Z, λ) is a

twisted G-sum of (G,X, u) and (G,Y, v) if there are G-operators ι : X → Z and q : Z → Y such that

0 −→ (G,X, u)
ι−→ (G,Z, λ)

q−→ (G, Y, v) −→ 0 (1)

is an exact sequence in the category of G-Banach spaces.

The following proposition follows easily from the previous definition.

Proposition 3.1. If a twisted G-sum of two G-Banach spaces is a GTop-Banach space, then these spaces are also

GTop-Banach spaces.

In light of this result, it is natural to wonder whether its converse is also true. The answer to this question,

however, is negative. This leads us to the main objective of this work, which is, precisely, to exhibit a sufficient

conditions for a twisted G-sum of two GTop-Banach spaces to be a GTop-Banach space. The next theorem presents

us with such a condition.

Theorem 3.1. If (G,Z, λ) is a twisted G-sum of two GTop-Banach spaces such that Z is reflexive and admits a

λ(G)-invariant LUR renorming, then (G,Z, λ) is also a GTop-Banach space.

It can be shown that, if (G,Z, λ) is a G-Banach space such that Z is either super-reflexive (and hence reflexive)

or reflexive and separable, then there exists a LUR norm on Z which is λ(G)-invariant and equivalent to || · ||Z .
This leads us to the following corollary.

Corollary 3.1. A twisted G-sum of two GTop-Banach spaces whose underlying Banach space is either super-reflexive

or reflexive and separable is necessarily a GTop-Banach space.
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SPEAR VECTORS IN SPACES OF M-HOMOGENEOUS POLYNOMIALS
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Abstract

In this work, we introduce some findings about spear vectors in spaces of m-homogeneous polynomials,

generalizing some valid results in the linear case.

1 Introduction

In 2014, M. A. Ardalani [1] introduced the concept of spear vector. Given a Banach space X, a norm-one element

z ∈ X is called a spear vector if max
λ∈T

∥z + λx∥ = 1 + ∥x∥ for every x ∈ X. We denote by Spear(X) the set

of all spear vectors of X. For X = K = R or C, we have Spear(X) = T = {λ ∈ K : |λ| = 1}. If X

is ℓ21, ℓ
2
∞, ℓ31 or ℓ3∞, then it is possible to see that Spear(X) is the set of all extreme points of the unit ball.

Moreover, according to [2], Spear(ℓ1) = {λen : |λ| = 1, n ∈ N}, Spear(ℓ∞) = {(an) ∈ ℓ∞ : |an| = 1}, and

Spear(C(K)) = {f ∈ C(K) : |f(t)| = 1 for every t ∈ K}.
V. Kadets, M. Mart́ın, J. Meŕı, and A. Pérez presented in [2] a deep study of spear vectors in the space L(X,Y )

of all bounded linear operators from X to Y and introduced the concept of spear set. Given a Banach space X,

a subset F of the unit ball BX is called a spear set if sup
z∈F

max
λ∈T

∥z + λx∥ = 1 + ∥x∥ for every x ∈ X. Note that if

F ⊂ BX is a spear set, then every subset of BX containing F is also a spear set. In particular, if a subset F of BX

contains a spear vector, then F is a spear set.

Motivated by [1] and [2], in this work, we investigate spear vectors and spear sets in the Banach space P(mX,Y )

of all continuous m-homogeneous polynomials from X to Y .

2 Main Results

Given a Banach space X, we denote by SX the unit sphere of X, by X∗ the topological dual of X, and by P(mX)

the Banach space of all continuous m-homogeneous polynomials from X to K. For a nonempty A ⊂ X, we write

conv(A) and ext(A), to denote the convex hull of A and the set of extreme points of A, respectively. Moreover, a

slice of A is a set of the form

S(A, x∗, ε) =

{
x ∈ A : Re x∗(x) > sup

a∈A
Re x∗(a)− ε

}
,

where x∗ ∈ X∗ and ε > 0. If A ⊂ X∗ and the functional x defining the slice is taken in the predual, then S(A, x, ε)

is called a w∗-slice of A.

In the spirit of the concepts of numerical index with respect to an operator and polynomial numerical index, we

introduce the notion of polynomial numerical index with respect to a polynomial.

Definition 2.1. Let X,Y be Banach spaces, let Q ∈ P(mX,Y ) be a norm-one polynomial, and let m ∈ N. We

define the approximated spatial numerical range of P with respect to Q by

VQ(P ) =
⋂

ε>0

{y∗(Px) : y∗ ∈ SY ∗ , x ∈ SX ,Re y∗(Qx) > 1− ε},
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the numerical radius of P with respect to Q by

vQ = sup{|λ| : λ ∈ VQ(P )},

and the polynomial numerical index of (X,Y ) with respect to Q of order m by

nQ
(m)(X,Y ) = inf{vQ(P ) : P ∈ P(mX,Y ), ∥P∥ = 1}.

Inspired by Proposition 3.2 by V. Kadets et al. [2], we present the following characterization of Spear(P(mX,Y )).

Proposition 2.1. Let X,Y be Banach spaces and let Q ∈ P(mX,Y ) be a norm-one polynomial. The following

assertions are equivalent:

(i) Q ∈ Spear(P(mX,Y )).

(ii) |φ(Q)| = 1 for every φ ∈ ext(BP(mX,Y )∗).

(iii) For every A such that BP(mX,Y )∗ = convw
∗
(A) and every ε > 0, the slice S(A, Q, ε) is norming for P(mX,Y ).

(iv) For every ε > 0 and P ∈ P(mX,Y ),

∥P∥ = sup{|y∗(Px)| : y∗ ∈ SY ∗ , x ∈ SX ,Re (Qx) > 1− ε}.

(v) nG
(m)(X,Y ) = 1.

Next, we introduce the concept of the m-order alternative Daugavet property for a m-homogeneous polynomial.

Definition 2.2. Let X,Y be Banach spaces. We say that Q ∈ P(mX,Y ) has the m-order alternative Daugavet

property (m-ADP in short), if the norm equality

max
λ∈T

∥Q+ λP∥ = 1 + ∥P∥ (ADE)

holds for every rank-one polynomial P ∈ P(mX,Y ).

Finally, generalizing Theorem 3.6 by V. Kadets et al. [2], we present a characterization of m-homogeneous

polynomials with the m-ADP. For that, we need one last definition. A k-polynomial slice of BX is a set of the form

S(p, ε) = {x ∈ BX : |p(x)| > 1− ε},

where p ∈ SP(mX) and ε > 0.

Theorem 2.1. Let Q ∈ P(mX,Y ) be a norm-one polynomial between two Banach spaces X,Y . The following

assertions are equivalent:

(i) Q has the m-ADP.

(ii) Q(S) is a spear set of Y for every m-polynomial slice S of BX .

(iii) Q∗(S∗) is a spear set of P(mX) for every w∗-slice S∗ of BY ∗ .

(iv) For every p ∈ P(mX), the set
{
y∗ ∈ extBY ∗ : max

λ∈T
∥Q∗y∗ + λp∥ = 1 + ∥p∥

}

is a dense Gδ set in (extBY ∗ , w∗).
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Abstract

In this talk, we will explore the concept of [S]-lineability, presenting some characterizations in the context

of F -spaces and discussing the absence of [S]-lineability in certain subsets of normed and p-Banach spaces.

Additionally, we will highlight some open problems related to this notion.

1 Introduction

The study of linearity in unconventional mathematical contexts has gained prominence in recent years. This interest

is partly due to the terms lineability and spaceability, introduced by V.I. Gurariy and popularized by the work of

Aron, Gurariy, and Seoane-Sepúlveda (see [2], see also [7]). These concepts have inspired numerous research efforts

to identify linear structures in various mathematical areas. A set A in a vector space X is considered lineable

if A ∪ {0} contains an infinite-dimensional vector subspace. If X is a topological vector space, A is considered

spaceable if A ∪ {0} includes a closed infinite-dimensional vector subspace. Further information on lineability can

be found in [2, 3, 5, 6].

In 2004, Gurariy introduced the concept of [S]-lineability (see [4]): Given a Hausdorff topological vector space

X ̸= {0} and a vector subspace S of KN (where K = R or C), a set A in X is called:

� [(un)
∞
n=1 ,S]-lineable in X if, for each sequence (cn)

∞
n=1 ∈ S, the series

∑∞
n=1 cnun converges in X to a vector

in A ∪ {0}.

� [S]-lineable in X if it is [(un)
∞
n=1 ,S]-lineable for some sequence (un)

∞
n=1 of linearly independent elements in

X.

As far as we know, [S]-lineability has been developed only in [4].

2 Main Results

Among the results we have obtained, we highlight:

1. In an F -space X ̸= {0}, if {Yi}i∈I is a family of nontrivial closed subspaces of X, then the set X \⋃i∈I Yi
is lineable if and only if it is [S]-lineable for every subspace S ̸= {0} of ℓ∞.

2. For an F -space E, if W be a subspace of E that contains a non-minimal closed subspace, then the set E \W
is spaceable if and only if it is [(xn)

∞
n=1,S]-lineable for some closed subspace S of ℓ∞ containing c0 and some

S-independent sequence (xn)
∞
n=1 of elements of E.

3. If in a Hausdorff topological vector space X ̸= {0}, (xn)∞n=1 is an ℓ∞-independent sequence of elements

of X, and if a nonempty subset A of X is [(xn)
∞
n=1 ,S]-lineable for some infinite dimensional subspace S of

ℓ∞, then A is lineable.

4. In an infinite dimensional normed space X (or a p-Banach space), if (xn)
∞
n=1 is a linearly independent

sequence in X such that infn∈N ∥xn∥X > 0, then for any infinite dimensional subspace S of ℓ∞ properly

containing c0, there is no subset of X that is [(xn)
∞
n=1 ,S]-lineable.
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Abstract

In this talk we will present the results contained [1, Sections 2 and 3]. The main purpose is to develop a

technique to construct new Banach lattices of homogeneous polynomials. We obtain, in particular, conditions

for the linear spans of all positive compact and weakly compact n-homogeneous polynomials between Banach

lattices to be Banach lattices with the polynomial regular norm. Banach lattices of almost limited polynomials

and of solid p-compact polynomials are also obtained. Most of our results and examples are new even in the

linear case n = 1.

1 Introduction

Let E and F be Banach lattices and let n ∈ N be given. The space P(nE;F ) of continuous n-homogeneous

polynomials from E to F is a Banach space with the usual supremum norm. But, in general, it is not a Banach

lattice. The usual technique to construct a Banach lattice of n-homogeneous polynomials from E to F is the following

(see, e.g., [3]): A polynomial P ∈ P(nE;F ) is said to be positive if the symmetric n-linear operator associated to P

is positive. The difference of two positive n-homogeneous polynomials is called a regular homogeneous polynomial,

and the set of all these polynomials is denoted by Pr(nE,F ). If F is Dedekind complete, then Pr(nE,F ) is a

Banach lattice with the regular norm

∥Pr∥ = ∥|P |∥ = inf{∥Q∥ : Q ∈ P+(nE;F ), Q ≥ |P |},

where |P | denotes the absolute value of P .

In Banach space theory, several closed subspaces of P(nE;F ) play an important role, for example, spaces of

compact and weakly compact polynomials (see [5]). Moreover, other important classes of polynomials are subspaces

A of P(nE;F ) endowed with a specific complete norm ∥ · ∥A, for example, spaces of nuclear polynomials (see [5])

and p-compact polynomials (see [1]). As expected, none of these Banach spaces of polynomials are Banach lattices

in general. The purpose of this talk is to describe a technique to generated Banach lattices of polynomials belonging

to A. More than creating many new examples of Banach lattices of homogeneous polynomials, the results we prove

and the examples we provide give, in the linear case n = 1, new examples of Banach lattices of linear operators.

2 Main Results

Given a vector subspace A of P(nE;F ), we denote by A+ the class of all positive n-homogeneous polynomials

belonging to A. We say that the ordered pair (E,F ) satisfies the A-domination property if, for all positive n-

homogeneous polynomials P,Q : E → F with 0 ≤ P ≤ Q ∈ A, it holds P ∈ A.

Theorem 2.1. Let E and F be Banach lattices with F Dedekind complete and let A be a subspace of P(nE;F )

endowed with a complete norm ∥ · ∥A satisfying the following conditions:

(I) ∥P∥ ≤ ∥P∥A for every P ∈ A.
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(II) ∥P∥A ≤ ∥Q∥A for all P ∈ A and Q ∈ A+ with |P (x)| ≤ Q(|x|) for every x ∈ E.

Then

∥P∥A,r := inf{∥Q∥A : Q ∈ A+, Q ≥ |P |}
defines a complete norm on Ar := span{A+} such that ∥P∥A,r ≥ ∥P∥r for every P ∈ Ar. If, in addition, (E,F )

satisfies the A-domination property, then (Ar, ∥ · ∥A,r) is a Banach lattice and ∥ · ∥A ≤ ∥ · ∥A,r. Moreover, in this

case, Ar is an ideal in Pr(nE;F ).

Corollary 2.1. Let E and F be Banach lattices with F Dedekind complete. If A is a closed subspace of P(nE;F )

such that (E,F ) satisfies the A-domination property, then

∥P∥A,r := inf{∥Q∥ : Q ∈ A+, Q ≥ |P |}

defines a complete lattice norm on Ar = span{A+}, that is, (Ar, ∥ · ∥A,r) is a Banach lattice. Moreover,

∥P∥A,r = ∥P∥r for every P ∈ Ar and Ar is an ideal in Pr(nE;F ).

By PK and PW we denote the classes of compact and weakly compact homogeneous polynomials.

Examples. (a) If E is a Banach lattice and F is an atomic Banach lattice with order continuous norm, we obtain

from Corollary 2.1 that (PrK(nE;F ), ∥ ·∥K,r) is a Banach lattice such that ∥P∥K,r = ∥P∥r for every P ∈ PrK(nE;F ).

(b) If E is a Banach lattice and F is a Banach lattice with order continuous norm, we obtain from Corollary 2.1

that (PrW(nE;F ), ∥ · ∥W,r) is a Banach lattice such that ∥P∥W,r = ∥P∥r for every P ∈ PrW(nE;F ).

(c) An n-homogeneous polynomial P : E → F is said to be almost limited, in symbols P ∈ Pal(
nE;F ), if P (BE)

is an almost limited subset of F , that is, for every disjoint weak* null sequence (y∗n)n ⊂ F ∗, ∥y∗n ◦ P∥ =

supx∈BE y
∗
n(P (x)) → 0. If F is Dedekind complete, we obtain from Corollary 2.1 that (Pral(nE;F ), ∥ · ∥al,r) is

a Banach lattice such that ∥P∥al,r = ∥P∥r for every P ∈ Pral(nE;F ).

(d) An n-homogeneous polynomial P : E → F is said to be solid p-compact, 1 < p < ∞, in symbols

P ∈ P|Kp|(
nE;F ), if there exists an absolutely p-summable F -valued sequence (yj)j such that P (BE) ⊆

sol{p-conv{(yj)j}}. This is a Banach space satisfying conditions (I) and (II) of Theorem 1.1 (hardwork!) with

the norm

∥P∥|Kp| = inf {∥(yj)j∥p : P (BE) ⊆ sol{p-conv{(yj)j}}} .
From Theorem 1.1 we obtain that (Pr|Kp|(

nE;F ), ∥ · ∥||Kp|r ) is a Banach lattice. For p = 1, everything holds if E

contains no copy of c0.

Remark. The linear case of Example (a) above was obtained in [4]. The linear cases of (b), (c) and (d) provide

new examples of Banach lattices of linear operators.
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Abstract

In this work we define classes of injective norms for tensor products through the abstract environment of

sequence classes. Examples and results on these norms will be presented and the dual of the tensor product

will be constructed, when equipped with one of these norms. This dual leads us to the definition of a class of

integral type bilinear forms.

1 Introduction

The study of the duals (E⊗̂αF )′ (E,F are Banach spaces and α is a tensor norm) as classes of linear operators

or bilinear forms is a fundamental part in the theory of tensor products and establishes its close relationship with

the parallel theory of operator ideals. It is well known that since the injective norm on E ⊗ F is smaller than the

projective norm, every bounded linear functional on E⊗̂εF is the linearization of a unique bounded bilinear form

on E ×F . A complete description of the dual space of E⊗̂εF leads to the definition of Integral Bilinear Forms and

these lead to the definition of Integral Operators (see [5, Section 3.4]).

The purpose of this talk is to present the definitions of some classes of injective type norms for tensor products

and to achieve this goal we use the abstract environment of Sequence Classes [1]. This environment is a unifying

approach to deal with operator ideals defined, or characterized, by the transformation of vector-valued sequences.

We give examples and establish results on these norms as well as presenting the construction of the dual of the

tensor product, when equipped with one of these norms.

Banach spaces over K = R or C are denoted by E and F . The symbol E
1
↪→ F means that E is a linear subspace

of F and ∥x∥F ≤ ∥x∥E for every x ∈ E. We denote by E′ the topological dual of E, BE denotes the closed unit ball

of E and L(E;F ) the Banach space of bounded linear operators from E to F with the usual operator norm. The

basic theory, nomenclature and symbology of the sequence class environment are present in [1] and the additional

associated elements in [2, 3, 4]. The other notations and symbols used here are either usual in functional analysis

or are also present in the references already cited.

2 Main Results

Let X be a sequence class. We say that a sequence class X ′ is dual of X if X(E)′
1
= X ′(E′) for any Banach space E,

by the application Ψ : X ′(E′) −→ X(E)′ given by Ψ
(
(φj)

∞
j=1

) (
(xj)

∞
j=1

)
=
∑∞
j=1 φj(xj), for all (φj)

∞
j=1 ∈ X ′(E′)

and all (xj)
∞
j=1 ∈ X(E).

A scalar sequence space λ is a Banach space formed by scalar-valued sequences endowed with the usual

coordinatewise algebraic operations, satisfying the following conditions: (i) c00 ⊆ λ
1
↪→ ℓ∞; (ii) (ej)

∞
j=1 is a Schauder

basis for λ; (iii) ∥ej∥λ = 1 for every j ∈ N. We also define λ∗ := {(φ(ej))∞j=1 : φ ∈ λ′}.
Let us introduce two classes of injective type norms in the tensor product E ⊗ F , involving sequence classes.

We use the notation
∑k
j=1 xj ⊗ yj for any representation of u ∈ E ⊗ F.
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Proposition 2.1. Let E and F be Banach spaces and λ be a scalar sequence space. Then, the expression

αλ(u) = sup





∣∣∣∣∣∣

k∑

j=1

∞∑

n=1

φn(xj)ψn(yj)

∣∣∣∣∣∣
; (φn)

∞
n=1 ∈ BX(E′), (ψn)

∞
n=1 ∈ BY (F ′)





defines a reasonable norm in E ⊗ F for all linearly stable classes X and Y satisfying X(K)
1
↪→ λ and Y (K)

1
↪→ λ∗.

Proposition 2.2. Let E and F be Banach spaces and λ be a scalar sequence space. Then, the expression

α′
λ(u) = sup





∣∣∣∣∣∣

k∑

j=1

∞∑

n=1

φn(xj)ψn(yj)

∣∣∣∣∣∣
; (φn)

∞
n=1 ∈ BX′(E′), (ψn)

∞
n=1 ∈ BY ′(F ′)



 ,

defines a reasonable norm in E ⊗ F for all linearly stable sequence classes X and Y satisfying

a) X ′(K)
1
↪→ λ and Y ′(K)

1
↪→ λ∗ or b) X(K)

1
= λ and Y (K)

1
= λ∗, if λ is reflexive.

Proposition 2.3. The norms α′
λ and αλ respects subspaces and are uniform for all scalar sequence space λ and all

sequence classes X and Y satisfying the conditions of the Propositions 2.2 and 2.1. In particular, they are tensor

norms.

Once the norm α′
λ has been defined, we will characterize the dual (E⊗̂α′

λ
F )′. Knowing that the norm α′

λ on

E × F is smaller than the projective norm, every bounded linear functional on E⊗̂α′
λ
F is the linearization of a

unique bounded bilinear form on E × F . The following result gives the characterization of these bilinear forms.

Theorem 2.1. Let B : E × F −→ K be a bilinear form and X and Y sequence classes satisfying the conditions of

the Proposition 2.2. Then, the linearization B̃ : E⊗̂α′
λ
F −→ K is continuous if and only if there exists a regular

Borel measure µ on the compact BX(E)′ ×BY (F )′ such that

B(x, y) =

∫

BX(E)′×BY (F )′

∞∑

n=1

φn(x)ψn(y)dµ(φ,ψ) (1)

for all x ∈ E and y ∈ F . Besides that,
∥∥∥B̃
∥∥∥ = inf{∥µ∥ : µ satisfying (1)} and this infimum is attained.

We say that a bilinear form B on E × F is an λ-integral bilinear form if its linearization, B̃, is a continuous

linear functional on the tensor product E⊗̂α′
λ
F . The Banach space of λ-integral bilinear forms, with the norm∥∥∥B̃

∥∥∥ = inf{∥µ∥}, will be denoted by Bλ,I(E × F ). Thus we have

(E⊗̂α′
λ
F )′ = Bλ,I(E × F ).
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Abstract

In [2], the authors defined Li-Yorke chaos in the context of topological vector spaces and they proved that all

nontrivial convolution operators on the space H(CN) of all entire functions of infinitely many complex variables

are Li-Yorke chaotic.

In this work, we will introduce the definition of distributional chaos in the context of topological vector space

and we will prove that all nontrivial convolution operators on the space H(CN) are distributionally chaotic,

improving the mentioned result obtained in [2].

1 Introduction

Let CN be the topological vector space of all complex sequences, whose topology is generated by the seminorms

(pn)n∈N, where pn((xk)k) := max {|x1|, . . . , |xn|}. We say that a function f : CN → C is entire, if it is continuous

and for each ξ ∈ U , η ∈ E and ϕ ∈ F ′, the function

λ 7→ ϕ ◦ f(ξ + λη)

of one complex variable is holomorphic in a neighborhood of 0. We denote the space of all entire functions of

infinitely many complex variables by H(CN).

We denote by τ0 the compact-open topology on H(CN), that is the topology generated by the seminorms

pK(f) = supz∈K |f(z)|,

with K ⊂ CN compact.

Definition 1.1. a) Let a ∈ CN. The translation operator by a is the operator τa : H(CN) → H(CN) defined by

τa(f)(x) = f(x− a).

b) We say that a continuous linear operator L : H(CN) → H(CN) is a convolution operator if

L(τaf) = τa(Lf),

for all f ∈ H(CN) and a ∈ CN. We say that L is nontrivial if it is not a scalar multiple of the identity.

In an analogous way we define convolution operators on the space H(Cn), with n ∈ N.

The definition of distributional chaos is well known in the context of metric spaces, but since we are interested

in to explore the linear dynamics of convolution operators on H(CN), which is not metrizable (see [3]), we need to

explore the notion of distributional chaos for operators on topological vector spaces.

Definition 1.2. Let E be a topological vector space, B0 be the set of all neighborhoods of 0 and T : E → E be

a linear operator. We say that the subset Γ ⊂ E is distributionally scrambled if there is V ∈ B0 such that, for all

U ∈ B0 and for each pair of distinct points x, y ∈ Γ, we have

i) lim supn
1
ncard

{
0 ≤ i ≤ n− 1 : T i(x)− T i(y)) ∈ U

}
= 1 and

ii) lim infn
1
ncard

{
0 ≤ i ≤ n− 1 : T i(x)− T i(y)) ∈ V

}
= 0.

We say that T is distributionally chaotic, if E contains an uncountable and distributionally scrambled subset Γ.
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2 Main Result

Consider n ∈ N. We define the canonical projection and the canonical inclusion, respectively, by

πn : (xi)i∈N ∈ CN 7→ (xi)
n
i=1 ∈ Cn

and

Jn : (x1, · · · , xn) ∈ Cn 7→ (x1, · · · , xn, 0, 0 · · · ) ∈ CN.

This two functions induce the following mappings:

J∗
n : f ∈ H(CN) 7→ f ◦ Jn ∈ H(Cn)

and

π∗
n : fn ∈ H(Cn) 7→ fn ◦ πn ∈ H(CN).

We observe that the function π∗
n : H(Cn) → π∗

n(H(Cn)) is a topological isomorphism. An important result about

the structure of the space H(CN) is that H(CN) =
⋃
n∈N π

∗
n(H(Cn)).

The next proposition is fundamental to prove our result. It gives the relation between convolution operators on

H(CN) and convolution operators on H(Cn), with n ∈ N.

Proposition 2.1. (see [2]) Let L be a convolution operator on H
(
CN). Then:

a) The continuous operator

Ln := J∗
n ◦ L ◦ π∗

n : H(Cn) → H(Cn)

is a convolution operator on H(Cn).
b) L(fn ◦ πn) = (Lnfn) ◦ πn for all fn ∈ H(Cn) and n ∈ N.
c) L is a multiple scalar of identity on H

(
CN) if, and only if, Ln is a multiple scalar of identity on H(Cn), for all

n ∈ N.

Our main result in this work is the following:

Theorem 2.1. If L is a nontrivial convolution operator on H(CN), then L is distributionally chaotic.

Sketch of the proof: Since L is nontrivial, it follows from Proposition 2.1 (c) that there is n ∈ N such that

Ln is a nontrivial convolution operator on H(Cn).
Since nontrivial convolution operators on H(Cn) are distributionally chaotic (see [1]), then there exists an

uncountable and distributionally scrambled subset D ⊂ H(Cn).
Using the last proposition and the fact that the function π∗

n : H(Cn) → π∗
n(H(Cn)) is a topological isomorphism,

it is possible to prove that the subset π∗
n(D) is distributionally scrambled for L.
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2Universidade federal da Paráıba, DM, PB, Brazil, lfpinhosousa@gmail.com

Abstract

From a Banach space prefixed B and a sequence class X, we define a sequence class called B-class associated

with X that generalizes some well-known vector-valued sequence spaces. Examples and results on B-classes are

presented and a class of coincidence results in the theory of operator ideals is given.

1 Introduction

In [3], Fourie and Zeekoei proved that the ideal formed by operators mapping weakly p-summable sequences to

operator p-summable sequences is complete with a certain norm. In this direction, from a fixed Banach space Y ,

they present the space of all operator [Y, p]-summable sequences, with generalize operator p-summable sequences

(operator [ℓp, p]-summable with this notation), defined by Karn and Sinha in [4], and proving some facts about this

space.

From the perspective of the abstract environment of sequence classes that was developed by Botelho and Campos

in [1], we present a sequence class XB(·) from a sequence class X and a prefixed Banach space B what we call

B-class associated with X. Depending on the choices for X and B, for each Banach space E, the space XB(E)

generalizes some sequence spaces as the spaces of [Y, p]-summable and operator p-summable sequences. We will

explore some properties of this sequence class and show coincidence results in operator theory that arises from this

construction.

The space of operator p-summable sequences was renamed by Botelho, Campos and Santos (in [2]) to mid

p-summable sequences and denoted by ℓmid
p (E), the space of all mid p-summable sequences with values in E. The

letters B, E and F will denote Banach spaces over K = R or C and L(E;F ) the Banach space of bounded linear

operators from E to F with the usual operator norm.. SE and E′ will represent the unit sphere and the topological

dual of E, respectively. When we write E
1
↪→ F will mean that E is a subspace of F and ∥ · ∥F ≤ ∥ · ∥E . Moreover,

E
1
= F means that E and F are isometrically isomorphic. The expressions E 7→ X(E), X(·) or simply X, as long

as there is no risk of doubt, represent a sequence class. The other symbols and terminology regarding sequence

classes can be found in [1].

2 Main Results

Let X be a sequence class X and B be a Banach space. We define the normed space

XB(E) := {(xj)∞j=1 ∈ EN : (T (xj))
∞
j=1 ∈ X(B), ∀T ∈ L(E;B)},

with norm

∥(xj)∞j=1∥XB(E) := sup
T∈BL(E;B)

∥(T (xj))∞j=1∥X(B).

When X is finitely determined (which will henceforth be taken as a hypothesis), we show that XB(E) is a

Banach space and we can verify that E 7→ XB(E) define a sequence class called B-class associated with X. When

X is linearly stable we have X
1
↪→ XB .
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Immediate examples of sequence classes of this nature are ℓKp (·) = ℓwp (·) and ℓ
ℓp
p (·) = ℓmid

p (·). We have

ℓB∞(·) = ℓ∞(·) for all fixed Banach space B, and we define

Xw(E) := XK(E) = {(xj)∞j=1 ∈ EN : (φ(xj))
∞
j=1 ∈ X(K), ∀φ ∈ E′}.

Definition 2.1. We say that a sequence class X is spherically injective, if for each x ∈ SE and (αj)
∞
j=1 ∈ KN,

(αj)
∞
j=1 ∈ X(K) whenever (xαj)

∞
j=1 ∈ X(E), and ∥(αj)∞j=1∥X(K) ≤ ∥(xαj)∞j=1∥X(E).

Some examples of spherically injective sequence classes are ℓp, ℓ
w
p , ℓ∞, ℓ

mid
p , ℓp⟨·⟩ and ℓM , whereM is an Orlicz

function satisfying M(1) = 1.

If X is a spherically injective class, then XB(K)
1
↪→ X(K) which together with the hypothesis of linear stability

of X gives us XB(K)
1
= X(K). Then a result from the sequence classes theory [1, Theorem 3.6] ensures that

LXB ;X(E;F ) is a Banach operator ideal.

Theorem 2.1. Let B and F be Banach spaces and X be a linearly stable and spherically injective sequence class.

Then, for all Banach space E, LXF ;X(E;F )
1
= LXB ;X(E;F )

1
= L(E;F ) if and only if, XB(E)

1
↪→ XF (E).

Corollary 2.1. Let B be a Banach space. If X is a linearly stable and spherically injective sequence class, then

XB 1
↪→ Xw, that is, XB(E)

1
↪→ Xw(E) for all Banach space E.

Some examples of known and new inclusion results obtainad by the Theorem 2.1:

a) Taking X(·) = ℓp(·), B = K and F = ℓp, we obtain

Πmid
p (E; ℓp)

1
= Πp(E; ℓp)

1
= L(E; ℓp) ⇔ ℓwp (E)

1
↪→ ℓmid

p (E).

This coincidence can be found in [2].

b) This is a new result: talking X(·) = ℓM (·), B = K and F = ℓM , whereM is a Orlicz function such thatM(1) = 1,

we obtain

Lℓmid
M ;ℓM (E; ℓM )

1
= LℓwM ;ℓM (E; ℓM )

1
= L(E; ℓM ) ⇔ ℓwM (E)

1
↪→ ℓmid

M (E).

Here, we consider ℓmid
M (E) the space defined in [5], which defines the sequence class ℓM (·).
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Abstract

Let X be a (real or complex) infinite dimensional linear space. We establish conditions on a homogeneous

polynomial P on X so that, if W is any finite dimensional subspace of X on which P vanishes, then P vanishes

on an infinite dimensional subspace of X containing W . In the complex case, this is a step beyond the classical

result due to Plichko and Zagorodnyuk. Applications to the real case are also provided.

1 Introduction

In 1998, Plichko and Zagorodnyuk [7] proved the following remarkable result: For any infinite dimensional complex

linear space X, every C-valued homogeneous polynomial on X vanishes on an infinite dimensional subspace of X.

The real case of the problem, which is clearly very different from the complex case, was thoroughly studied by

several authors, see, e.g., [3, 4].

In the modern language of lineability (see [2]), the Plichko-Zagorodnyuk theorem asserts that the zero set of

any homogeneous polynomial on an infinite dimensional complex space is lineable, meaning that it contains an

infinite dimensional linear space. In this work, we investigate the problem solved by Plichko-Zagorodnyuk in the

complex case under the perspective of the notions introduced in [5] and developed in, e.g., [1]. More precisely, we

are interested in the following question:

Given a homogeneous polynomial P on a (real or complex) infinite dimensional linear space X and given a

finite dimensional subspace W of X on which P vanishes, does P vanish on an infinite dimensional subspace of X

containing W?

The following definition is given just for the sake of simplicity.

Definition 1.1. A nonempty subset A of an infinite dimensional linear space X is finitely lineable if, for every

finite dimensional subspace of X contained in A∪{0}, there exists an infinite dimensional subspace of X containing

W and contained in A ∪ {0}.

Note that every finitely lineable set contains, up to 0, an infinite dimensional space, that is, it is lineable. Since

P (0) = 0 for every homogeneous polynomial P , the answer to the question above is affirmative if and only if the

zero set of P is finitely lineable.

Let X be an infinite dimensional linear space K = C or R. Given an m-homogeneous polynomial P : X −→ K,

by P̌ : Xm −→ K we denote the (unique) symmetric m-linear form associated to P , that is, P (x) = P̌ (x, . . . , x︸ ︷︷ ︸
m times

) for

every x ∈ X. Given 0 ≤ k ≤ m, x1, . . . , xk ∈ X, and α1, . . . , αk ∈ {0, 1, . . . , k} with α1 + · · · + αk = m, we shall

use the simplified notation P̌ (xα1
1 , . . . , xα

k

k ) := P̌ (x1, . . . , x1︸ ︷︷ ︸
α1 times

, . . . , xk, . . . , xk︸ ︷︷ ︸
αk times

).

Definition 1.2. Let P : X −→ K be anm-homogeneous polynomial. For a t-homogeneous polynomial Q : X −→ K,

1 ≤ t ≤ m − 1, we write Q ≺ P if there are x1, . . . , xn ∈ X on which P vanishes, and α1, . . . , αn ∈ N ∪ {0} with

α1 + · · ·+ αn + t = m such that Q(x) = P̌ (xα1
1 , . . . , xαnn , xt) for every x ∈ X.
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2 Main Results

The main result of this work establishes conditions on a homogeneous polynomial under which the answer to the

question above is affirmative.

Theorem 2.1. Let P : X −→ K be an m-homogeneous polynomial. Suppose that, for every infinite dimensional

subspace Y of X, P vanishes on some nonzero vector of Y and every homogeneous polynomial Q ≺ P vanishes on

an infinite dimensional subspace of Y . Then the zero set of P is finitely lineable.

As a first application, we have the following result.

Corollary 2.1. Let P1, . . . , Pk be homogeneous polynomials on X. If, for every infinite dimensional subspace Y of

X, each Pi vanishes on a nonzero vector of Y and each homogeneous polynomial Q ≺ Pi, i = 1, . . . , k, vanishes on

an infinite dimensional subspace of Y , then the set
k⋂
i=1

P−1
i (0) is finitely lineable.

A particular case of Theorem 2.1 gives a contribution to the subject of pointwise lineability, introduced in [6]:

Corollary 2.2. Suppose that a homogeneous polynomial P on X satisfying the assumptions of Theorem 2.1 vanishes

on a point x of X. Then there is an infinite dimensional subspace of X containing x and contained in the zero set

of P .

In the complex case, the following corollary is an extension of the Plichko-Zagorodnyuk theorem [7].

Corollary 2.3. The zero set of any homogeneous polynomial on an infinite dimensional complex linear space is

finitely lineable.

Again, a particular case gives a contribution to pointwise lineability:

Corollary 2.4. Suppose that a homogeneous polynomial P on a complex infinite dimensional linear space X

vanishes on a point x ∈ X. Then there is an infinite dimensional subspace of X containing x and contained in the

zero set of P .

The next result illustrates how our results can be applied in the real case.

Proposition 2.1. The zero set of any homogeneous polynomial of finite type on any infinite dimensional (real or

complex) linear space is finitely lineable.
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Abstract

Spaceability results related to (quasi)-Banach multilinear operators are provided. Also we investigate

applications on new and classical summing operators classes.

1 Introduction

Throughout this E1, . . . , Em, E, F will be Banach or quasi-Banach spaces and, as usual, the topological dual and the

closed unit ball of E will be denote by E′ and BE , respectively, for E
′ ̸= {0}. We will denote by L (E1, . . . , Em;F )

the Banach (or quasi-Banach) space of bounded m-linear operators from E1 × · · · × Em to F endowed with the

usual sup norm (quasi-norm). Also, we wiil denote by M a quasi-Banach multi-ideal.

We continue the search of large topological structures in the general framework of multilinears operators ideals, in

the sense of Pietsch [3]. Hernandéz et al. [4] investigated whenever I1(E;F )\I2(E;F ) is spaceable, for ideals I1, I2
of bounded linear operators on Banach space with certain properties, providing a result that encompasses several

others related with spaceability problems of many linear operator ideals. We take a step further and investigate this

problem in both multilinear and quasi-Banach spaces, obtaining a general result. First we recall a notion originally

introduced in [4] for Banach spaces.

Definition 1.1 (σ−reproducible space). A (quasi)-Banach space is said to be σ−reproducible if there exists a

sequence (En)n∈N of complemented subspaces; and for each n ∈ N, there are Pn : E → En a bounded projection,

with Pi ◦ Pj = 0 if i ̸= j, and ϕn : En −→ E a isomorphism. Moreover, for all k ∈ N the projections

P̃k =
∑k
n=1 Pn : E −→⊕

En are uniformily bounded.

In [4] is presented a number of nice properties fulfilled by σ−reproducible Banach spaces, as well illustrative

examples. For instance, the class of all Banach spaces E which are isomorphic to the vector valued sequence space

c0(E) or ℓp(E) for 1 ≤ p < ∞. It is plain that this is also true when we consider quasi-Banach spaces E and

0 < p < 1.

We provide spaceability results on the context of quasi-Banach multi-ideals. The techniques follow along the

lines of Hernandéz et al. [4].

2 Main Results

The main results are presented next.

Theorem 2.1. Let E1, . . . , Em, F be quasi-Banach spaces and let M1,M2 be operators quasi-normed multi-ideals.

If Ej, for some j = 1, . . . ,m, or F is a σ−reproducible space, M1(E1 . . . , Em;F ) is a quasi-Banach multi-ideal,

and M1(E1 . . . , Em;F ) \ M2(E1 . . . , Em;F ) is non-empty, then M(E1 . . . , Em;F ) \ ⋃∞
n=1 Mn(E1 . . . , Em;F ) is

spaceable.
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Theorem 2.2. Let E1, . . . , Em, F be quasi-Banach spaces and let M,Mn, n ∈ N be operators quasi-normed multi-

ideals. If Ej, for some j = 1, . . . ,m, or F is a σ−reproducible space, M(E1 . . . , Em;F ) is a quasi-Banach

multi-ideal, and for all n ∈ N M(E1 . . . , Em;F ) \ Mn(E1 . . . , Em;F ) is non-empty, then M(E1 . . . , Em;F ) \⋃∞
n=1 Mn(E1 . . . , Em;F ) is spaceable.

As applications we provide the following (see [1]).

Corollary 2.1. Let r, s, t,u ∈ [1,+∞)m, let Λ ⊂ Γ ⊂ Nm be sets of indexes. Then

ΠΛ
(r,s) (E1, . . . , Em; E) \ΠΓ

(t,u) (E1, . . . , Em; E)

is either empty or c-spaceable, where ΠΛ, ΠΓ, denotes the class of Λ-summing, Γ-summing, operators, respectively.

Corollary 2.2. Let q ∈ (0,∞] and r, s, t,u ∈ [1,+∞)m. Then each one of the sets

L (E1, . . . , Em; ℓq) \Πms
(t,u) (E1, . . . , Em; ℓq) , L (E1, . . . , Em; ℓq) \Πas

(t,u) (E1, . . . , Em; ℓq)

and

Πas
(r,s) (E1, . . . , Em; ℓq) \Πms

(t,u) (E1, . . . , Em; ℓq)

is either empty or c-spaceable, where Πas and Πms stand for the class of absolutely and multiple multilinear

summing classes.

Corollary 2.3. Let 1 ≤ q ≤ ∞ and 1 ≤ r < s <∞. Then

Π(r,s)(E, ℓq) \DP (E, ℓq)

is either empty or c-spaceable, where DP stands for the Dunford-Pettis operators class.
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Abstract

We study the properties of the value function associated with an optimal control problem with uncertainties,

known as average or Riemann-Stieltjes problem. Uncertainties are assumed to belong to a compact metric

probability space, and appear in the dynamics, in the terminal cost and in the initial condition, which yield an

infinite-dimensional formulation. By stating the problem as an evolution equation in a Hilbert space, we show

that the value function is the unique lower semi-continuous proximal solution of the Hamilton-Jacobi-Bellman

(HJB) equation. Our approach relies on invariance properties and the dynamic programming principle.

1 Introduction

This work aims to prove that the value function for Mayer’s problem, defined in a Hilbert space, is the unique lower

semi-continuous solution of the Hamilton-Jacobi-Bellman equation when the nonlinear dynamics are measurable in

time and the cost is an integral functional. Specifically, we investigate the parametrized Riemann-Stieltjes problem

denoted by (P )s,φ, concerning the initial time s and the initial states, which are ω-dependent and represented by

the mapping φ ∈ L2(µ,Ω;Rn):

min

∫

Ω

g(x(T, ω), ω)dµ(ω),

s.t. 



ẋ(t, ·) = f(t, x(t, ·), u(t), ·), a.e. t ∈ [s, T ],

x(s, ·) = φ(·),
u(t) ∈ U, a.e. t ∈ [s, T ], U ⊂ Rm compact,

(1)

for every ω ∈ Ω and s ≤ t ≤ T , where (Ω, dΩ, µ) is a compact metric measure space, with control u ∈ L∞(0, T ;U).

Initially, following the approach used in [2, 3, 3] for the semilinear case, we establish, under certain hypotheses

on the dynamics (referred to as H and C) and on the measure µ (referred to as Hµ), that the set of trajectories

defined by

S[s,T ](φ) :=
{
x ∈ C([s, T ] : L2(µ,Ω;Rn)) : x solves (1) and x(s, ·) = φ(·)

}

is compact in an appropriate space of functions. Subsequently, we provide a characterization of the lower

semicontinuity of the associated value function for the problem (P )s,φ, defined by

V (s, φ) = inf

{∫

Ω

g(x(T, ω), ω)dµ(ω) : x ∈ S[s,T ](φ)

}

which establishes the existence of optimal trajectories.
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The existence of minimizers, combined with invariance principles and the Dynamic Programming Principle, will

pave the way to prove that the value function defined above is the unique lower semicontinuous solution of the

following Hamilton-Jacobi-Bellman equation, defined in an infinite-dimensional space.





− [Vt(t, φ) +H(t, φ, Vφ(t, φ))] = 0,

V (T, φ) =

∫

Ω

g (φ(ω), ω) dµ(ω),

where H : [0, T ]× L2(µ,Ω;Rn)× L2(µ,Ω;Rn)∗ → R is the Hamiltonian function given by

H(t, φ, p) := inf
u(t)∈U

⟨p, f(t, φ(·), u(t), ·)⟩ .

The proof strategy employs the differential inclusion approach and utilizes some results from [1]. Specifically, we

define the set-valued map

F : [0, T ]× L2(µ,Ω;Rn)⇝ L2(µ,Ω;Rn)

given by F (t, φ) = f(t, φ, U(t), ·). The associated differential inclusion is then expressed as:

ẋ(t, ·) ∈ F (t, x(t, ·)) a.e. t ∈ [s, T ] with x(s, ω) = φ(ω). ∀ω ∈ Ω.

Finally, we prove the principal result of this work:

2 Main Result

Theorem 2.1. Let us assume that (H), (Hµ) and (C) hold true. Then the value function V of problem (P )s,φ is

the unique lower semi-continuous, bounded below function such that there exists a set I ⊂ [0, T ) of full measure for

which, for every (t, φ, α) ∈ epiV ∩
(
I × L2(µ,Ω;Rn)× R

)
, one has

ξ0 + min
v∈F (t,φ)

⟨v, ξ⟩ = 0 ∀ (ξ0, ξ,−q) ∈ NP
epiV (t, φ, α),

V (T, φ) =

∫

Ω

g (φ(ω), ω) dµ(ω).

Where (ξ0, ξ) ∈ ∂PV (t, φ), the proximal subdifferential, or P -subdifferential of V.
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Abstract

We investigate the bounded composition operators induced by linear fractional self-maps of the right half-

plane C+ on the Hardy space H2(C+). We completely characterize which of these operators are cohyponormal

and we find conjugations for the linear fractional composition operators that are complex symmetric.

1 Introduction

All along this work, C denotes the complex plane, U := {z ∈ C : |z| < 1} is the unit disk and C+ := {z ∈ C :

Re(z) > 0} is the right half-plane.

Let Ω ⊂ C and let S be a space of functions defined on Ω. A composition operator Cϕ on S is an operator acting

by composition to the right with a chosen self-map ϕ of Ω, i.e.,

Cϕf = f ◦ ϕ, f ∈ S.

The self-map ϕ is called the symbol of the composition operator Cϕ. If Ω = C+, Elliot and Jury established a

boundedness criterion for composition operators on the Hardy space of the right half-plane H2(C+) in terms of

angular derivative (see [1, Theorem 3.1]). As a consequence of this caracterization, we have that the only linear

fractional self-maps of C+ inducing bounded composition operators on H2(C+) are those of the following form

ϕ(w) = aw + b, where a > 0 and Re(b) ≥ 0. (1)

Let L(H) denote the space of all bounded linear operators on a separable complex Hilbert spaceH. A conjugation

on H is a conjugate-linear operator satisfying C2 = I and ⟨Cx,Cy⟩ = ⟨y, x⟩ for all x, y ∈ H. An operator T ∈ L(H)

is called cohyponormal if ∥Tx∥ ≤ ∥T ∗x∥ for all x ∈ H, normal if TT ∗ = T ∗T, self-adjoint if T = T ∗, unitary if

TT ∗ = I = T ∗T and complex symmetric (or C-symmetric) if there is a conjugation C on H, for which CT ∗C = T. In

[3], Noor and Severiano studied the composition operators on H2(C+) induced by linear fractional self-maps of C+.

They completely characterize the symbols that induce complex symmetric composition operators (see next theorem)

and provide a new prove to characterize normal, self-adjoint and unitary composition operators on H2(C+).

Theorem 1.1. [3, Theorems 2 and 6] Let ϕ be as in (1). Then

1. Cϕ is normal on H2(C+) if and only if a = 1 or Re(b) = 0.

2. Cϕ is self-adjoint on H2(C+) if and only if a = 1 and b ≥ 0.

3. Cϕ is unitary on H2(C+) if and only if a = 1 and Re(b) = 0.

4. Cϕ is complex symmetric on H2(C+) if and only if Cϕ is normal on H2(C+).
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Noor and Severiano [3] study the complex symmetry of composition operators on H2(C+). The key of this study

is to analyze the cyclic behavior of the bounded composition operators induced by linear fractional self-maps of

C+, which allowed them to characterize the operators that are complex symmetric. Despite this characterization,

they did not exhibit the conjugations for the cases that these operators are complex symmetric.

2 Main Results

In this section, we present the main results we obtained in [2].

Theorem 2.1. Let ϕ be the self-map of C+ defined by ϕ(w) = aw + b.

(a) If a ∈ (0, 1) and Re(b) > 0, then Cϕ is not cohyponormal.

(b) If a ∈ (1,∞) and Re(b) > 0, then Cϕ is cohyponormal.

From Theorem 2.1, we obtain the complete characterization of the linear fractional composition operators that

are complex symmetric.

Corollary 2.1. For a > 0 and Re(b) ≥ 0, let ϕ be the self-map of C+ defined by ϕ(w) = aw + b. Then Cϕ is

complex symmetric on H2(C+) if and only if a = 1 or Re(b) = 0.

Next we deal with the problem of exhibit conjugations for the linear fractional composition operators that are

complex symmetric.

Theorem 2.2. Let ϕ be an analytic self-map of C+ such that Cϕ is bounded on H2(C+). Then Cϕ is complex

symmetric with respect to the conjugation Jf(w) = f(w) if, and only if, ϕ has the form ϕ(w) = w + b.

Theorem 2.3. Let ϕ(w) = aw + b with a ∈ (0, 1) ∪ (1,∞) and Re(b) = 0. If τ(w) = w + (a − 1)−1b,

(Wf)(w) = 1
wf
(
1
w

)
and Wa,b := C−1

τ WCτ , then

(a) W and Wa,b are conjugations.

(b) Cϕ is Wa,b-symmetric on H2(C+).

References

[1] Elliott, S. J. & Jury, M. T. -Composition operators on Hardy spaces of a half-plane, Bull. Lond. Math. Soc. 44

(2012), no. 3, 489-495.
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Abstract

The main purpose of this talk is to study holomorphic mappings of bounded type from c0
(⊕∞

i=1 ℓ
i
p

)
,

1 ≤ p < ∞, into a complex Banach space Y . To do this, we define a fundamental system of compact sets

of c0
(⊕∞

i=1 ℓ
i
p

)
, 1 ≤ p <∞. This is a joint work with Mary Lilian Lourenço.

1 Introduction

Let X be a Banach space. A subset A ⊂ X is called totally bounded if for every ϵ > 0 there are x1, . . . , xn ∈ X such

that A ⊂ ⋃ni=1B(xi, ϵ). In this context, a set K ⊂ X is compact if and only if K is complete and tottally bounded.

R. Ryan, in [3], described the holomorphic mappings of bounded type from the Banach space ℓ1 into a complex

Banach space Y . For this, a simple characterization of the compact subsets of ℓ1 was used: K ⊂ ℓ1 is relatively

compact if and only if limn→∞
∑∞
k=n |zk| = 0 uniformly in z ∈ K. With this characterization, a fundamental

system of compact sets of ℓ1 was defined, allowing the achievement of the main result.

In this work, we are interested in studying holomorphic mappings of bounded type from the Banach space

c0
(⊕∞

i=1 ℓ
i
p

)
into a complex Banach space Y . To do this, we will present a fundamental system for the compact

sets of c0
(⊕∞

i=1 ℓ
i
p

)
. We recall that a fundamental system of compact sets of X is a family of compact sets

{Aλ : λ ∈ I} ⊂ X such that , for each compact K ⊂ X, there is λ ∈ I such that K ⊂ Aλ.

2 Main Results

Let c0 denote the space of null sequences, c+0 = {(λj) ∈ c0 : λj > 0} and for all 1 ≤ p < ∞, c0
(⊕∞

i=1 ℓ
i
p

)
={

(yi)i ∈ KN :

((∑
i∈I(n) |yi|p

)1/p)

n

∈ c0

}
, with the norm y = supn∈N

(∑
i∈I(n) |yi|p

)1/p
.

Proposition 2.1. For each λ = (λm) ∈ c+0 and 1 ≤ p <∞, consider

Aλ =




(yi) ∈ c0

( ∞⊕

i=1

ℓip

)
:


 ∑

i∈I(m)

|yi|p



1/p

≤ λm m ∈ N




.

Then the polydiscs
{
Aλ : λ ∈ c+0

}
form a fundamental system of compact sets of c0

(⊕∞
i=1 ℓ

i
p

)
.

Proof For each 1 < p < ∞, let λ ∈ c+0 and ϵ > 0. We claim that Aλ is closed in c0
(⊕∞

i=1 ℓ
i
p

)
. For each y ∈ Aλ

there is a sequence (yj) ⊂ Aλ such that yj → y. Then there exist j0 ∈ N such that ∥yj − y∥ ≤ ϵ, for all j ≥ j0.

Therefore
(∑

i∈I(m) |yi|p
)1/p

≤ λm, for all m ∈ N. Thus, Aλ is closed.

Now, we claim that Aλ is compact. It is sufficient to prove that Aλ is totally bounded in c0
(⊕∞

i=1 ℓ
i
p

)
.

Let ϵ > 0. By definition, there is N ∈ N such that λm ≤ ϵ
2 for all m ≥ N . We define the compact set
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ANλ = {(yi) ∈ Aλ : yi = 0 for all i ∈ I(m) e m > N}. Therefore ANλ = T (F ) where T : Cn −→ c0
(⊕∞

i=1 ℓ
i
p

)

is a continuous mapping defined by

T (z1, ..., zn) =




z1 z2 z4 . . . zk 0 . . .

z3 z5 0

z6 0
. . .

...
...

zn 0

0




,

and F =

{
z ∈ Cn :

(∑
i∈I(m) |zi|p

)1/p
≤ λm, 1 ≤ m ≤ N

}
is a compact set of Cn, for specific n = N(N+1)

2 .

Therefore, there are z1, ..., zl ∈ ANλ , such that ANλ ⊂ ⋃lj=1B(zj , ϵ2 ).

If y ∈ Aλ we can write y = v + w, where

v =




y1 y2 y4 . . . yk 0 . . .

y3 y5 0

y6 0
. . .

...
...

ym 0

0




, w =




0 0 0 . . . 0 ym+1 . . .

0 0 ym+2

0 ym+3

. . .
...

...

0




.

Since v ∈ ANλ there is 1 ≤ j0 ≤ l such that v ∈ B(zj0 , ϵ2 ). Besides that, ∥w∥ ≤ ϵ
2 and ∥y− zj0∥ = ∥v+w− zj0∥ ≤ ϵ

and as a consequence y ∈ B(zj0 , ϵ).

Finally, we prove that {Aλ : λ ∈ c+0 } is a fundamental system of compact sets of c0
(⊕∞

i=1 ℓ
i
p

)
. Let

K ⊂ c0
(⊕∞

i=1 ℓ
i
p

)
a compact subset. For each m ∈ N we define λm = supz∈K

(∑
i∈I(m) |zi|p

)1/p
. We claim that

λ = (λm)m ∈ c+0 . Indeed, given ϵ > 0, there are z1, ..., zl ∈ K such that K ⊂ ⋃lj=1B(zj , ϵ2 ). As zj ∈ c0
(⊕∞

i=1 ℓ
i
p

)
,

then for each j = 1, ..., l, there is Nj ∈ N such that
(∑

i∈I(m) |z
j
i |p
)1/p

≤ ϵ
2 , for all m ≥ Nj . If N = max

1≤j≤l
Nj ,

then
(∑

i∈I(m) |z
j
i |p
)1/p

≤ ϵ
2 , for all m ≥ N e 1 ≤ j ≤ l.

Let z ∈ K, so there is 1 ≤ j0 ≤ l, such that ∥z − zj0∥ ≤ ϵ
2 . That means,


 ∑

i∈I(m)

|zi|p



1/p

−


 ∑

i∈I(m)

|zj0i |p



1/p

≤


 ∑

i∈I(m)

|zi − zj0i |p



1/p

≤ ϵ

2
,

for all m ∈ N. So
(∑

i∈I(m) |zi|p
)1/p

≤ ϵ for all m ≥ N. That is , for all m ≥ N supz∈K

(∑
i∈I(m) |zi|p

)1/p
≤ ϵ.

As a consequence, |λm| = supz∈K

(∑
i∈I(m) |zi|p

)1/p
≤ ϵ, for all m ≥ N, and λ ∈ c+0 . If w = (wi)i ∈ K, we have

m ∈ N
(∑

i∈I(m) |wi|p
)1/p

≤ supz∈K

(∑
i∈I(m) |zi|p

)1/p
= λm. So w ∈ Aλ, and we proved that {Aλ : λ ∈ c+0 } is a

fundamental system of compact sets of c0
(⊕∞

i=1 ℓ
i
p

)
.
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Abstract

In this talk, we will present the results contained in Section 4 of the preprint [1]. In particular, we study

when the following are equivalent for I = K or I = W: (1) The space Pr(nE;F ) of regular polynomials contains

no copy of c0. (2) Pr
I(

nE;F ) contains no copy of c0. (3) Pr
I(

nE;F ) is a projection band in Pr(nE;F ). (4)

Every positive polynomial in Pr(nE;F ) belongs to Pr
I(

nE;F ). The result we obtain in the compact case can be

regarded as a lattice polynomial Kalton theorem. Most of our results and examples are new even in the linear

case n = 1.

1 Introduction

A classical problem in Functional Analysis consists in studying embeddability of c0 in spaces of bounded linear

operators between Banach spaces. One of the most known results in this direction is Kalton’s theorem [2, Theorem

6] which states that for a Banach space X with an unconditional finite-dimensional expansion of the identity and

an infinite dimensional Banach space Y , the space L(X;Y ) of all bounded linear operators from X to Y contains

no copy of c0 if and only if every bounded linear operator from X to Y is compact. In [3], S. Pérez studied the

embeddability of c0 in the space P(nX;Y ) of all continuous n-homogeneous polynomials. In the lattice setting,

this issue is specially important because the non embeddability of c0 in a Banach lattice is equivalent to the lattice

being a KB-space. In this direction, F. Xanthos [4] gave the following version of Kalton’s theorem for the Banach

lattice Lr(nE;F ) of all regular linear operators: for an atomic Banach lattice E with order continuous norm and

an arbitrary Banach lattice F , Lr(nE;F ) contains no copy of c0 if and only if every positive linear operator from

E to F is compact (see [4, Theorem 2.9]).

The interest in studying polynomial versions of well known results or properties in Banach lattice theory have

been considerably increased recently. It is then a natural question to seek for a “lattice polynomial version” of

Kalton’s theorem [2, Theorem 6]. The main purpose of this manuscript is to obtain conditions on the Banach

lattice E and F so that the Banach lattice Pr(nE;F ) of all regular n-homogeneous polynomials from E to F

contains no copy of c0 if and only if every positive n-homogeneous polynomial from E to F is compact. In order to

achieve this result, a complete lattice norm on the space PrK(nE;F ), which is the linear span of all positive compact

n-homogeneous polynomials from E to F , is introduced in a more general way:

Theorem 1.1. Let E and F be Banach lattices with F Dedekind complete. Suppose that A is a closed subspace of

P(nE;F ) such that (E,F ) satisfies the A-domination property, that is for all positive n-homogeneous polynomials

P,Q : E → F with 0 ≤ P ≤ Q ∈ A, it holds P ∈ A. Thus

∥P∥A,r := inf
{
∥Q∥ : Q ∈ A+, Q ≥ |P |

}

defines a complete lattice norm on Ar = span{A+}, that is, (Ar, ∥ · ∥A,r) is a Banach lattice. Moreover,

∥P∥A,r = ∥P∥r for every P ∈ Ar and Ar is an ideal in Pr(nE;F ).
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Considering A = K or A = W, we get the two following interesting examples:

Examples: (a) If E is a Banach lattice and F is an atomic Banach lattice with order continuous norm, we obtain

from Theorem 1.1 for A = PK(
nE;F ) that (PrK(nE;F ), ∥ · ∥K,r) is a Banach lattice such that ∥P∥K,r = ∥P∥r for

every P ∈ PrK(nE;F ).

(b) If E is a Banach lattice and F is a Banach lattice with order continuous norm, we obtain from Theorem 1.1 for

A = PW(nE;F ) that (PrW(nE;F ), ∥ ·∥W,r) is a Banach lattice such that ∥P∥W,r = ∥P∥r for every P ∈ PrW(nE;F ).

2 Main Results

In this Section we will enunciated the two main results proved in [1, Section 4].

Theorem 2.1. If E is a Banach lattice that fails the dual positive Schur property and F is an infinite dimensional

atomic Banach lattice with order continuous norm, then the following are equivalent for every n ∈ N:
(1) (Pr(nE;F ), ∥ · ∥r) contains no copy of c0.

(2) (PrK(nE;F ), ∥ · ∥K,r) contains no copy of c0.

(3) PrK(nE;F ) is a projection band in Pr(nE;F ).

(4) Every positive n-homogeneous polynomial from E to F is compact.

It is important noticing that Theorem 2.1 above is the lattice polynomial version of the famous Kalton’s theorem.

As a corollary, we have:

Corollary 2.1. If F is an infinite dimensional atomic Banach lattice with order continuous norm and every positive

n-homogeneous polynomial P : E → F is compact, then Pr(nE;F ) has order continuous norm. In addition, if E

fails the dual positive Schur property, then Pr(nE;F ) is a KB-space.

For weakly compact polynomials, we have the following:

Theorem 2.2. Let n ∈ N, let E be a Banach lattice that fails the positive Grothendieck property and let F be an

atomic Dedekind complete Banach lattice such that Pr(nE;F ) has order continuous norm. Then, the following are

equivalent:

(1) (Pr(nE;F ), ∥ · ∥r) contains no copy of c0.

(2) (PrW(nE;F ), ∥ · ∥W,r) contains no copy of c0.

(3) PrW(nE;F ) is a projection band in Pr(nE;F ).

(4) Every positive n-homogeneous polynomial from E to F is weakly compact.

An application of Theorem 2.2 is provided as well:

Corollary 2.2. Let n ∈ N and let E,F be two Banach lattices with F Dedekind complete such that Pr(nE;F ) has

order continuous norm. If E fails the positive Grothendieck property, F is atomic and every positive n-homogeneous

polynomial P : E → F is weakly compact, then Pr(nE;F ) is a KB-space.
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Abstract

In this proposal, we shall present a construction of solutions for the transport and continuity equations

similar to the characteristics method–known as Lagrangian approach, first introduced by Crippa-De Lellis [1]–

for vector fields which can be written as a “retarded convolution” of a singular kernel and a Lp function. The

rough nature of such vector fields necessitate finer estimates involving the composition of maximal operators and

singular kernels, and so the work of DiPerna-Lions [2] is not applicable. As an application, we give conditions

on solutions to Vlasov-Maxwell system so that weak, renormalized, and Lagrangian solutions are all equivalent.

In particular, it gives an explicit formula for its solutions depending on the associated flow.

1 Introduction

The classical transport (if η = 1) and continuity (if η = 0) equations



∂tu+ div(bu) = ηudiv b in [0,∞)× Rd;

ut=0 = u0 on Rd
(1)

are maybe the simplest partial differential equations with major theory developments in the last forty years. Before

the seminal work of DiPerna-Lions [2], the best widely known result concerning well-posedness of (1) was due to

Osgood, which in turn was an improvement on the classical Cauchy-Lipschitz theory. The constructed solutions

were via the characteristics method: by establishing well-posedness on the flow equation for a fixed x ∈ Rd



∂tX(t, s, x) = bt(X(t, s, x)) in [0,∞);

X(s, s, x) = x,
(2)

one may construct an unique solution explicitly depending on initial data, X, and div b. The gap between vector

fields satisfying the Osgood condition and in Sobolev spaces W 1,p
loc –and more generally BV vector fields–was filled

by DiPerna-Lions [2] and Ambrosio [3]. The theory does not rely on solving in the ODE level (2), but rather

on a special structure on (1): for u solutions of transport equation, a composition β ◦ u is also a solution for

any β ∈ C1. As a byproduct, one has the well-posedness of (2) in a renormalized sense. This approach–known as

renormalization technique–does not extend for much larger vector fields spaces, as proven by the striking example by

Depauw [4]. The new approach developed by Crippa-De Lellis [1]–known as Lagrangian approach–is an adaptation

of the characteristic method, in a sense that it builds solutions of (1) from (2); this is known as a Lagrangian

solution. There were many extensions of the technique, culminating on the well posedness of (2) for vector fields

written locally as a sum of convolutions of singular kernels and BV functions; see [5].

We shall present a new generalization, replacing the convolution with a “retarded convolution”, in the sense

that

bjt (x) =

m∑

k=1

∫

Bt

Kjk(y)gkt−|y|(x− y)dy (3)
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for Kjk singular kernels and gk summable functions. The main motivation is the Vlasov-Maxwell system, where

the vector field is written in terms of the physical velocity and electromagnetic fields–the latter solving a non

homogeneous wave equation in R3. The techniques heavily parallel the quasistatic approximations of Maxwell

equations in nonrelativistic and relativistic cases by Ambrosio-Colombo-Figalli [6] and Borrin-Marcon [3].

2 Main Results

The main result is threefold: firstly, we establish the well-posedness of (2) for vector fields with structure

bt(x) = (ΓχBr ) ∗ gt(x), where Γ is a singular kernel and χA is an indicator function of a set A, extending the

results of [5]; secondly, as a byproduct of the aforementioned result, we obtain the well-posedness of (2) for vector

fields which can be written as (3). More precisely, the following holds:

Theorem 2.1. Let b be a vector field written as bt(x) = (ΓχBr ) ∗ gt(x), where g is a summable function, Γ

is a singular kernel as in Calderón-Zygmund theory, satisfying (1 + | · |)−1b ∈ L1((0, T ); (L1 + L∞)(Rd)), and

div b ∈ L1((0, T );L∞(Rd)). Then there exists an unique solution of (2). Moreover, there exists a Lagrangian

solution of transport and continuity equation (1). The thesis holds for vector fields (3) for Kjk kernels whose

derivatives are singular à la Calderón-Zygmund and gk ∈W 1,1((0, T );L1(Rd)).

Thirdly, we provide a condition for solutions of Vlasov-Maxwell system to be Lagrangian ones.

Theorem 2.2. Let bt(x, v) = (ξ(v), Et(x) + ξ(v)×Ht(x)) for all (x, v) ∈ R6 and t ∈ (0, T ), where

(∂tt −∆)E = −∇ρ+ ∂tJ, (∂tt −∆)H = curl J,

Et=0 = E0, Ht=0 = H0,

∂tEt=0 = curlH0 − J0, ∂tHt=0 = − curlE0

for ρ =
∫
R3 f(x, v)dv and J =

∫
R3 ξ(v)f(x, v)dv and solutions f of (1) with the aforementioned vector field b and

ξ is a Lipschitz function. Then for compatible initial data and if ∂ttJ is a summable function, we have that weak,

renormalized and Lagrangian solutions are all equivalent.

References

[1] Ambrosio, L. - Transport equation and Cauchy problem for BV vector fields, Inventiones mathematicae, 158

(2004), 227-260.

[2] Ambrosio, L., Colombo, M. & Figalli, A. - On the Lagrangian structure of transport equations: The Vlasov-

Poisson system, Duke Mathematical Journal, 166(18), (2017), 3505-3568.

[3] Borrin, H. & Marcon, D. - On the Lagrangian structure of transport equations: Relativistic Vlasov systems,

Mathematical Methods in the Applied Sciences, 46(4), (2023), 4834-4860.

[4] Crippa, G. & de Lellis, C. - Estimates and regularity results for the DiPerna-Lions flow, Journal fÃ¼r die reine
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Abstract

We obtain sharp Hölder regularity for bounded weak solutions u ∈ W 1,G with G ∈ Υg1
g0 of generalized

p-Laplacian type parabolic equations of the form

ut − div

(
g(|∇u|) ∇u

|∇u|

)
= f,

where 1 < g0 ≤ g1 and f ∈ LG,r with G ∈ Υg1
g0
. We show the precise sharp expression of the exponent depending

only on the universal parameters of the problem like g0, g0 , r and the dimension n.

1 Introduction

We deliver sharp regularity estimates for locally bounded solutions of the degenerate generalized p-Laplacian

equation

ut − div

(
g(|∇u|) ∇u

|∇u|

)
= f (1)

in Q1 := (−1, 0] × B1(0). We assume the following growth condition (Lieberman [6]): there exist constants g0, g1

such that

0 < g0 ≤ t · g′(t)
g(t)

≤ g1 ∀ t > 0 (2)

and

G′(t) = g(t), with g ∈ C0([0,+∞]) ∩ C1((0,+∞]). (3)

The number of N-functions that satisfy the conditions (2) and (3) is quite expressive. For example, if g(t) = tp−1

with g0 = g1 = p − 1, we obtain the prototype of p-Laplacian. There are also interesting and different examples

g(t) = tβ ln(γt+ η), with β, γ, η > 0 and g0 = β and g1 = β + 1 or by discontinuous power transitions like

g(t) =

{
c1t

β , if 0 ≤ t ≤ t0

c2t
γ + c3, if t ≥ t0

where β, γ, t0 are positive numbers, and c1, c2, c3 are real numbers such that g ∈ C1([0,∞)) with g0 = min(β, γ) and

g1 = max(β, γ), among others. This class of nonlinear evolution equations appear in many relevant applications of

physics [10], fluid dynamics [9] and image processing .

The general nature of the g function implies that certain techniques used to solve problems involving the p-

Laplace equation cannot be directly applied to equation (1). Indeed, some properties of power functions, such as

(st)p = sptp, are no longer applicable to the function g and there is lack of any type of homogeneity of the g function,

for example. Consequently, additional efforts are needed making the problem more intriguing and challenging.
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2 Main Results

The main result is stated below. We use compactness and intrinsic scaling methods to prove it.

Theorem 2.1. A locally bounded weak solution u ∈ W 1,G of (1) with G ∈ Υg1g0 and f ∈ LG,r with G ∈ Υg1g0 ,

satisfying
1

r
+

n

(g0 + 1)(g0 + 1)
< 1 <

2

r
+

n

(g0 + 1)
(1)

is locally Holder continuous with exponents

α =
[(g0 + 1)(g0 + 1)− n]r − (g0 + 1)(g0 + 1)

(g0 + 1) [g0r − (g0 − 1)]
(2)

in space and α/θ in time, where θ := (1 + α)− logρ(g(ρ
(α−1))).

For instance, our result generalizes the sharp regularity exponent α provided in [8] in which was addressed the

inhomogeneous p-laplace parabolic equation

ut − div(|∇u|p−2∇u) = f ∈ Lq,r (3)

with p ≥ 2 and obtained

α =
(pq − n)r − pq

q [(p− 1)r − (p− 2)]
.
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Abstract

We prove local error estimates for spatial discretization of the solution for the Oberbeck-Boussinesq approx-

imation using conforming or non-conforming finite element. Second-order error estimates are obtained for

the velocity, temperature and concentration, without compatibility conditions on the data and only imposing

regularity condition on the velocity. This result is proved using energy methods based on sharp a priori estimates

of the Oberbeck-Boussinesq approximation.

1 Introduction

Certain flows can become quite complex when temperature and concentration differences interact simultaneously.

These flows can be modelled using the Oberbeck-Boussinesq approximation which consists of the incompressible

Navier-Stokes equations coupled with the heat and mass transfer equations.

Let Ω ⊂ Rn be a bounded domain with n = 2 or 3, and boundary ∂Ω. The Oberbeck-Boussinesq approximation

we consider, which describes the motion of a viscous-chemically-active fluid, is given by (see [2])

∂u

∂t
+ (u · ∇)u−∆u+∇p = g1 + (θ + ψ)g,

∂θ

∂t
+ (u · ∇)θ −∆θ = f − (u · ∇)θ2,

∂ψ

∂t
+ (u · ∇)ψ −∆ψ = h− (u · ∇)ψ2,

divu = 0.

(1)

Here, u = u(x, t) ∈ Rn, θ = θ(x, t) ∈ R, ψ = ψ(x, t) ∈ R and p = p(x, t) ∈ R represent the unknown velocity,

temperature, concentration of material in the liquid and the pressure at the point (x, t) ∈ Ω× (0,∞), respectively.

g(x, t) ,j(x, t), f(x, t) and h(x, t) are given source functions. g1(x, t) = (θ2+ψ2)g+j where θ2 and ψ2 are functions

that result from a lifting process when the temperature and concentration are non-zero on the boundary (see [5, 4]).

The fluid density and viscosity have been normalized.

Together with (1), we consider the following initial and boundary conditions

u(x, 0) = u0(x), θ(x, 0) = θ0(x), ψ(x, 0) = ψ0(x),

u(x, t) = 0, θ(x, t) = 0, ψ(x, t) = 0,
(2)

where u0, θ0 and ψ0 are given functions.

In this work, we deal with the error analysis of finite element solution of the Oberbeck-Boussinesq approximation. We

prove second-order error estimates, using conforming or non-conforming elements, obtained without compatibility

conditions on the data.

In order to obtain our error estimations, we need some assumption about Ω, appropriate regularity on the initial

data, and the global existence of strong solution. These assumption we will be referred to as (A1), (A2) and (A3),

respectively, which are similar to those assumed in [3] but extended for the steady Poisson problem, as well as
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for temperature and concentration. We emphasize that assuming only (A3) assumption for the velocity u, we can

conclude the same regularity for the temperature θ and concentration ψ.

Additionally, we require certain assumptions regarding the finite element approximation. Consider the discrete

velocity uh, temperature θh, concentration ψh and pressure ph , which are determined in finite element spaces

denoted by Hh, Mh (for temperature and concentration) and Lh, respectively, where h is a parameter representing

mesh size. These spaces are assumed to possess (at least) the typical properties for Hh, Mh (see (B1)-(B4) and

(B4’) properties in [3] for Hh of which we assume (B2)-(B3) hold for Mh), consisting of piecewise linear functions,

while Lh consists of piecewise constant functions.

2 Main Results

Our main result is summarized in the following theorem

Theorem 2.1. Let Ω be a convex polygon or polyhedron and suppose the conditions (A1), (A2), (A3) and (B1),

(B2), (B3), (B4) are satisfied. Further suppose the discrete initial velocity, temperature and concentration uh0 ∈ Vh,

θh0
∈Mh and ψh0

∈Mh are chosen to satisfy

∥u0 − uh0∥ ≤ h2M4, ∥θ0 − θh0∥ ≤ h2M4, ∥ψ0 − ψh0∥ ≤ h2M4, (1)

for some constant M4. Then, the solution (uh(t), θh(t), ψh(t)) associated to the discrete problem (1) satisfies

∥(u− uh)(t)∥ ≤ h2C1(t), ∥(θ − θh)(t)∥ ≤ h2C1(t), ∥(ψ − ψh)(t)∥ ≤ h2C1(t), (2)

with 0 ≤ t < T , where C1(t) is a continuous function of t ∈ [0, T ). In addition to t, C1(t) depends only on the

domain Ω, the constants κ1, · · ·κ6, M4 appearing in assumptions (B1), (B3), (B4) and (1), and bounds M1,M2,M3

appearing in assumptions (A2) and (A3).

The time interval [0, T ) is the same as in assumption (A3). If condition (B4’) is satisfied, in addition to the previous

assumptions, then any solution ph(t) associated to the discrete problem of (1) satisfies

∥(p− ph)(t))∥L2/R ≤ hC2(t) (3)

with 0 < t < T , where C2(t) is a continuous function of t in the open interval (0, T ). C2(t) depends on the constants

κ0 appearing in (B4’), as well as the quantities determining C1(t).
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Abstract

This work deals with a suspension bridge model with Kelvin-Voigt damping. We use semigroup theory proving

the existence of solution applying the Lumer-Phillips theorem. Moreover, we obtain exponential stability of the

semigroup associated with the energy space.

1 Introduction

In this work we study the existence of solutions and analyticity for the initial boundary value problem of a suspension

bridge with a Kelvin-Voigt viscoelastic damping

utt − αuxx − λ(φ− u)− γ1utxx = 0 em (0, L)× (0,∞) (1)

ρ1φtt − k(φx + ψ)x + λ(φ− u)− γ2φtxx = 0 em (0, L)× (0,∞) (2)

ρ2ψtt − bψxx + k(φx + ψ)− γ3ψtxx = 0 em (0, L)× (0,∞) (3)

The equations above are considering that the deck has negligible transversal section dimensions compared to the

length (span of the bridge), it is modeled in Timoshenko’s theory as a one-dimensional extensible beam of length L,

see [6]. As in [2], where we are denoting by φ = φ(x, t) the displacement of the cross-section on the point x ∈ (0, L),

by ψ = ψ(x, t) the rotation angle of the cross-section and the suspender cables are assumed to be linear elastic

springs with standard stiffness λ > 0. The constant α > 0 is the elastic modulus of the string (holding the main

cable to the deck). The positive coefficients ρ1 and ρ2 are the mass density and the moment of mass inertia of the

beam, respectively. Moreover, b represents the cross section’s rigidity coefficient, and k represents the elasticity’s

shear modulus. Finally, the constants γ1 > 0 and γ2, γ3 ≥ 0 are the coefficients of the damping force.

System (1.1)− (1.3) is subject to initial data and Dirichlet boundary conditions





u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L),

φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ (0, L),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ (0, L),

(4)





u(0, t) = u(L, t) = 0, t ≥ 0,

φ(0, t) = φ(L, t) = 0, t ≥ 0,

ψ(0, t) = ψ(L, t) = 0, t ≥ 0.

(5)

We introduce the Hibert Space

H = H1
0 (0, L)× L2(0, L)×H1

0 (0, L)× L2(0, L)×H1
0 (0, L)× L2(0, L)

endowed with the following inner product,

⟨U, Ũ⟩H =

∫ L

0

vṽdx+ α

∫ L

0

uxũxdx+ ρ1

∫ L

0

ww̃dx+ ρ2

∫ L

0

zz̃dx+ b

∫ L

0

ψxψ̃x

+ λ

∫ L

0

(φ− u)(φ̃− ũ)dx+ k

∫ L

0

(φx + ψ)(φ̃x + ψ̃)dx,
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being U = (u, v, φ,w, ψ, z)T and Ũ = (ũ, ṽ, φ̃, w̃, ψ̃, z̃)T , with ut = v, φt = w and ψt = z. With this notation, we

rewrite (1.1) − (1.3) as the following first-order Cauchy problem

{
Ut −AU = 0,

U(0) = U0,
(6)

where A : D(A) ⊂ H → H, with D(A) = [H1
0 (0, L) ∩H2(0, L)×H1

0 (0, L)]
3 is defined by (6).

2 Main Results

For existence of solution, the main idea is to use the well-known Lummer-Phillips Theorem (see [3]). As D(A) is

dense in H, to get that A is the infinitesimal generator of S(t) = eAt, a C0-semigroup of contractions on H, we

prove that A is dissipative and that 0 ∈ ρ(A) the resolvent set of A, obtaining the following theorem.

Theorem 2.1. Let U0 ∈ H, then there exists a unique weak solution U of problem (6) satisfying U ∈
C0([0,+∞);H). Moreover, if U0 ∈ D(A), then U ∈ C0([0,+∞);D(A)) ∩ C1([0,+∞);H).

For the assimptotic behavior, as consequence of Gearhart-PrÃ¼ss Theorem (see [1]), we obtain the main result

as follow.

Theorem 2.2. The C0-semigroup of contractions S(t) = eAt, t ≥ 0, generated by A is exponentially stable.

Proof. By contradiction, exists θ and a sequence βn → θ, |βn| < |θ|, with ||(iβn − A)−1||L(H) → ∞ and for all

M > 0, there is a n0 ∈ N such that n > n0, then ||(iβn −A)−1||L(H) > M .

Using the PoincarÃ© and Gagliardo-Niremberg inequalitys, we obtain that iR ∈ ρ(A) and, with a more careful

calculation, lim
|β|→∞

∥(iβI −A)−1∥L(H) <∞, and the result follows from Gearhart-PrÃ¼ss Theorem.
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Abstract

This work aims to establish the local existence of a solution to a system of hyperbolic partial differential

equations, specifically a formulation of the heat equation modeled by Cattaneo. We use the theory of semigroups

to approach the solution of this system taking advantage of Functional Analysis techniques, in particular, we

use the Banach Fixed Point Theorem in a Hilbert space.

1 Introduction

In this work we consider three scalar functions u(x, t), q(x, t) and θ(x, t) satifying the coupled system





utt − µuxxtt + uxxxx + αu−M

(∫

R
u2xdx

)
uxx + δθxx = 0; t > 0, x ∈ R,

θt + kqx − δuxxt = 0; t > 0, x ∈ R,

τqt + q + kθx = 0; t > 0, x ∈ R.

(1)

in Ω = (0, L) with initial conditions

u(x, 0) = u0(x);ut(x, 0) = u1(x); θ(x, 0) = θ0(x); q(x, 0) = q0(x) (2)

and boundary conditions

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = θ(0, t) = θ(L, t) = 0, (3)

such that µ, δ, k and τ are positive constants experimentally provided and u := u(x, t) com x ∈ R e t ∈ [0,∞].

Furthermore, the constants we are considering in 1 are usually associated with the following: τ is the ”relaxation”

time, δ is a coupling constant for 1 and θ and q denotes the difference to a fixed temperature.

The total energy is associated to 1 is

E(t) =

∫ L

0

(
u2t + µu2xt + u2xx + θ2 + τq2

)
dx+ M̂

(∫ L

0

u2xdx

)
(4)

where M̂(λ) =

∫ λ

0

M(s)ds for all s ≥ 0 with M(s) ≥ 0 is a C1(Ω) real function.

The model (1) describes thermoelastic deformations of a linear plate equation under the presence of thermal effects

modeled by Cattaneo’s Law (see [1] and [3]). Our main result establishes that there is a local solution for the model
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2 Main Results

Theorem 2.1. (Local solution) Let A and F be two functions in the hilbert space then if {u0, u1, θ0, q0} ∈
H4 ×H3 ×H2 ×H2 there is a unique u(t) = {u(t);ut(t); θ(t); q(t)} e Tmax such that U ∈ C([0, Tmax); H4 ×
H3 ×H2 ×H2) ∩ C1([0, Tmax];H

2 ×H1 × L2 × L2).

Proof. First, we reformulate the original problem as an abstract first-order differential equation in a Hilbert space.

Let U(t) = {u(t), ut(t), θ(t), q(t)} and define an operator A such that the original system can be written as

dU

dt
= AU+ F(U),

where A represents the linear part and F represents the nonlinear part.

Now, we apply Picard iteration to construct a sequence of approximate solutions {Un}. Start with an initial

value U0 and define the sequence by

Un+1(t) = U0 +

∫ t

0

(AUn(s) + F(Un(s))) ds.

We show that this sequence converges in the appropriate function space using the Banach fixed-point theorem

(contraction mapping principle).

To prove uniqueness, assume there are two solutions U1 and U2 both satisfying the initial conditions and the

differential equation. Consider the difference V = U1−U2 and show that V satisfies a homogeneous equation with

zero initial data:
dV

dt
= AV + (F(U1)−F(U2)).

Using Gronwall’s inequality, we show that V(t) = 0 for all t ∈ [0, Tmax), proving uniqueness.

Next, we verify that the solution U(t) belongs to the desired function spaces by using regularity results for the

linear operator A and the properties of the nonlinear term F . Specifically, we show that

U(t) ∈ C([0, Tmax);H
4 ×H3 ×H2 ×H2) ∩ C1([0, Tmax];H

2 ×H1 × L2 × L2).

Finally, we determine Tmax by showing that it is the maximal existence time for the solution. We use a

continuation argument to prove that if the solution can be extended beyond Tmax, then Tmax is not maximal,

leading to a contradiction.

Thus, we have shown that there exists a unique solution U(t) on [0, Tmax) with the desired regularity

properties.
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Abstract

In this work, we investigate the critical exponent for the nonexistence of global solutions for the dissipative

wave equation, based on the Lθ operator introduced in [1]. More precisely, we consider the following Cauchy

problem utt −∆u+ Lθut = |u|p, t ≥ 0, x ∈ Rn.

(u, ut)(0, x) = (0, u1)(x), x ∈ Rn,
(1)

with θ ∈ [0, 1
2
) and p > 1, where the operator Lθ := D(Lθ) ⊂ L2(Rn) → L2(Rn) is defined as

(Lθf)(x) := F−1
(
log(1 + |ξ|2θ)f̂(ξ)

)
(x).

To obtain the existence results, we utilize estimates to the decay of solutions to the linear associated problem. In

this sense, we improve some previous results obtained in [1], expanding the range for which there are solutions to

the linear problem from θ ∈ [0, 5
12
) to θ ∈ [0, 1

2
). The existence results in the supercritical case for the semilinear

problem are obtained by applying a contraction principle.

1 Introduction

The main results of existence of global solutions for the supercritical case for problem (1) are obtained by appying

Duhamel’s Principle and Picard’s Contraction Theorem. To achieve this, we must obtain sharp decay estimates for

the linear associated problem to (1), that is,




utt −∆u+ Lθut = 0,

u(0, x) = 0, ut(0, x) = u1(x).
(1)

The solution to the linear problem can be written as a convolution in the spatial variable, u(t, x) =

K1(t, x) ∗ u1(x), where K1 is the second fundamental solution to (1). Then, applying Duhamel’s Principle, a

function u ∈ C
(
0, T ), Hk(Rn)

)
, k ≥ 0 is the unique global (weak) solution for (1) if, and only if, it satisfies

u(t, ·) = u(t, ·) +
∫ t

0

K1(t− s, x) ∗ |u(s, x)|p ds in Hk(Rn). (2)

The integral operator in the right-hand side of equation (2) is called G and defined for a certain adequate Banach

space X(T ). Then to apply Picard’s Contraction Principle, we must show that G maps balls into balls in X(T ) and

that it is a contraction in X(T ). It becomes clear then that we need to estimate norms such as |||D|k|u|p ∗K1||L2 ,

and in order to do this we use the same decomposition as in [1],

f̂ K̂1 = φf +

6∑

j=1

Fj . (3)

121



122

2 Main Results

The main results are the improved estimates for the linear problem and the existence results for the semilinear

problem, which includes the determination of the critical exponent.

Proposition 2.1. Let k ∈ N. Assume that n = 1 and θ ∈ [0, 14 ], or that n ≥ 2 and θ ∈ [0, 12 ), n ∈ N. If
f ∈ L1(Rn) ∩ L1,2θ(Rn), then

∥∂kxf(t, ·) ∗K1(t, ·)∥2L2 ≲ ∥f∥2L1∩L1,2θ

(
(1 + t)−

n+2k−4θ
2θ +

1

θ
(1 + t)−

n+2k−4θ
2(1−θ)

)
, t≫ 1.

Proof Let m ∈ N such that θ ∈
[
0, 2m−1

4m

)
, and consider the ball Bη := {ξ ∈ Rn : |ξ| ≤ ηm} , where η is a small

fixed value such that the characteristic roots of the problem (1) are real for |ξ| < η. Using the decomposition given

in (3), we estimate each of the norms of |ξ|k|Fj |, j = 1, ...6, in L2 and the L2−norm of the asymptotic profile

φf . Then, by taking the worst obtained decay rate, we get the result in the low-frequency zone |ξ| < ηm. For the

mid-frequency |ξ| ∈ (ηm, δ) and high-frequency zone |ξ| > δ, we can easily show that the decay rate is exponential.

Combining the results in all three region, we obtain the desired result.

Theorem 2.1. Assume that n = 1 and θ ∈ [0, 14 ], or that n = 2 and θ ∈ [0, 12 ), n ∈ N. Also, let p > pc, with

pc := pc(n, θ) = 1 +
2

n− 2θ
.

Then, there exists ε > 0 such that, for initial data (0, u1) satisfying u1 ∈ A := L1(Rn)∩L1,2θ(Rn), with ∥u1∥A ≤ ε,

there exists a global solution to problem (1), u ∈ C
(
[0,∞),H1(Rn)

)
.

Proof We set, for T > 0, the evolution space X(T ) := C
(
[0, T ], H1(Rn

)
equipped with the norm

∥v∥X(T ) := sup
t∈[0,T ]

(
θ(1 + t)

n−4θ
4(1−θ) ∥v∥L2 + θ(1 + t)

n+2−4θ
4(1−θ) ∥∂xv∥L2

)
.

Then, we apply Proposition (2.1) along with the Gagliardo-Nirenberg inequality

∥u∥Lp ≲ ∥u∥1−α(p)L2 ∥∂xu∥α(p)L2 , α(p) := n

(
1

2
− 1

p

)

to estimate the norm of Gu in X(T ) :

∥Gu∥L2 ≲
1

θ3

∫ t

0

(1 + t− s)−
n−4θ
4(1−θ) (1 + s)−

n(p−1)−2θp
2(1−θ) ds ∥u∥pX(T ) ≲

1

θ
(1 + t)−

n−4θ
4(1−θ) ∥u∥pX(T ), (1)

∥∂xGu∥L2 ≲
1

θ3

∫ t

0

(1 + t− s)−
n+2−4θ
4(1−θ) (1 + s)−

n(p−1)−2θp
2(1−θ) ds ∥u∥pX(T ) ≲

1

θ
(1 + t)−

n+2−4θ
4(1−θ) ∥u∥pX(T ). (2)

The two above estimates imply that G : X(T ) 7→ X(T ). A similar computation shows that it is a contraction.

Calculations (1) and (2) hold if the exponent n(p−1)−2θp
2(1−θ) is greater than 1, which is equivalent to

p > 1 +
2

n− 2θ
.

This concludes our proof.
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Abstract

This work considers a suspension bridge of length l where Timoshenko’s theory models the deck. Using the

semigroup Theory we analyze the existence and uniqueness of the solution and the asymptotic behavior of these

solutions, more precisely, for the existence and uniqueness of the solution we use the Lumer-Phillips Theorem,

and for the asymptotic behavior we use Gearhart-Herbst-Prüss-Huang Theorem and the result due to Borichev

and Tomilov, to show exponential stability and polynomial stability with optimal stability rate, respectively.

1 Introduction

In 1943, Timoshenko published a work about suspension bridges, namely The Theory of Suspension Bridges, see

[7, 8]. After that, in 1984, Hayashikawa and Watanabe used Hamilton’s principle and Timoshenko’s beam theory

to study the Inoshima suspension Bridge (that connects Honshu and Shikoku in Japan) see [2].

We introduce a model of a suspension bridge, see Figure (1), given as a mechanical structure that carries vertical

loads through the main cables modeled by an elastic string u = u(x, t), which is coupled to the deck employing

suspension cables, where x denotes the distance along the center line of the deck in its equilibrium configuration

and t the time variable.

0 l

Main Cable
Suspension Cables

Pillar Pillar
Deck

Figure 1. Suspension Bridge.

Considering that the deck has negligible transversal section dimensions compared to the length (span of the

bridge), it is modeled in Timoshenko’s theory [6]. Denoting by φ = φ(x, t) the displacement of the cross-section on

the point x ∈ (0, l), by ψ = ψ(x, t) the rotation angle of the cross-section, we have the following coupled system

utt − αuxx − λ(φ− u) + γ1ut = 0, in (0, l)× R+, (1)

ρ1φtt − κ(φx + ψ)x + λ(φ− u) + γ2φt = 0, in (0, l)× R+, (2)

ρ2ψtt − bψxx + κ(φx + ψ) + γ3ψt = 0, in (0, l)× R+, (3)

subject to boundary conditions

u(0, t) = u(l, t) = φ(0, t) = φ(l, t) = ψx(0, t) = ψx(l, t) = 0, t ≥ 0. (4)
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and initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), φ(x, 0) = φ0(x), x ∈ (0, l), (5)

φt(x, 0) = φ1(x), ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ (0, l). (6)

The suspender cables are assumed to be linear elastic springs with standard stiffness λ > 0. The constant

α > 0 is the elastic modulus of the string (holding the main cable to the deck). The positive coefficients ρ1 and

ρ2 are the mass density and the moment of mass inertia of the beam, respectively. Moreover, b represents the

cross section’s rigidity coefficient, and κ represents the elasticity’s shear modulus. Finally, γi (i = 1, 2, 3), are

non-negative parameters related to friction damping.

A suspension bridge with internal damping, where γ1, γ2, γ3 > 0, was considered in [5]. Raposo et al. obtained

that the solution not only decays exponentially but is also analytical.

2 Main Results

Our main results are the following theorems:

Theorem 2.1. Suppose γ1 = 0. Then the semigroup S(t) associated with the system (1)–(6) is not exponentially

stable independently of γ1 and γ2.

Theorem 2.2. Suppose γ1 > 0 and γ2γ3 = 0 with one of them positive. Then if

χ0 :=
κ

ρ1
− b

ρ2
= 0,

the semigroup S(t) associated with the system (1)–(6) is exponentially stable. Otherwise, if χ0 = 0, it decays

polynomially with optimal rate.
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Abstract

This work is concerned with the obtainment of new Carleman estimates for linear parabolic equations, where

the second-order differential operator brings a super strong degeneracy in a positive measure subset of the spatial

domain. In order to prove our main result, the control domain is supposed to contain the set of degeneracies.

As a well-known consequence, we achieve a null controllability result in the current context.

1 Introduction

In this paper, we study the null controllability of the following degenerate parabolic of

ut − (a(x)ux)x + c(x, t)u = f1ω in Q := (0, 1)× (0, T ), (1)

with initial and boundary conditions

u(x, 0) = u0(x), in (0, 1),

u(0, t) = u(1, t) = 0 in (0, T ),
(2)

where a ∈ W 2,∞(0, 1), c ∈ L∞(Q), the control f belongs to L2(Q), u0 ∈ L2(0, 1), the control domain ω ⊂ (0, 1) is

a non-empty open interval and 1ω denotes its associated characteristic function.

We say that the problem described by (1) and (2) is null controllable at time T > 0 if, for any u0 ∈ L2(0, 1),

there exists a control function f ∈ L2(Q) such that the corresponding solution u satisfies

u(x, T ) = 0 a. e. in (0, 1). (3)

The null controllability of degenerate parabolic equations, such as (1) and (2), when the function a = a(x) is

weakly or strongly degenerate at x = 0, has been initially investigated in [2]. It is worth saying that, in that case,

a(x) = xα, with α ∈ (0, 1) for the weak case and α ∈ [1, 2) for the strong one. However, the mentioned work also

establishes that the super strongly degenerate problem (α ≥ 2) is not null controllable, in general.

Later, in [6], similar results were achieved when the degeneracy occurs in an interior point x0 ∈ (0, 1). In this

situation, it is supposed a ∈ C1([0, 1] − {x0}) satisfying a(x0) = 0 and a > 0 in [0, 1] − {x0}. Additionally, it is

assumed

(a) ∃K ∈ (0, 1) such that (x− x0)a
′(x) ≤ Ka(x) ∀x ∈ [0, 1]− {x0} (for the weakly degenerate case);

(b) a ∈W 1,∞(0, 1) and ∃K ∈ [1, 2) such that (x−x0)a′(x) ≤ Ka(x) ∀x ∈ [0, 1]−{x0} (for the strongly degenerate

case).
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The function a(x) = |x − x0|α, with α ∈ (0, 2), is a typical prototype for the investigation developed in [6], where

the main results were achieved by assuming

x0 ∈ ω. (4)

More recently, in [3], the results of [6] have been extended, by considering second-order operators that degenerate

in an interval

[A,B] ⊂ ω. (5)

Of course, geometrical assumptions like (4) and (5) were not considered in [2], where it is explained the impossibility

of having the null controllability property for the super strongly degenerate case (α ≥ 2), in general.

Encouraged by [1], this current work is a natural continuation of [3] and [6], for the super strongly degenerate

problem, taking into consideration the hypotheses (5) and

1

a
/∈ L1([0, A) ∪ (B, 1]), a ∈W 2,∞(0, 1) and aaxx ∈W 1,∞(0, 1). (6)

We should say that the technical conditions given in (6) also appear in [4] and [5]. Roughly speaking, we have in

mind a general function a : [0, 1] −→ R, which behaves like

a(x) = (A− x)α1[0,A)(x) + (x−B)β1(B,1](x),

for each x ∈ [0, 1], where α, β ≥ 2, and 1[0,A) and 1(B,1] denote characteristic functions.

2 Main Results

At this point, we are ready to present our main result:

Theorem 2.1. Under the aforementioned hyphotheses on a = a(x) and ω, solutions of the adjoint system associated

with (1)-(2), in the super strongly degenerate escope, satisfy a Carleman type inequality. As a consequence, the

system (1)-(2) is null controllable at any time T > 0, in the sense of (3).
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Abstract

In this work, we consider the nonlocal diffusion equation that involves three differents smooth kernels on

bounded smooth domain Ω of RN with Ω = A∪B where A and B are both nonempty sets. We assume a fashion

rescaling equation and prove that, in the L1−norm, the solutions ϵ-sequence of rescaling equation converges to

the solution of Kirchhoff equation, under compactibility condiction on the intersection of A and B. We deal

with Dirichlet boundary condiction.

1 Introduction

Our main goal is to deal with the nonlocal diffusion equation that involve three differents smooth kernels on bounded

smooth domain Ω of RN with Ω = A ∪ B where A and B are both nonempty sets, the parabolic version of [2].

The dinamical interpretation of the following equation is that the involves smooth kernerls works as: one controls

the jump from A to A, the second one controls the jumps from B to B and the third one governs the interactions

between A and B. We deal with Dirichlet boundary condictions, which is given by the following formulation if

x ∈ Ω and t > 0

ut(x, t) = χA(x)

∫

A

J(x− y)(u(y, t)− u(x, t)) dy + χB(x)

∫

A

G(x− y)(u(y, t)− u(x, t)) dy

+χA(x)

∫

B

G(x− y)(u(y, t)− u(x, t)) dy + χB(x)

∫

B

K(x− y)(u(y, t)− u(x, t)) dy,

(1)

with initial and boundary conditions

u(x, 0) = u0(x), x ∈ Ω.

u(x, t) = 0, x /∈ Ω
(2)

Above, χ. denote the characteristic functions of . = A or . = B. Note that the equation can also be written

as a system on x ∈ A or x ∈ B. By the Banach Fixed Point, we guarantee that (1) has unicity of solution

in C([0, T ];L1(Ω)) and has comparison propriety of the solutions also valid, since the hypotesis on the kernels

Ṽ = J,K,G and the domain Ω is given by

1. On the domain: Let Ω a bounded smooth domain, which is split by two nonempty subsets A and B.

2. On the kernels of type Ṽ : RN → R is a nonnegative continuous radial function with Ṽ (0) > 0 and unitary

integral in RN .

2 Main Results

The main result is to show that the following Kirchhoff parabolic equation can be effectively approximated by our

fashion nonlocal problems structured (1), with adjusted kernels and a bounded domain Ω := A ∪B ⊂ R, assuming
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the particular case A = (−1, 0] and B = [0, 1).





vt(x, t) = aJvxx(x, t) x ∈ int(A), t > 0

vt(x, t) = aKvxx(x, t) x ∈ int(B), t > 0

v(x, t) = 0, x ∈ ∂(A ∪B), t > 0

v(x, 0) = u0(x), x ∈ Ω.

(3)

This involves showing that as certain parameters, such as the rescaled kernels, are modified, the solutions to

these nonlocal problems converge in L1(Ω)-norm towards the solution of the Dirichlet Problem for the couple heat

equation, with appropriated constant of diffusion, employing techniques cited by [1]. Assuming that the support of

the function is (−1, 1), the rescaling of the kernels is given by V = J,K : R → R and G : R → R

Vϵ(ξ) =
1

ϵ
V

(
ξ

ϵ

)
, Gϵ(ξ) = G

(
ξ

ϵ2

)
.

The diffusion coefficients defined by

aV =
1

2

∫

R
V (z)z2dz.

We will delve into a specific particular domain, accompanied by an integral condition, the compatibility condiction

on x = 0: ∫ ∞

0

K(z)zdz
ux(0

−)

ϵ
=

∫ ∞

0

J(z)zdz
ux(0

+)

ϵ

Since we are dealing with Dirichlet condiction, we have the rescaled problem, for each ϵ > 0:





(uϵ)t(x, t) = χA(x)
ϵ2

∫ 0

−∞ Jϵ(x− y)(uϵ(y, t)− uϵ(x, t))dy + χB(x)
ϵ2

∫ 0

−∞Gϵ(x− y)(uϵ(y, t)− uϵ(x, t)) dy+

χA(x)
ϵ2

∫∞
0
Gϵ(x− y)(uϵ(y, t)− uϵ(x, t))dy + χB(x)

ϵ2

∫∞
0
Kϵ(x− y)(uϵ(y, t)− uϵ(x, t)) dy, x ∈ Ω, t > 0

uϵ(x, 0) = u0(x), x ∈ Ω.

(4)

Our aim is to show that the solution of the equation above converges to the following heat equation in the L1(Ω)

norm, if the solution of following equation v is of class C2+α,1+α
2 in int(A) and int(B), for 0 < α < 1. We will

prove the following Theorem, considering L1(Ω)-norm:

Theorem 2.1 (Convergence of the Rescaling Kernel). Let A = (−1, 0] and B = [0, 1), 0 < α < 1 and

v ∈ C2+α,1+α
2 ((int(A) ∪ int(B))× [0, T ]) the solution of (3). Let uϵ be the solution of the rescaled problem (4) for

each ϵ > 0. Then

sup
t∈[0,T ]

∥uϵ(., t)− v(., t)∥L1(Ω) → 0, ϵ→ 0.
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Abstract

In this work, we study several issues related to the fractional diffusion-wave problem, with critical nonlinearity

in the interpolation and extrapolation scales applied in Lebesgue space. We prove the local existence of ε-regular

mild solutions to the problem in time, uniqueness and continuous dependence on the initial data, as well as their

possible continuation for a maximum interval of existence and an alternative explosion of solutions that satisfy

a specific condition of controlled behavior at t = 0.

1 Introduction

It is well known that the operator −∆x with Dirichlet boundary conditions can be seen as a sectorial operator

in E0
q := Lq(Ω) with domain E1

q := W 2,q(Ω) ∩W 1,q
0 (Ω) (see, [3]). Therefore, we can associate this operator with

fractional power spaces {Xγ
q }γ∈R (see, [1]). Let Aq := ∆x be the Laplacian operator defined in fractional power

scales, considering the rescaling Xγ
q := Eγ−1

q , γ ∈ R, where Aq : X1 ⊂ X0
q → X0

q is the E−1 realization of the

Laplacian operator.

The formulation of the diffusion-waves equations is given by





∂αt u = Aqu+ |u|ρ−1u, in [0,∞)× Ω,

u = 0, on [0,∞)× ∂Ω,

u(0, x) = u0(x), u
′(0, x) = u1(x), in Ω,

(1)

where ρ = 1+ 2q
N is the Sobolev critical exponent, and Ω is an open subset of RN with sufficiently smooth boundary

∂Ω, ∂αt is the Caputo fractional derivative of order α ∈ (1, 2), the initial conditions u(0) = u0, u
′(0) = u1 ∈ Lq(Ω).

The technique to solve the problem comes from using Sobolev-type embeddings involving potential Bessel spaces

Hs
p(Ω). (see, [2]). {

Eγq ↪→ H2γ
q (Ω), γ ≥ 0, 1 < q <∞,

E−γ
q = (Eγq′)

′, γ ≥ 0, 1 < q <∞, q′ = q
q−1 .

In the work carried out in Naldisson’s Thesis (see, [4]), the author provides the solution to this problem (1) for the

subcritical case. The result presented here is the critical version for this problem.
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2 Main Results

Theorem 2.1. Let α ∈ (1,
2ϕq
π ), 1 < q, ρ < ∞, such that, q = N(ρ−1)

2 , taking an arbitrary v0 ∈ Lq(Ω), there

are positive values small enough r, τ0 such that for any initial data u0, u1 ∈ Br(v0) ⊂ Lq(Ω), where q > N
N−2 ,

0 < ε < N
N+2q and γ(ε) = ρε, there exists a unique ε-regular local mild solution for the problem (1). Furthermore,

it follows that, for θ ∈ (0, ρε) we have

lim
t→0+

tαθ∥u(t, u0, u1)∥X1+θ = 0.

Moreover, if u0, u1, w0, w1 ∈ Br(v0) ⊂ Lq(Ω), the there exists a constant C > 0 such that

tαθ∥u(t, u0, u1)− u(t, w0, w1)∥X1+θ ≤ C(∥u0 − w0∥Lq(Ω) + ∥u1 − w1∥Lq(Ω)),

for all 0 ≤ θ < ρε and ∀t ∈ [0, τ0]. The ε-regular mild solution u(t, u0, u1) can be continued on an interval [0, τmax),

where τmax ∈ (τ0,∞]. If τmax <∞, then

lim sup
t→τ−

max

∥u(t, u0, u1)∥X1+ε = ∞.

Moreover, if ū is a ε-regular mild solution on some interval [0, τ1] for the problem (1) satisfying

lim
t→0+

tαε∥ū(t)∥X1+ε = 0,

then τ1 < τmax and ū(t) = u(t, u0, u1) for all t ∈ [0, τ1].
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Abstract

This paper is concerned with the exponential decay, with an arbitrary decay rate ω > 0, of the longitudinal

vibrations of a bar. The result is obtained following the ideas of Komornik[1]

1 Introduction

We consider the system ∣∣∣∣∣∣∣∣

y′′(x, t)− yxx(x, t) = 0, 0 < x < L, t > 0,

y(0, t) = 0, y′′(L, t) + yx(L, t) = u(t), t > 0,

y(x, 0) = y0(x), y′(x, 0) = y1(x), 0 < x < L,

(1)

where u(t) is a control that acts on the system at the end x = L of the interval (0, L). The mathematical deduction

of (1) with u = 0 can be found in M.Milla Miranda et al.[2]

The usual inner product and norm of the space L2(0, L) are denoted by (u, v) and |u|. Let V be the complex

Hilbert space

V = {u ∈ H1(0, L);u(0) = 0}

equipped with the inner product

((u, v)) =

∫ L

0

Du(x)Dv(x)dx (Du(x) =
du(x)

dx
)

and norm ∥u∥ = ((u, u))
1
2 .

Introduce the Hilbert space L2
∗(0, L) = L2(0, L)×C with the usual product of spaces. It is constructed a closed

subspace Z of H2(0, L) where it is possible to define D2u(L) satisfying D2u(L) = −Du(L). With identifications of

Hilbert spaces it is obtained

Z ↪→ V ↪→ L2
∗(0, L) ↪→ V ′ ↪→ Z ′

Consider the Hilbert spaces H = V ′ × L2
∗(0, L),H

′ = V × L2
∗(0, L) and the operators

A : D(A) ⊂ H −→ H,Az = A[σ, y] = [−D2y,−σ]
A∗ : D(A∗) ⊂ H ′ −→ H ′, A∗φ = A∗[η, γ] = [−γ,−D2η]

where
D(A) = {[σ, y];σ ∈ V, y ∈ Z}
D(A∗) = {[η, γ]; η ∈ Z, γ ∈ V }

Consider the adjoint problem of (1):

φ′ = −A∗φ,φ(0) = φ0, φ0 = [η0, γ0]. (2)
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Introduce the control spaces

G = {[D2η(L), γ(L)] ∈ C2; [η, γ] ∈ D(A∗)}

and G′ = G. Set the operators

B∗ : D(A∗) −→ G′, B∗[η, γ] = [D2η(L), γ(L)]

and B = B∗∗.

We prove that the four hypotheses required in order to apply the result of Komornik [1] are satisfied. In particular

A∗ generates a continuous group on H ′. Therefore the solution φ of (2) is given by φ(t) = e−tA
∗
φ0, φ0 ∈ D(A∗)

Give a real number ω > 0. Consider Tω = T + (2ω)−1 where T > T0, T0 = 4(L− x0), x0 ≤ 0, and consider also

the real function eω(t) given in Komornik [1]. Define the operator Λω : H ′ −→ H given by

< Λωφ
0, ψ0 >H,H′=

∫ Tω

0

eω(t) < JB∗e−tA
∗
φ0, B∗e−tA

∗
ψ0 >G,G′ dt, φ0, ψ0 ∈ H ′

where J : G′ −→ G denotes the canonical Riesz isomorphism. It is proved that Λω in an isomorphism of H ′ onto

H. Therefore

||z||W =< Λ−1
ω z, z >

1/2
H′,H , z ∈ H

defines an equivalent norm in H.

2 Main Result

By applying Theorem 3.1 of Komornik [1], we obtain the following result:

Theorem 2.1. Consider T > T0, T0 = 4(L − x0), x0 ≤ 0 and arbitrary real number ω > 0. Set Tω = T + (2ω)−1

and F = −JB∗Λ−1
ω . Then the operator Ã+BF is the generator of a continuous group in H and the solution z of

the closed-loop problem

z′ = Ãz +BFz, z(0) = z0, z0 ∈ H

satisfies the estimate

||z(t)||W ≤ ||z0||W e−ωt, ∀z0 ∈ H, ∀t ≥ 0

Remark 2.1. The operator Ã is the extension of the operator A and its domain is given by ΛωD(A∗)

As ||.||W and ||.||H are equivalent in H, the above inequality provides

||z(t)||H ≤ C||z0||He−ωt, ∀z0 ∈ H, ∀t ≥ 0.

where C > 0 is a constant independent of z0.
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Abstract

The Lamé system represents a classical model in many fields such as isotropic elasticity and seismology. The

single-parameter stability of global and pullback attractors of deterministic Lamé systems on bounded domains

was recently considered in the literature. In this paper, we study the bi-parameter stability of random attractors

of stochastic non-autonomous Lamé systems on unbounded domains. The existence, uniqueness and periodicity

of pullback random attractors Aε = {Aε(τ, ω) : τ ∈ R, ω ∈ Ω} are established in the natural energy space

H := (H1(RN ))N × (L2(RN ))N for any dimension N ∈ N. The upper semi-continuity of Aε(τ, ω) in almost sure

paths, probability and expectation is established as the time parameter τ tends to ±∞ and the noise intensity

ε approaches zero simultaneously, and the limiting set is determined by the global attractor of the deterministic

autonomous Lamé system.

1 Introduction

We study random attractors of Lamé systems on the unbounded domain RN subject to time-dependent external

forces as well as stochastic noise perturbations:




utt − µ∆u− (µ+ λ)∇divu+ αut + βu+ f(x, u) = g(t, x) + εu ◦ dW

dt
, t > τ,

u(τ, x) = u0(x), ut(τ, x) = u1(x), x ∈ RN ,
(1)

whereN ∈ N, τ ∈ R, α and β are positive constants, µ and λ are the Lamé’s constants satisfying µ+λ > 0 with µ > 0,

u = (u1, . . . , uN ) represents the displacement, g represents some time-dependent external force,W is an independent

two-sided real-valued Wiener process on a probability space (Ω,F ,P). The stochastic term in (1) is understood in

the sense of Stratonovich’s integration, and the function f has the vector form f(x, u) = (f1(x, u1), . . . , fN (x, uN ))

satisfying

|fi(x, ui)| ≤ c1|ui|γ + ϕ1i(x), i = 1, . . . , N, (2a)

f(x, u) · u− c2F (x, u) ≥ ϕ2(x), ∀u ∈ RN , (2b)

F (x, u) ≥ c3|u|γ+1 − ϕ3(x), ∀u ∈ RN , (2c)

|f ′i(x, ui)| ≤ c4|ui|γ−1 + ϕ4i(x), i = 1, . . . , N, (2d)

where f ′i(x, s) := ∂sfi(x, s), F (x, u) :=
∑N
i=1

∫ ui
0
fi(x, y)dy, ϕ1 = (ϕ11, . . . , ϕ1N ) ∈ (L2(RN ))N , ϕ2 ∈ L1(RN ),

ϕ3 ∈ L1(RN ), ϕ4 = (ϕ41, . . . , ϕ4N ) ∈ (L2N (RN ))N , and the growth rate γ ≥ 1 satisfying a subcritical growing

condition: γ ∈ [1,∞) if N = 1, 2 and γ ∈ [1, N
N−2 ) if N ≥ 3.
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2 Main Results

Next, we present the main results of this paper. To this end, we set some numbers:

σ1 := min {δ1, δ, δc2} , σ2 := min

{
2(2δ + 1),

2(2δ + 1)

δ2
,
c1
c2
, 4

}
, ε0 := min

{
1,

σ1

2(γ + 1)2( 2√
πδ

+ 1
δ )σ2

}
,

where δ > 0 is a constant such that δ1 := α− δ > 0 and δ2 := β + δ2 − αδ > 0.

Theorem 2.1. (Main results I) Suppose that assumptions (2a)-(2d) and the following condition
∫ τ

−∞
e

1
2(γ+1)2

σ1r∥g(r)∥22dr <∞, ∀τ ∈ R, (1)

hold. Then, for all ε ∈ (0, ε0], the cocycle Φε associated with the non-autonomous stochastic Lamé system (1) has

a unique D-pullback random attractor Aε = {Aε(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D in H := (H1(RN ))N × (L2(RN ))N , in

the sense of Caraballo et al. [1] and Wang [2, 3], such that

Aε(τ, ω) =
⋂

t0≥0

⋃

t≥t0

Φε(t, τ − t, θ−tω,Kε(τ − t, θ−tω)), ∀τ ∈ R, ω ∈ Ω, (2)

where D is a collection of some nonempty random subsets of H with a tempered growing rate no more than the

growing rate of the exponential function e
1

(γ+1)2
σ1t as t → +∞. If, in addition, the time-dependent force g is T -

periodic with period T > 0, then the attractor Aε is also T -periodic with period T , i.e., Aε(τ + T, ω) = Aε(τ, ω) for

all τ ∈ R and ω ∈ Ω.

Theorem 2.2. (Main results II) Suppose that assumptions (2a)-(2d) and (1) hold. If the time-dependent external

force g ∈ L2
loc(R; (L2(RN ))N ) converges to a time-independent function g∞ in the sense that

lim
τ→+∞

∫ ∞

τ

∥g(r)− g∞∥22dr = 0, (3)

then, the section Aε(τ, ω) is upper semicontinuous to the global attractor A∞ of the autonomous deterministic Lamé

system (i.e., (1) with ε = 0 and g(t) ≡ g∞) as τ → −∞ and ε→ 0 simultaneously:

(i) Convergence in almost paths:

lim
τ→+∞

lim
ε→0

distH(Aε(τ, ω),A∞) = 0, P-a.s.. (4)

(ii) Convergence in probability:

lim
τ→+∞

lim
ε→0

P{ω ∈ Ω : distH(Aε(τ, ω),A∞) ≥ ϖ} = 0, ∀ ϖ > 0. (5)

(iii) Convergence in expectation:

lim
τ→+∞

lim
ε→0

∫

Ω

distH(Aε(τ, ω),A∞)dP(ω) = 0. (6)
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Abstract

This work investigates the fine structure of entropy solutions to scalar conservation laws, building upon the

works of De Lellis, Otto, Westdickenberg, and Silvestre. We consider both autonomous and non-autonomous

conservation laws and explore the conditions under which the solutions exhibit BV-like properties. In particular,

we examine the influence of the flux function’s regularity and non-degeneracy conditions on the solutions’

structure. Our study is motivated by the phenomenon observed by Oleinik in one-dimensional cases and seeks

to extend these findings to higher dimensions and non-autonomous flux functions. We address the minimum

regularity required for the flux function with respect to the non-autonomous variable to ensure a structure similar

to that found in bounded variation functions, as well as the potential to achieve similar structural results for

continuous, weakly non-degenerate flux functions in the autonomous case. .

The starting point for our study is the articles by De Lellis, Otto, Westdickenberg [1], and Silvestre [3]. In these

articles, they consider the following autonomous scalar conservation law

divxf(u(x)) = 0 in Ω, (1)

where Ω ⊂ Rn+1 is an open set. When Ω = (0,+∞)×Rn and the strong trace uτ of an entropy solution u ∈ L∞(Ω)

of (1) has locally bounded variation, then the same occurs with u due to the L1 contraction property. Hence, the

entropy solution u inherits the fine structure of functions of bounded variation. In particular, there exists a set

J ⊂ Ω with the following properties:

� J is Hn-rectifiable.

� Every point in Ω \ J is a Lebesgue point of u.

� u has, essentially, traces to the right and to the left of J .

However, when uτ is only L∞, the structure described above is generally lost, as can be seen when the flux function

f is linear. Therefore, one may inquire how to transfer the above structure to u when uτ is only in L∞? The first

step in answering this question was taken by Oleinik in [4], who proved the following: When n = 1 and f is strictly

convex, every entropy solution u of (1) satisfies, in the sense of distributions,

ux ≤ 1

(min f ′′)t
in (0,∞)× R.

This inequality gives the solution u a structure of bounded variation even if uτ is only in L∞. Unfortunately, this

type of phenomenon observed by Oleinik is exclusively one-dimensional, as noted by David Hoff in [2]. However,

several previous works indicated that the non-linearity of the flux function could induce some type of regularity on

entropy solutions. Thus, assuming that the flux satisfies the following non-degeneration condition, that is, for each

ξ ∈ Sn,

L1 ({u ∈ R; ξ · f ′(u) = 0}) = 0,
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the authors in [1] proved that entropy solutions in L∞ possess a fine structure very close to that presented by

functions of bounded variation. More precisely, they proved the following: There exists a set J ⊂ Ω with the

following properties:

� J is Hn-rectifiable.

� Any y ∈ Ω/J satisfies

lim
r→0

1

rn+1

∫

Br(y)

|u(x)− ūy,r| dx = 0,

where ūy,r is the average of u over the ball Br(y).

� u has, essentially, traces to the right and to the left of J .

Here, in this part of the project, our study interest is the following non-autonomous scalar conservation law

divxf(x, u(x)) = 0 in Ω.

In the above context, the problems we will address are the following:

1) What minimum regularity with respect to the non-autonomous variable x must the flux function f possess

so that an entropy solution in L∞ has a structure similar to that obtained in [1]?

2) Even for the autonomous case (1), would it be possible to obtain the same structure for an entropy solution

in L∞ if the flux function is only continuous and weakly non-degenerate in the sense that, for any ξ ∈ Sn,

the function λ 7→ f(λ) · ξ is not constant in any non-degenerate interval?
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Abstract

In this paper a rigorous study concerning estimates for the sup norm of weak bounded solutions for one-

dimensional advection-diffusion equations ut + divf(x, t, u) = µ(t)div(|∇u|p−2∇u) , with 0 ≤ k < 2p − 3 and

initial data u0 ∈ L1(R) ∩ L∞(R) is provided using a technique based on energy methods.

1 Introduction

In this work, we obtain an estimate for the initial value problem for evolution p-Laplacian equations of the type

ut(x, t) + divf(x, t, u) = µ(t)div(|∇u|p−2∇u), (1)

u(x, 0) = u0 ∈ L∞(R) ∩ L1(R).

Here, p > 2 is constant, µ ∈ C0([0,∞)) is everywhere positive, and f = (f1, f2, ..., fn) a given continuous field

satisfying the growth condition

|f(x, t, u)| ≤ F (t)|u|k+1 ∀x ∈ R, t ≥ 0 and u ∈ R,

for some F ∈ C0([0,∞)) and some constant k ≥ 0.

By a (bounded) solution of (1) in some time interval [0, T∗), we mean any function u(·, t) ∈ C0([0, T∗), L
1
loc(R)∩

Lploc((0, T∗),W
1,p
loc (R)) satisfying the equation (1) in D′(R × (0, T∗)), with u(·, 0) = u0 and u(., t) ∈

L∞
loc([0, T∗), L

1(R) ∩ L∞(R)), that is, for every 0 < T < T∗ given, we have

∥u(·, t)∥L1(R) ≤M1(T ), ∥u(·, t)∥L∞(R) ≤M∞(T ), ∀0 ≤ t ≤ T

for some bounds M1(T ), M∞(T ) depending on T (and the solution u considered). For the local (in time) existence

of such solutions, see e.g. [3, 4]. In a recent work [2] the global existence was discovered when 0 ≤ k < p− 2+ p−1
n ,

where n is the dimension of the spatial variable. In addition, the following estimate was obtained

∥u(·, t)∥L∞(Rn) ≤ U∞(0, t) ≤M(n, k, p, q)max{∥u0∥L∞(Rn);Fµ(0, t)
n
p−1

1
q−σUq(0, t)

q
q−σ , } (2)

for 1 ≤ q ≤ ∞, 0 < t < T∗, some constant M(n, k, p, q) depending only on n, k, p, q, and where

σ,Fµ(0, t),Uq(0, t),U∞(0, t) are defined below

σ =
n(k − p+ 2)

p− 1
, Fµ(0, t) = sup

0<τ<t

F (τ)

µ(τ)
, Uq(0, t) = sup

0<τ<t
∥u(·, τ)∥Lq(Rn). (3)
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The objective of this work is to understand the behavior of the function when t → ∞, analyze under what

conditions we guarantee that the solution remains bounded when t→ ∞. This way, using properties obtained from

[2] combined with an inequality valid only in one dimension

∥u∥L∞(R) ≤ C∞∥u∥1/3L1(R)∥ux∥
2/3
L2(R),

where C∞ = (3/4)2/3 (to see [1]), it is possible to find an estimate for lim sup
t→∞

∥u(·, t)∥L∞(R).

2 Main Results

In one dimension, the estimate (2) can be improved to derive an estimate for the limit lim sup
t→∞

∥u(·, t)∥L∞(R). From

this point on, it will be convenient to introduce Fµ, Uq given by

Fµ = lim sup
t→∞

F (t)

µ(t)
and Uq = lim sup

t→∞
∥u(·, t)∥Lq(R).

Theorem 2.1. Let u(·, t) be a solution of the problem (1), q ≥ 1, 0 ≤ k < q(p− 1) + p− 2, and Fµ, Uq defined as

above, then

lim sup
t→∞

∥u(·, t)∥L∞(Rn) ≤M(C∞, k, p, q)F
1
p−1

1
q−σ

µ U
q

q−σ
q , (1)

where σ is defined in (3).

In particular, in the important case q = 1 considered above, from decay of the L1 norm (to see [2]), the estimate

(1) stays

lim sup
t→∞

∥u(·, t)∥L∞(Rn) ≤M(C∞, k, p)F
1
p−1

1
1−σ

µ ∥u0∥
1

1−σ
L1(R).

In this case, u(·, t) has a uniform limitation for all time t > 0.
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Abstract

This manuscript deals with the well-posedness and polynomial stability of a suspension bridge system with a

deck modeled by Timoshenko-Ehrenfest beam theory and under action to internal dissipations of the fractional

derivative type. The existence and uniqueness of the solution are obtained by applying the Lumer-Phillips

Theorem and proving the polynomial stability using the Borichev-Tomilov theorem.

1 Introduction

A suspension bridge is a mechanical structure that carries vertical loads through the main cables modeled by an

elastic string u = u(x, t), coupled to the deck employing suspension cables.

0 L

Main Cable
Suspension Cables

Pillar Pillar
Deck

The system for a suspension bridge, where Timoshenko’s theory models the deck, is given by

utt − auxx − τ(ϕ− u) = 0,

ρ1ϕtt − k(ϕx + ψ)x + τ(ϕ− u) = 0,

ρ2ψtt − bψxx + k(ϕx + ψ) = 0.

Many researchers use Thimoshenko’s theory to understand how these structures behave. Arioli and Gazzola [1],

in 2015, suggested a new model for the dynamics of a suspension bridge through a system of nonlinear, nonlocal

hyperbolic differential equations where the equations are of second and fourth order and describe the behavior of the

main components of the bridge: the deck, the sustaining cables, and the connecting hangers. In 2020, Bochicchio et

al. [2] studied a linear problem of the vibrations of a coupled suspension bridge as a thermoelastic beam given by

Fourier law, where the deck is modeled by the Timoshenko-Ehrenfest theory. In 2023, the existence and uniqueness

of a suspension bridge modeled by Timoshenko-Ehrenfest theory were proved, with internal damping, obtaining,

beyond the exponential decay, the analyticity of the solution. See [3].
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In this work we consider the following model of suspension bridge with internal damping of fractional order

utt − auxx − τ(ϕ− u) + c1∂
α,η
t u = 0, (1)

ρ1ϕtt − k(ϕx + ψ)x + τ(ϕ− u) + c2∂
β, ζ
t ϕ = 0, (2)

ρ2ψtt − bψxx + k(ϕx + ψ) + c3∂
θ, ξ
t ψ = 0. (3)

System (1)-(3) is subject Dirichlet boundary conditions and to initial data:




u(0, t) = u(L, t) = 0, t ≥ 0,

ϕ(0, t) = ϕ(L, t) = 0, t ≥ 0,

ψ(0, t) = ψ(L, t) = 0, t ≥ 0.

(4)





u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L),

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), x ∈ (0, L),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ (0, L),

(5)

The dampers used are of the type fractional integro-differential operators with exponential weight, i.e.

∂ω,ξt f(t) =
1

Γ(1− ω)

∫ t

0

(t− s)−ωe−ξ(t−s)f ′(s) ds, (0 < ω < 1, ξ ≥ 0 and f ∈W 1([0, L))

For to prove the well-posed we write the equations as augmented system and transform problem (1)− (5) into the

following abstract Cauchy problem

Ut =




ut

vt

ϕt

wt

ψt

zt

(φ1)t

(φ2)t

(φ3)t




=




v

auxx + τ(ϕ− u)− γ1

∫

R
p(y)φ1(y)dy

w
1

ρ1

[
k(ϕx + ψ)x − τ(ϕ− u)− γ2

∫

R
q(y)φ2(y)dy

]

z
1

ρ2

[
bψxx − k(ϕx + ψ)− γ3

∫

R
r(y)φ3(y)dy

]

−(|y|2 + η)φ1(y) + p(y)v

−(|y|2 + ζ)φ2(y) + q(y)w

−(|y|2 + ξ)φ3(y) + r(y)z




= AU, U(0) = U0 =




u0

u1

ϕ0

ϕ1

ψ0

ψ1

0

0

0




(6)

2 Main Results

Theorem 2.1. If U0 ∈ H := [H1
0 (0, L) × L2(0, L)]3 × [L2(R; L2(0, L))]3, then the Cauchy problem (6) exists and

admits a unique weak solution U ∈ C0 ([0, +∞); H) given by U(t) = etAU0. If U0 ∈ D(A), then the obtained

solution is a strong solution with the following regularity

U ∈ C0 ([0, +∞); D (A)) ∩ C1 ([0, +∞); H) .

Theorem 2.2. For U0 ∈ D(A) and η, ζ, ξ > 0, o C0-semigroup (etA)t≥0 defined by the Cauchy problem (6) is

polynomially stable, that is,

||etAU0|| ≤
C

tω
∥U0∥D(A), t > 0
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Abstract

This work is concerned with the possibility of proving the boundary null controllability for the degenerate

wave equation, developing the asymptotic analysis of a suitable family of state-control pairs ((uε, vε))ε>0, solving

related internal null controllability problems. The passage to the limit argument will be rigorously performed

through the obtainment of a refined observabilitity type inequality, with a constant explicitly given in terms of

ε > 0. This represents an essential point, since will allow us to achieve our required weak convergence results.

1 Introduction

Given T > 0, let Q = (0, T )× (0, 1). For each ε ∈ (0, 1), let us consider ωε := (1− ε, 1) ⊂ (0, 1). In this work, for a

fixed initial data (u0, u1), we intend to obtain a family of distributed state-controls pairs ((uε, vε))ε>0 solving





uεtt − (xαuεx)x = vεχωε , (t, x) ∈ Q,

Bu(t, 0) = uε(t, 1) = 0, t ∈ (0, T ),

uε(0, x) = u0(x), uεt(0, x) = u1(x), x ∈ (0, 1),

uε(T, x) = uεt(T, x) = 0, x ∈ (0, 1),

(1)

where Bu(t, 0) = 0 is the suitable boundary condition related to the degenerate operator at x = 0, defined by

Bu(t, 0) =




u(t, 0) = 0, if α ∈ (0, 1),

lim
x→0+

(xαux)(t, x) = 0, if α ∈ [1, 2),
, t ∈ (0, T ).

We prove that ((uε, vε))ε>0 converges to (u, h) in a suitable function space, as ε→ 0, with (u, h) satisfying





utt − (xαux)x = 0, (t, x) ∈ Q,

Bu(t, 0) = 0, u(t, 1) = h(t), in (0, T ),

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ (0, 1),

u(T, x) = ut(T, x) = 0, ∀x ∈ (0, 1).

(2)

Roughly speaking, the family ((uε, vε))ε>0 will be obtained using the well-known Hilbert uniqueness method

(HUM), where vε is a solution, in the sense of transposition given by Lions-Magenes (see [2, page 47]), of the

homogeneous adjoint problem associated to (1). By using the rescaling vε = 1
ε3φε, we will be able to prove that

φε
∗
⇀ φ in L∞(0, T ;L2(0, 1). Consequently, we will achieve the desired convergence of ((uε, vε))ε>0 to (u, h), where

vε =
1
ε3φε and h = − 1

3φx(t, 1).
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2 Main Results

In the following, we denote by H1
α the weighted Sobolev space that are naturally associated with the degenerate

operator Au = (xαux)x, the precise definition can be seen in [1]. For any α ∈ (0, 2), let us set Tα = 4
2−α . Our first

result is the following observability inequality, with the constant explicitly given in terms of ε.

Theorem 2.1. There exists ε0 > 0 with the following property: for any T > Tα there exists a constant

C = C(T, α) > 0 such that

∥v0∥2L2(0,1) + ∥v1∥2
H−1
α

≤ C

ε3

∫ T

0

∫ 1

1−ε
|v|2 dxdt, ∀ε ∈ (0, ε0), (1)

for any solution v of 



vtt − (xαvx)x = 0, (t, x) ∈ Q,

Bv(t, 0) = v(t, 1) = 0, in (0, T ),

v(0, ·) = v0 ∈ L2(0, 1), vt(0, ·) = v1 ∈ H−1
α .

(2)

As a consequence we can prove the exact internal controllability of the degenerate wave equation with the control

domain being ω = (1− ε, 1).

Theorem 2.2. Given T > Tα and ε ∈ (0, 1), for any (u0, u1) ∈ H1
α ×L2(0, 1), there exists vε ∈ L∞(0, T ;L2(0, 1)),

solution of (3), with initial data (v0ε , v
1
ε) ∈ L2(0, 1)×H−1

α , and the corresponding weak solution uε of (1). Moreover,

the identity

−(v0ε , u
1) + ⟨v1ε , u0⟩ =

∫ T

0

∫ 1

1−ε
v2ε(t, x) dxdt (3)

holds and there exists a constant C = C(T, α) > 0 such that

∥v0ε∥L2(0,1) + ∥v1ε∥H−1
α

≤ C

ε3

(
∥u0∥2H1

α
+ ∥u1∥2L2(0,1)

)1/2
and

∫ T

0

∫ 1

1−ε
v2ε dxdt ≤

C

ε3

(
∥u0∥2H1

α
+ ∥u1∥2L2(0,1)

)
. (4)

This kind of result was originally proved by Zuazua in [2, Chapitre VII, section 2.3], for the n-dimensional wave

equation with the control domain being a neighborhood of the boundary. For degenerate wave equation, it was

proved in [3], when α = (0, 1). Our result holds for α ∈ (0, 2), but under the restriction ωε = (1− ε, 1), the question
remains open for a general control domain ω ⊂⊂ (0, 1).

Finally, inequalities (4), will allow us to obtain the convergence of the family ((uε, vε))ε>0.

Theorem 2.3. Given T > Tα and ε > 0, for any (u0, u1) ∈ H1
α(0, 1) × L2(0, 1), there exist φε ∈ L2((0, T ) × ωε)

and uε ∈ C([0, T ];H1
α) ∩ C1([0, T ];L2(0, 1)), such that:

(a) uε is a weak solution of (1), with vε :=
1
ε3φε;

(b) uε ⇀ u and φε
∗
⇀ φ in L∞(0, T ;L2(0, 1)), as ε→ 0. Moreover, u solves (2), in the sense of transposition, with

h(t) = −1
3φx(t, 1) ∈ L2(0, T ).
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Abstract

This manuscript introduces a suspension bridge where the deck is modeled by von Kármán theory. The

action of frictional damping is considered. Well-posedness is proved using the nonlinear semigroup theory and

exponential stability is obtained using the energy method.

1 Introduction

In 1988, J. E. Lagnese and J. L. Lions, see [4, 5], proposed the von Kármán beam system of the type




ρAωtt − EA

[(
ux +

1

2
ω2
x

)
ωx

]

x

+ EIωxxxx = 0 in (0, L)× (0, T ),

ρAutt − EA

[
ux +

1

2
ω2
x

]

x

= 0 in (0, L)× (0, T ).
(1)

where ω(x, t) is the transverse displacement, u(x, t) the longitudinal displacement, (0, L) is the segment occupied

by the beam, and T is a given positive time. The physical parameters represent the properties of the material being

E the Young’s modulus, A the cross-sectional area of the beam, L the beam length, ρA the weight per unit length

and EI the beam stiffness or flexural rigidity.

In this manuscript, we consider the main cable modeled by an elastic string v = v(x, t),

vtt − αvxx = 0, (2)

where the constant α > 0 is the elastic modulus of the string (holding the main cable to the deck). The suspender

cables are assumed to be linear elastic springs with standard stiffness λ > 0, which is coupled to the deck employing

suspension cables, where x denotes the distance along the center line of the beam in its equilibrium configuration

and t the time variable.

The coupling of (1) and (2) leads to a suspension bridge model in von Kármán theory with internal dampings

given by




vtt − αvxx − λ(ω − v) + µ1vt = 0, in (0, L)× (0, T )

ωtt − b1

[(
ux +

1

2
ω2
x

)
ωx

]

x

+ b2ωxxxx + λ(ω − v) + µ2ωt = 0 in (0, L)× (0, T ),

utt − b1

[
ux +

1

2
ω2
x

]

x

+ µ3ut = 0 in (0, L)× (0, T ),

(3)

where α, λ, b1, b2, µ1, µ2, µ3 are positive and real parameters. We consider the initial data and boundary conditions,

respectively





ω(x, 0) = ω0(x), ωt(x, 0) = ω1(x),

u(x, 0) = u0(x), ut(x, 0) = u1(x),

v(x, 0) = v0(x), vt(x, 0) = v1(x),

(4)





u(0, t) = u(L, t) = 0,

ω(0, t) = ω(L, t) = 0,

ωx(0, t) = ωx(L, t) = 0,

vx(0, t) = vx(L, t) = 0.

(5)
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In the present study, we deal with the well-posedness and asymptotic behavior of thesuspension bridge model in

von Kármán theory with internal dampings given by is to prove the existence, uniqueness and exponential stability

of the solution for (3)-(5). We adapt the idea as in [3], the model is posed as a nonlinear Cauchy problem

BUt = AU + F(U) and U(0) = U0, ∀ t > 0, (6)

and shown that B−1A generates a C0-semigroup of contractions and B−1F is locally Lipschitz, so follows semigroup

theory for non-linear operators, (see Pazy [1], theorem 6.1.4) that there exists a unique mild solution given by

U(t) = eAtU0 +

∫ t

0

eA(t−s)F(U(s))ds,

and then the well-posedness is provided. We will show that the existence of weak solutions can be obtained

through a regularization process and then going to the limit, by energy method we prove the exponential stability.

Furthermore, for initial data taken from the generator domain, nonlinear semigroup theory also implies that the

corresponding solutions are continuous in time with the values in D(B−1A) (see [2]). Thus, strong solutions satisfy

U ∈ C([0, T );H).

Our solution existence result is given by

Theorem 1.1. If U0 ∈ H, then problem (6) has a unique mild solution U ∈ C([0, ∞) : H) with U(0) = U0.

Moreover, if U0 ∈ D(B−1A) the mild solution is a strong solution globally defined.

2 Main Results

Theorem 2.1. Let (v, ω, u) be a solution of (3) where the initial data are given in D(A). Then, the energy E(t)
satisfies

E(t) ≤ CE(0)e−βt, β, C > 0, for all t > 0.
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Appliquées 6, Masson, Paris, 1988.



ENAMA - Encontro Nacional de Análise Matemática e Aplicações
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Abstract

We study the Cauchy problem for this model in R and we obtain fast energy decay and L2-decay of the

solution when t → ∞. Due to we are considering this problem in one dimensional space, we can not use

tools such as the Hardy and/or Poincare inequalities. This fact causes significants difficults to derive the decay

property of the solutions and the energy. The potential term play a role for compensating there weak points.

1 Introduction

The Cauchy problem is given by

utt − uttxx − uxx + V (x)u+ ut = 0, (t, x) ∈ (0, ∞)× R

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R
(1)

where V (x) > 0, V ∈ BC1(R) and (u0, u1) ∈ H2(R)×H2(R), and the assumption that

u1 − (u1)xx + u0√
V (x)

∈ L2(R).

An example for V (x) is V (x) =
(
1 + x2

)−α
2 with α > 0.

The condition that f ∈ BC(R) implies that f(x) continuous and bounded in R. f ∈ BC1(R) implies f and f ′

in BC(R). ∥f∥ means the usual L2-norm of the function f ∈ L2(R).

2 Main Results

The main results are

Proposition 2.1. Assume V ∈ BC1(R) satisfies V (x) > 0 for x ∈ R and let (u0, u1) ∈ H2(R)×H2(R) satisfiying

u1 − (u1)xx + u0√
V (x)

∈ L2(R)

Then, the strong solution C2
(
[0, ∞) ; H2(R)

)
satisfies

Eu(t) = O
(
t−1
)
, t→ +∞.

Theorem 2.1. With the same assumption in the above Proposition 2.1, and the hyphothesis that |V ′| ≤ C V , for

x ∈ R, with C > 0 constant, the following results holds

Eu(t) ≤ O
(
t−2
)
, t→ +∞

and

∥u(t)∥ ≤ C

1 + t
, t > 0, C > 0 constant,

where Eu(t) is the natural energy of the system (1).
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Such problem in the work has a relation with other problems for the Boussinesq linear equations for

hydrodynamic models.

References

[1] Charão, R. C. - Remarks on the decay rates of the energy for damped IBq-beam equations on the 1-D half line,

Funk. EKvacioj, 60, (2017), 239-257.

[2] Wang, S. & Xu, H. - On the asymptotic behaviour of solution for the generalized IBq equation with stokes

damped term, Zeitschrift für angewandte Mathematik und Physik, ZAMP, 64, (2013), 719-731.



ENAMA - Encontro Nacional de Análise Matemática e Aplicações
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Abstract

We discuss the homogenization procedure of the Cauchy problem for the wave equation with fast-oscillating

coefficient and localized initial perturbation in the whole space.

The problem contains two small parameters. The first parameter µ≪ 1 is the localization parameter and it

describes the wavelength. The second parameter ε≪ 1 is the parameter of the fast oscillations of the coefficient.

We provide the adiabatic approximation procedure to obtain the homogenized equation with variable and

smooth coefficients. Depending on the ratio between those two parameters main part of the asymptotic solution

of this homogenized equation may contain additional dispersion corrections.

1 Introduction

We consider the following Cauchy problem

∂2

∂t2
u(x, t) = C2

(
Θ(x)

ε
, x

)
∆u(x, t), x ∈ Rn, u|t=0 = V

(
x

µ

)
, ut|t=0 = 0. (1)

Here the vector function Θ(x) = (θ1(x), . . . , θm(x)), m ≤ n describes the form of the fast oscillations. Functions

θk(x) are smooth real-valued functions and their gradients ∇θk(x) are linealry independent for all x. In various

works the case Θ(x) = x usually is considered.

Function C2(y, x), y ∈ Rm is 2π-periodical with respect to each variable yj and smooth with respect to all

variables. In addition this function is bounded

0 < cm ≤ C2(y, x) ≤ cM .

Small parameter 0 < ε ≪ 1 describes the length of the fast oscillations. The small parameter 0 < µ ≪ 1

describes the length of the propagating wave. We assume that the relation between those parameters is ε ≤ µ3/2.

The localization of the initial perturbation leads to the localization of the propagating wave and it is localized

near some hypersurface at each time moment. Therefore it is possible to use the semiclassical approximation and

to construct the analytic asymptotic formulas which give small residue for (1).

In order to implement the semiclassical analysis one has to reduce the initial equation to the equation with

smooth coefficients which we call the homogenized equation. In order to obtain such equation we use the adiabatic

approximation in the operator form and separating fast and slow variable.

It turns out that when ε ≪ µ3/2 then the asymptotic solution is described by the wave equation with smooth

coefficient. On the other hand if ε = µ3/2 then the dispersion effects appear in the asymptotic solution because the

presence of the correction to the wave equation.

In present work we will focus ourselfs to the part of the homogenization procedure.
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2 Main Results

We are looking for the solution of the problem (1) in the form

u(x, t) = Ψ

(
Θ(x)

ε
, x, t

)
,

where function Ψ(y, x, t) is also 2π-periodic with respect to the variables y ∈ Rm.

Substitution of this form into the equation (1) leads to the equation for the function Ψ(y, x, t)

−ε2Ψtt(y, x, t) = C2(y, x)
〈
(−iε∇− i∇θ

y), (−iε∇− i∇θ
y)
〉
Ψ(y, x, t), (2)

where −i∇θ
y = −i(∇Θ(x))∇y, matrix ∇Θ(x) = (∇θ1(x), . . . , ∇θm(x)), and ∇y = (∂/∂y1, . . . , ∂/∂ym) and the

brackets stand for the Euclidean vector inner product.

It is convenient to use the differential operator in the form −iµ∇, since the localization parameter is µ and the

ordinary derivative is of order O(1/µ).

Solution of the equation (2) is looking for in the form of some pseudo-differential operator χ̂ acting on some

function v(x, t): Ψ(y, x, t) = χ̂(
2
x,

1

−iµ∇, y; ε, µ)v(x, t).
Here digits show the order of action: first differentiation and second — multiplication on the variable.

The main assumption is function v(x, t) does not depend on variables y and moreover satisfies the homogenized

equation with smooth coefficients

−µ2vtt(x, t) =
µ2

ε2
L̂(

2
x,

1

−iµ∇; ε, µ)v(x, t).

Theorem 2.1. The symbol L(x, p; ε, µ) of the operator L̂ has the following expansion with respect to ε/µ

µ2

ε2
L(x, p; ε, µ) = c2(x)|p|2 − ε2

µ2
c2(x)Φ(x)|p|4 + ε4

µ4
L(x, p, ε

µ
). (3)

Function c(x) is defined with the help of the following average

c2(x) =

〈
1

C2(y, x)

〉−1

Tm
=


 1

(2π)m

∫

Tm

dy

C2(y, x)




−1

.

Function Φ(x) = ⟨|∇θ
yψ2(y, x)|2⟩Tm , where ψ2(y, x) is the solution of the cell problem

(−∆θ
y)ψ2 =

c2(x)− C2(y, x)

C2(y, x)
, ⟨ψ2(y, x)⟩Tm = 0. (4)

Here (−∆θ
y) = ⟨−i∇θ

y, −i∇θ
y⟩. Coerrection L contains the derivatives of the higher (copmpare to |p|4) order.

Conclusion. We need to determine the homogenized equation only with the terms of order O(µ) because we

use the semiclasscal approximation and the higher terms do not play role in the asymptotic formulas. In case

ε = µ3/2 we need to take into account correction c2(x)Φ(x)|p|4 which leads to the appearance of the dispersion

effects in the asymptotic solution. In that case the ratio ε4/µ4 = µ2 and the correction L in (3) to the symbol does

not play any role in the construction of the semiclassical asymptotics.

On the other hand it can be seen from (3), that if ε≪ µ3/2, then the correction c2(x)Φ(x)|p|4 does not play role,

since the ratio ε2/µ2 is smaller than µ. In that case we obtain the wave equation without any dispersion effects for

the asymptotics. In that case we also do not need to solve the cell problem (4) because the solution of this problem

enters in the dispersion correction.
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UFRJ - Universidade Federal do Rio de Janeiro
XVII ENAMA - Novembro 2024 149–150

HOMOGENIZATION OF THE WAVE EQUATION IN THE NON-DIVERGENT FORM IN THE

WHOLE SPACE WITH INHOMOGENIOUS MEDIA

M. NEKLYUDOV1, W. NEVES2, S. SERGEEV3 & E. SHAMAROVA4

1Universidade Federal das Amazonas, Brazil, misha.neklyudov@gmail.com
2Universidade Federal do Rio de Janeiro, Brazil, wladimir@im.ufrj.br

3Pontif́ıcia Universidade Catolico do Rio de Janeiro, Brazil, sergeevse1@gmail.com
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Abstract

In many physical applications the wave equation appears in the non-divergent form. If the media is

inhomogeneous then the coefficients of such equation are variable and in various situations the media may

contain some fast-oscillating fluctuations. In the later case the homogenization problem can be posed.

We are considering the homogenization problem of the waves propagation in the whole space with fast

oscillating bounded coefficients.

Our main results are on the existence of the solution of the Cauchy problem for a wave equation and the

homogenization procedure based on the 2-scale convergence.

1 Introduction

We consider the following Cauchy problem for the inhomogeous wave equation

1

c2ε(x)
utt(x, t)−∆u(x, t) = U(x)f(t), x ∈ R2, (1)

u|t=0 = 0, ut|t=0 = 0. (2)

Function cε(x) ≡ c(x, Θ(x)/ε) describes the velocity of the waves in the media where function Θ(x) describes the

fast-oscillating fluctuations of the media. The small parameter ε≪ 1 describes the scale of these fast oscillations.

We assume that the mapping Θ : R2 → R2 is a bi–Lipschitz diffeomorphism. We assume also that there are two

positive constants m and M such that

ess inf
y∈R2

(
|
(
∇Θ(y)

)
|
)
≥ m > 0, ess sup

y∈R2

(
|∇Θ(y)|

)
≤M <∞.

As for the function c(x, y), we assume that this function is continuous, bounded

0 < cmin ≤ c(x, y) ≤ cmax < +∞

and periodic with respect to variables y with period 1.

The right-hand side of the (1) describes the source which generates the waves. In the spacial coordinates this

source has the form of the function U(x) and we assume that this function belongs to the L2(R2). The action of

the source in time is described by the function f(t). The description of the function f(t) is better to present via

another function g0(λt), where f(t) = λ2g′0(λt) and

g0(0) = 0,

+∞∫

0

g0(τ)dτ = 1, |g(k)0 (t)| ≤ Ce−νt, k = 0, 1, 2, . . . , ν > 0.

Here the constant λ is the inverse to the time value of action of the source in time.
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2 Main results

The problem (1), (2) in the present statement is very important from the case of the physical applications. The main

assumption of only boundness of the coefficient c(x, Θ(x)/ε) is also very important, because the trivial example of

such coefficient is the constant c which is only bounded in the whole space R2. From the other hand we cannot

assume, in general, the smoothness of the coefficient.

It turns out that in the present formulation with mentioned above conditions the problem (1), (2) was not very

well studied. Usually some smoothnes of the coefficients together with dependence only on the oscillations Θ(x)/ε

was assumed, see for example [5, 3, 1].

We begin with the existence theorem for the problem (1), (2). For that we reduce this problem to the system of

the equation in the weak of Schrödinger form. Let us introduce the functional space H ≡ L2, c(R2;C)⊕L2(R2; C2)

with the following inner product. For any Ψ = (u, v)T and Ψ = (f, g)T from H we have

(Ψ, Φ)H =

(
1

c2ε(x)
u(x), f(x)

)

L2(R2)

+

∫

R2

⟨v(x), g(x)⟩dx,

where ⟨·, ·⟩ denotes the Eclidean inner product of the vectors.

Let us define the following function F = (F (x, t), 0) ∈ H, where F (x, t) = iλU(x)g0(λt) and let us introduce

the function Ψε = (uε, vε), where uε is the solution of the initial problem (1), (2) and vector-function vε can be

viewed as a gradient of uε.

Definition 2.1. For given T > 0, function Ψε(t) ∈ C([0, T ], H) is the weak solution of the equation (1), (2), if

for any function Φ ∈ H the following equality holds

i
d

dt
(Ψε(t), Φ)H = (Ψε(t), ŴεΦ)H + (c2ε(x)F(t), Φ)H. (3)

Here the operator

Ŵε :=

(
0 c2ε(x)(−i div)

−i∇ 0

)
(4)

is the self-adjoined operator in H.

From [4], we can conclude that there exists unique weak solution of the equation (3).

Following the 2-scale convergence [3] and its θ-modification [1] we provide the homogenization procedure when

ε→ 0 and derive the homogenized equation.
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Abstract

In this research we consider the compressible, isentropic, Euler equations in two spatial variables for a

generalized polytropic gas law which encompass, in particular, the Chaplygin gas. Our first objective was to use

the Hodge-Helmholtz decomposition to obtain a Bernoulli-type equation and a system satisfied by the pseudo-

velocity without assuming irrotational flows. After, under the assumption of self-similar potential flows, we

have been shown that the Euler equations obey an ellipticity principle, which means roughly speaking that, a

pseudo-supersonic bubble cannot form within a pseudo-subsonic region during a continuous variation of the gas

flow. Finally, we use the ellipticity principle to prove the existence of solutions in the pseudo-subsonic region,

which is modeled by an elliptic degenerated equation.

1 Introduction

Let us consider the isentropic Euler equations in two space dimensions given by

{
∂tρ+∇x · (ρv) = 0 (continuity equation),

∂t(ρv) +∇x · (ρv ⊗ v) +∇xp = 0 (linear momentum equation).
(1)

Here t ∈ (0,+∞) is the time and x = (x1, x2) ∈ R2 the space coordinates, ρ = ρ(t, x) > 0 denotes the density,

v = v(t, x) = (v1, v2) the velocity field, p = p(ρ) ∈ R is the pressure law. We will suppose p′(ρ) > 0 and denote

c2 := p′(ρ), where c is called the sound speed. We define the enthalpy h(ρ) as h′(ρ) = p′(ρ)
ρ > 0. Also, we recall

that a⊗ b denotes the tensor product of vectors a and b, that is, a⊗ b = [aibj ]ij (i, j = 1, 2). We consider self-

similar solutions, which depend only on the similarity coordinates, denoting (v, p, ρ)(t, x1, x2) = (v, p, ρ)(ξ1, ξ2),

ξ = (ξ1, ξ2) =
x
t =

(
x1

t ,
x2

t

)
. Also, we define U(ξ1, ξ2) ≡ (U1, U2)(ξ1, ξ2) := v(ξ1, ξ2) − (ξ1, ξ2), called the pseudo-

velocity. Under the Hodge-Helmholtz decomposition, there exists ψ,W such that U = (U1, U2) = ∇ψ + W ,

divW = 0. Then, the flow will be rotational or irrotational (potential) if W ̸= 0 or W = 0, respectively. We

also denote U⊥ := (−U2, U1) and ω := rotU = ∂U2

∂ξ1
− ∂U1

∂ξ2
, where ω is called the vorticity of the fluid. We notice

that, under the Hodge-Helmholtz decomposition, ω = rotU = rotW . We say that the flow is pseudo-subsonic,

pseudo-sonic or pseudo-supersonic at (t, x) if |U | < c(ρ(t, x)), |U | = c(ρ(t, x)) or |U | > c(ρ(t, x)), respectively. We

define the pseudo-Mach-number as L = |U |
c . Then, the flow is pseudo-subsonic, pseudo-sonic or pseudo-supersonic

at (t, x) if L < 1, L = 1 or L > 1, respectively. We fix the pressure law p = p(ρ) as follows:

p(ρ) =
a2

γ
(ργ − ργ), (2)

where a > 0, γ ∈ [−1,+∞)\{0}, ρ > ρ ≥ 0. We notice that for γ > 1 we have the polytropic gas and for γ = −1

we have the Chaplygin gas.

151



152

2 Main Results

Theorem 2.1. Suppose that (v, p, ρ)(t, x) satisfies the isentropic Euler equations and that U , the pseudo-velocity,

is a C2 function.

1. Then, there exists F such that c2 = F(U) and the pseudo-velocity U satisfies the system

{
c2divU − (DU)U · U = |U |2 − 2c2,

div (ωU) + ω = 0.
(1)

2. Under the Hodge-Helmholtz decomposition, if U = ∇ψ + W , with divW = 0, there exists F such that

∇F = −ωU⊥ −W . We also have that c2(U) is given by

c2(U) = (γ − 1)

(
F − ψ − 1

2
|U |2

)
+ C, C ∈ R, (2)

if γ ̸= 1, and c2 = a2, if γ = 1. Also, holds the Bernoulli type equation

h+ ψ +
1

2
|U |2 = F + C, C ∈ R. (3)

Now, suppose U = ∇φ. In this case, system (1) reduces to

c2∆φ−
2∑

i,j=1

φiφjφij = |∇φ|2 − 2c2, (4)

where c2(φ) = −(γ − 1)
(
φ+ 1

2 |∇φ|2
)
+ C, C ∈ R if γ ̸= 1 and c2 = a2 if γ = 1.

Theorem 2.2. (Ellipticity principle). Let Ω ⊂ R2 be an open bounded domain and suppose γ > −1.

(i) Let φ ∈ C3(Ω) satisfy (4) with L ≤ 1 and ρ > 0 in Ω. Then either L ≡ 0 in Ω or L does not attain its maximum

in Ω.

(ii) For any D > 0, there exists C0 > 0 depending only on (γ,D) such that, if diam (Ω) ≤ D, for any δ ≥ 0,

ĉ ≥ 1, and b ∈ C2(Ω) with |Db| + ĉ|D2b| ≤ δ
ĉ , and for any solution φ ∈ C3(Ω) of (4) satisfying L ≤ 1,

ρ(|Dφ|2, φ) > 0, and c(|Dφ|2, φ) ≤ ĉ in Ω, then either L2 ≤ C0δ in Ω or L2 + b does not attain its maximum

in Ω.

Theorem 2.3. If γ > 1, the Dirichlet problem





c2∆φ−
2∑

i,j=1

φiφjφij = |∇φ|2 − 2c2, in Ω;

φ = φ0 on ∂Ω,

(5)

has a solution φ ∈ C3(Ω) ∩ C1(Ω), where Ω is the subsonic region given by L < 1, ∂Ω ∈ C3,α, φ0 ∈ C3,α(Ω).

References

[1] Benzoni-Gavage, S. & Serre, D. - Multidimensional hyperbolic partial differential equations, first-order systems

and applications, Oxford University Press, (2007).

[2] Chen, G.-Q. & Feldman, M. - The mathematics of shock reflection-diffraction and von Neumann’s conjectures,

Annals of Mathematics Studies 197, Princeton University Press, (2018).

[3] Dafermos, C. M. - Hyperbolic conservation laws in continuum physics, Springer, Fourth Edition, (2016).



ENAMA - Encontro Nacional de Análise Matemática e Aplicações
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Abstract

We develop a model of diffusion with stochastic resetting with alternating boundaries. We study the first-

passage time and find that its mean can be minimized with respect to the resetting rate. However the model

allows for multiple extrema in contrast to the simple diffusion with stochastic resetting [3].

1 Introduction

Consider a particle performing a diffusive motion according to a standard one-dimensional Brownian motion

Wt starting at the origin, such that E[Wt] = 0 and E[W 2
t ] = t. Also let c(t) be a C1 curve on (0,∞). Let

τW,c = inf{t > 0 : Wt ≥ c(t)} be the random variable (RV) indicating the first-passage time (FPT) of Wt through

c(t). If f(t) is the probability density function of τW,c, then it is known that it satisfies the following Volterra

integral equation [5]

Ψ

(
c(t)√
t

)
=

∫ t

0

Ψ

(
c(t)− c(s)√

t− s

)
f(s)ds, t > 0, (1)

where Ψ(x) =
∫∞
x
ϕ(z)dz and ϕ(x) = 1√

2π
e−x

2/2. The solution when c(t) = at+b, b > 0, can be computed explicitly

[2, 4] and reads f(t) = b
t3/2

ϕ
(
at+b√
t

)
. In particular, when a = 0, τW,c follows a Lévy distribution [1].

The boundary c(t) = at + b leads τW,c to have infinite mean if a ≥ 0. This is inconvenient, but it can be

overcome. One way to obtain finite mean FPT (MFPT) is to change the distribution of the process by introducing

resettings [3]. Consider the case when the boundary is given by c1(t) = x0. Evans & Majumdar discovered, in their

seminal work, that resetting the diffusion at rate β can lead to a finite MFPT, which is given by the expression

E[τW,x0,β ] =
ex0

√
2β − 1

β
(2)

Moreover, the MFPT can be minimized with respect to β and the optimal β∗ is approximately 1.2698/x20.

In this work we modify the scheme introduced by Evans & Majumdar and allow the boundary to alternate

between two curves, c1(t) = x0 and c2(t) = at+ b, in such a way that the process develops as follows:

Step 1: The particle starts at the origin and diffuses until either reaching the boundary c1(t) = x0 or resetting to

the origin (go to Step 2);

Step 2: If it resets, then it resumes the diffusion until reaching the boundary c2(t− T ) = a(t − T ) + b (here T is

the time of the last reset) or resetting to the origin (go to Step 3);

Step 3: If it resets, we move to Step 1 again;

Step 4: The process repeats itself until the particle is finally absorbed by the alternating boundary.

Figure 1(a) shows an illustrative sample path for this process.

2 Main Result

Theorem 2.1. Let Wt be a standard one-dimensional Brownian motion with W0 = 0. Let τi be a sequence of

independent and identically distributed exponential RVs with rate β, independent of Wt. Write Tj =
∑j
i=1 τi. Fix
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Figure 1: In part (a), process X(t) is a diffusion between the resets indicated by the red arrows. The boundary alternates

between two curves. It is depicted the first passage of X(t) through boundary c1; passages of other orders are also depicted.

Part (b) corresponds to the MFPT with respect to γ, in the case where x0 = 1, a = 10, b = 0.2.

x0, b > 0 and g(t) = at + b, where a ∈ R. Define the process Xt by Xt = Wt −WTj , if t ∈ [Tj , Tj+1). For n ≥ 0,

consider the sets S2n = {t > 0 : Xt ≥ x0, t ∈ [T2n, T2n+1)} , S2n+1 = {t > 0 : Xt ≥ g(t− T2n+1), t ∈ [T2n+1, T2n+2)}
and S = ∪Sn. Then the RV τW,(x0,g),β = inf S has finite mean given by

E[τW,(x0,g),β ] =

(
ex0

√
2β − 1

) [
2eb(a+

√
2β+a2) − 1

]

β
[
ex0

√
2β + eb(a+

√
2β+a2) − 1

] . (1)

The proof relies on a probabilistic reasoning to establish an integral equation for the survival probability

S(t) = P(τW,(x0,g),β > t), which is then solved in Laplace space. The remarkable consequence of expression

(1) is that E[τW,(x0,g),β ] exhibits multiple extrema. In Fig. 1(b), it is shown an illustrative example of the variation

of E[τW,(x0,g),β ] with regard to γ = x0
√
2β.
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Abstract

This paper is devoted to initial-boundary value problem of a beam/plate equation with nonlocal damping

that is derived from dissipative energy models for flight structures proposed by Balakrishnan-Taylor [2]. We

prove the global existence and uniqueness of weak solutions. Furthermore, we prove that the dynamic system

generated by the weak solutions of the problem has a compact global attractor.

1 Introduction

In this paper, we study the following beam/plate equation with degenerate nonlocal energy damping

∂2t u+∆2u− γE(u, ∂tu)
q∆∂tu+ f(u) = h in Ω× R+. (1)

where E(u, ∂tu) = ∥∆u(t)∥2+∥∂tu(t)∥2

2 is the energy associated with the linear part of the system, γ > 0, q ≥ 1,

Ω ⊂ RN is a bounded domain of with smooth boundary Γ = ∂Ω, f is a nonlinear function like f(u) ≈ |u|ρu − C,

h is an external force, and ∥ · ∥ stands for the norm in L2(Ω). We consider either clamped or hinged boundary

conditions, described respectively by

u|Γ×R+ =
∂u

∂ν
|Γ×R+ = 0 or u|Γ×R+ = ∆u|Γ×R+ = 0, (2)

where ν is the unit exterior normal to Γ. The initial conditions associated to (1) are given by

u(x, 0) = u0(x) and ∂tu(x, 0) = u1(x), x ∈ Ω. (3)

Let us denote W0 = L2(Ω) and W1 = H1
0 (Ω), and to attend the two boundary conditions in (2) we define

W2 = H2
0 (Ω) or W2 = H2(Ω) ∩H1

0 (Ω). Let λ1 > 0 the first eigenvalue of the bi-harmonic operator ∆2 in W2.

Assumption 1.1. The external force h ∈W0 and f is a C1-function on R satisfying

A1. |f ′(s)| ≤ Cf ′(1 + |s|ρ), ∀ s ∈ R,

A2. −Cf − α
2 s

2 ≤ f̂(s) :=
∫ s
0
f(τ)dτ ≤ f(s)s+ α

2 s
2, ∀ s ∈ R,

where we consider Cf ′ > 0, Cf ≥ 0, 0 ≤ α < λ1, and ρ > 0 if 1 ≤ n ≤ 4 or 0 < ρ ≤ 4
n−4 if n ≥ 5;

Our analysis with respect to the global existence and long-time behavior of solutions is given on the phase space

H =W2 ×W0 equipped with norm ∥(u, v)∥2H = ∥∆u∥2 + ∥v∥2.

155



156

2 Mathematical Results

The existence and uniqueness results of the global weak solutions in the space H are given in the following theorem.

Theorem 2.1. Let T > 0 be arbitrary, γ > 0, and q ≥ 1. Under Assumption 1.1 we have: if initial data

(u0, u1) ∈ H, then problem (1)-(3) has a unique weak solution

(u, ∂tu) ∈ C([0, T ],H), ∀ T > 0, (4)

satisfying

u ∈ L∞(0, T ;W2), ∂tu ∈ L∞(0, T ;W0) and ∂2t u ∈ L2(0, T ;W ′
2). (5)

Proof The principle of the proof is classical. We using the Faedo-Galerkin method associated to compactness

arguments. The well-posedness of problem (1)-(3) given by Theorem 2.1 implies that the evolution operator

St : H → H defined by

St(u0, u1) = (u(t), ∂tu(t)), t ≥ 0, (6)

where (u, ut) is the unique weak solution of the system (1)-(3), defines a nonlinear C0-semigroup which is locally

Lipschitz continuous on the phase space H. Therewith the dynamics of problem (1)-(3) can be studied through the

continuous dynamical system (H, St).

Our main result in the present work is the following.

Theorem 2.2. Assume that hypotheses of Theorem 2.1 hold. Then, the associate dynamical system (H, St) of

problem (1)-(3) has a compact global attractor A in H, which is characterized by the unstable manifold A = Mu(N )

emanating from the set of stationary solution N . In addition, A consist of full trajectories Υ = {U(t) = (u(t), ut(t)) :

t ∈ R} such that

lim
t→−∞

distH(U(t),N ) = 0 and lim
t→+∞

distH(U(t),N ) = 0.

Proof The existence of a compact global attractor is granted once our dynamical system (H, St) is gradient,

dissipative, and that the operators {St} are uniformly compact in H for t large. Then by direct application of

[5, Theorem 1.1, Chapter I ] and [4, Theorem 7.5.6, Chapter 7] we obtain the proof of the Theorem 2.2.
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Abstract

In this congress, we present a result regarding the existence of time-periodic vortex patches for the generalized

surface quasi-geostrophic (SQG) equation within a bounded domain. This result is established for values of γ

in the range (1, 2). The vortex patches obtained have fixed vorticity and total flux and are situated near non-

degenerate critical points of the Kirchhoff-Routh equation. The proof is achieved by analyzing the linearization

of the contour dynamics equation and applying the implicit function theorem, using carefully chosen function

spaces.

1 Introduction

In this study, we delve into a category of active scalar systems that interact with an incompressible flow within

a two-dimensional framework. To be precise, through an examination of the contour dynamics equation and the

application of the implicit function theorem, we establish the presence of stationary vortex patches. These patches

are characterized by a constant total flux and a fixed vorticity for each individual patch within the framework of

the generalized surface quasi-geostrophic (gSQG) equations, which are defined within a bounded domain. In that

sense, this model explains how the potential temperature ω evolves under the influence of the transport equation





∂tω + v · ∇ω = 0 in Ω× (0, T ),

v = ∇⊥(−∆)−1+ γ
2 ω in Ω× (0, T ),

ω
∣∣
t=0

= ω0 in Ω,

(1)

where Ω is a bounded domain in two-dimensional space, and we consider a parameter γ satisfying the condition

0 ≤ γ < 2. The variable ω(x, t), defined for x within Ω and t in the interval (0, T ), represents an active scalar

being advected by a velocity field v(x, t). This velocity field is generated by ω, and ∇⊥ = (∂2,−∂1). The operator

denoted as (−∆)−1+ γ
2 is defined by (−∆)−1+ γ

2 ω(x) =
∫
Ω
Kγ(x,y)ω(y), dy, where the term Kγ(x,y) represents the

Green function associated with the fractional Laplacian in bounded domains with smooth boundaries (−∆)−1+ γ
2 .

It is defined for each pair of points x,y ∈ Ω, where x ̸= y, as follows:

Kγ(x,y) =




− 1

2π log |x− y|+K0
0 (x,y), γ = 0,

Cγ
|x−y|γ +K0

γ(x,y), γ ∈ (0, 2),
(2)

with Γ(·) being the Euler gamma function and Cγ =
2γ−1Γ( γ2 )

Γ(1− γ
2 )

. Additionally, K0
γ belongs to the class of infinitely

differentiable functions C∞(Ω× Ω), as discussed in Lemma 2.3 of [1].

We highlight that the system (1) covers the cases of the 2D incompressible Euler equations by taking γ = 0

and the inviscid SQG equations when considering γ = 1. The system (1) for 0 < γ < 2 was initially introduced by

Córdoba et al. for the flat case R2 in their work [2]. Over the past decade, it has garnered significant attention and

scruting as it represents a generalization of both the Euler equation and the SQG equation. Notice that the case
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γ = 2 produces stationary solutions. The study of SQG-type equations defined on bounded smooth domains is, in

part, much more complicated than in the R2 case, since there the Green function cannot be expressed explicitly. A

key point in the development of our problem (1) is the analysis of the problem of desingularization of point vortices,

which is related to the search for concentrated global solutions as performed in [3].

For a collection of n real numbers κ1, κ2, . . . , κn, we establish the Kirchhoff-Routh function on Ωn in the following

manner

Wn(x1, x2, .., xn) = −
n∑

i̸=j

κiκjK
1
γ(xi, xj) +

k∑

i=1

κ2iK
0
γ(xi, xi), (3)

where Ωn is the set of vectors x = (x1, x2, . . . , xm) such that each xi belongs to the set Ω for i = 1, 2, . . . , n and

K1
γ(x, y) =

Cγ
|x−y|γ .

2 Main Result

Our main result is written as follows:

Theorem 2.1. Consider a bounded domain Ω ⊂ R2 with a smooth boundary and m given positive values κi

(i = 1, . . . , n). Assume that x0 = (x0,1, . . . , x0,n) ∈ Ωn with x0,i ̸= x0,j for i ̸= j is an isolated critical point of Wm

as defined in (3) and it fullfills satisfying the nondegeneracy condition: deg (∇Wn,x0) ̸= 0. Under these conditions,

there exists ε0 > 0, such that for all 0 < ε < ε0, a stationary vortex patch solution ωε can be constructed, which

exhibits the following characteristics:

(i) ωε =
∑n
i=1

1
ε2χΓi within specific domains Γi ⊂ Ω, i = 1, . . . , n.

(ii) The boundaries ∂Γi for i = 1, . . . , n can be defined using the subsequent parameterization

∂Γi =

{
xε,i + ε

(√
κi
π

+ o(1)

)
(cosβ, sinβ) | β ∈ [0, 2π)

}
, (4)

where xε,i = x0,i + o(1) as ε→ 0.

(iii) The total flux for each patch remains fixed as 1
ε2 |Γi| = κi, ∀i = 1, . . . ,m.

(iv) As ε→ 0+, one has the following convergence in the sense of measure ωε →
∑n
i=1 δ (x− x0,i) weakly, where

δ (x− x0,i) represents the Dirac delta function concentrates at the point x0,i.

(v) The interior of each domain Γi is convex for all i = 1, . . . ,m.

The previous result is within the preprint [4].
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Abstract

Our goal in this work is to examine the impact of assuming non-integrable regularity for the initial data on

the critical exponent of a σ-evolution equation with structural damping and nonlinear memory.

The key to determining the new critical exponent lies in the interplay between the loss of decay rate, due

to the presence of nonlinear memory, and the assumption that the initial data are in Lm rather than L1. This

new critical exponent is different from that found in the Lm theory for the corresponding problem with power

nonlinearity |u|p.
We demonstrate the optimality of this critical exponent using the test function method.

1 Introduction

In this work, we are interested in the following σ−evolution equation with structural damping





utt + (−∆)σu+ (−∆)θut = F (t, u), t ≥ 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn,

ut(0, x) = u1(x), x ∈ Rn,

(1)

where σ > 0, 2θ = σ and

F (t, u) =

∫ t

0

(t− s)−γ |u(s, x)|pds, γ ∈ (0, 1), (2)

represents a memory term, since it is a fractional Riemann-Liouville integral of a power nonlinearity |u|p.
In the case of a power nonlinearity F = |u|p it has been proved [1] that the critical exponent, assuming small

data in Lm, is

pc = 1 +
2mσ

n− 2σ
.

When we refer to pc as a critical exponent, we mean that global solutions exist for small initial data when the power

is supercritical, i.e., p > pc. In contrast, global solutions do not exist for subcritical powers, 1 < p < pc, even with

small initial data in the same norm, given appropriate sign assumptions on the data. The critical power p = pc

may either lie within the existence or nonexistence range of global solutions, depending on the specific problem

considered.

In [2] the author proved that the critical exponent for (1) in the special case θ = 1
2 and σ = 1, assuming data

in L1, with nonlinear memory term F as in (2), is

pc = max{pγ(n), γ−1},

where pγ = 1 + 3−γ
n+γ−2 .

In this talk, we will analyze the influence of the Lm smallness of the initial data. We will conclude that a new

critical exponent emerges from the interplay between the loss of decay rate due to the nonlinear memory term and

the loss of decay resulting from relaxing the L1 condition on the initial data.
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2 Main Results

If the loss of decay due to the assumption of Lm on the initial data becomes irrelevant with respect to the loss os

decay rate related to the presence of the nonlinear memory term, i.e., if

γ > 1− n

σ

(
1− 1

m

)
, (1)

the expected critical exponent is

pc = max{p1m,γ(n, σ), p2m,γ(n, σ)}, (2)

where

p1m,γ(n, σ) = 1 +
γ − 3[

1− n
σm

]
+

= 1 +
σm(3− γ)

[n− σm]+
(3)

p2m,γ(n, σ) = 1 +
1− γ[

1− n
σ

(
1− 1

m

)]
+

= 1 +
σm(1− γ)

[σm− n(m− 1)]+
. (4)

On one hand, we proved that the exponent p1m,γ(n, σ) is indeed critical. On the other hand, we only proved the

existence of global small data energy solutions when p > p2m,γ(n, σ). It remains an open problem to prove that no

global weak solutions exist if 1 < p < p2m,γ(n, σ). The main results are:

Theorem 2.1. Let n ≤ 2σ and m ∈ (1,∞) or n > 2σ and m ∈ (1, n/(n− σ)). Let us assume (1) and p > pc, or

p > n/(n− 2σ) if n > 2σ and m = 2n
2σ(γ−2)+n(3−γ) . Then there existe ε > 0 such that for any initial data

(u0, u1) ∈ A = (Lm ∩ L∞) ∩ (Lm ∩ L∞), with ∥(u0, u1)∥A := ∥u0∥Lm + ∥u1∥Lm ≤ ε,

there is a unique global energy solution u ∈ C([0,∞), H1) ∩ C1([0,∞), L2) to (1). Moreover, it satisfies

∥u(t, ·)∥Lq ≲ (1 + t)1−
n
σ (

1
m− 1

q )∥u∥Lm∩L∞ , (5)

for any q ∈ [m,∞] if n < 2σ and for any q ∈ [m,n/(n−2σ)] if n ≥ 2σ, where n/(n−2σ) = ∞ if n = 2σ. If n ≥ 2σ

and q = q̄ = n/(n− 2σ), its satisfies

∥u(t, ·)∥Lq̄ ≲ (1 + t)1−
n
σ (1−

1
m ) log(e+ t)∥u∥Lm∩L∞ . (6)

If n > 2σ and q ∈ (n/(n− 2σ),∞], its satisfies the following decay estimate

∥u(t, ·)∥Lq ≲ (1 + t)1−
n
σ (1−

1
m )∥u∥Lm∩L∞ . (7)

Theorem 2.2. Let n ≥ 1, γ ∈ (0, 1), m ∈ (1,∞). Assume that (u0, u1) ∈ L1
loc with u0 ≥ 0, (u0(x) + u1(x)) ≥

ε|x|− n
m log |x|, for |x| >> 1 and that u ∈ Lp([0,∞)× Rn) is a global solutioin to (1). Then p ≥ p1m,γ(n, σ).

The proofs of these theorems follow the techniques used in [3]
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Abstract

In this work, we address some difficulties in approximating nearly-incompressible linear elasticity problems

by the Primal Hybrid Finite Element Method. The traditional Primal Hybrid method is generally not robust

towards locking, resulting in approximation errors that increase as the first LamÃ© coefficient λ goes to

infinity. Here, we explore the viability of two strategies to solve this problem: enriching the displacement

approximation space in the traditional hybrid formulation and adding an auxiliary pressure-like field to obtain

a hybrid displacement-multiplier-pressure formulation. For the displacement-multiplier-pressure hybrid method

in particular, we present a general framework for constructing inf-sup stable spaces, which ensures locking-free

approximations.

1 Introduction

Considering Ω ⊂ Rd, d = {2, 3}, a bounded domain with a Lipschitz continuous boundary ∂Ω, the Linear elasticity

problem consists of finding the displacement field u : Ω → Rd such that

div(Cε(u)) = f in Ω and u = 0 over ∂Ω, (1)

where f ∈ L2(Ω,Rd) represents a distributed load, ε(u) denotes the symmetric part of the gradient of u, and C is

the fourth-order elasticity tensor. For isotropic elastic materials, the elasticity tensor C is described through the

Lamé coefficients λ ≥ 0 and µ > 0 according to Cτ = 2µ τ+λ tr τ I, ∀τ ∈ S, where tr denotes the trace operator

of a matrix, I is the identity matrix, and S is the space of second-order symmetric tensors. For nearly-incompressible

elastic materials, the first Lamé coefficient λ goes to infinity, resulting in an unbounded elasticity tensor, which may

cause loss of accuracy in the numerical approximations for (1), in a phenomenon called volumetric locking. The most

classical Finite Element Method to approximate the linear elasticity problem is the Continuous Galerkin method,

based on an H1-conforming variational formulation of problem (1). Alternatively, one may consider methods based

on a Primal Hybrid formulation, where the continuity of the displacement is weakly imposed through the addition

of Lagrange multipliers [2]. Given Th a regular partition of Ω with no hanging nodes, consider the spaces

X = {v ∈ L2(Ω,Rd) : v|K ∈ H1(K,Rd), ∀K ∈ Th} and M = {τn∂K |∂K : τ ∈ H(div,Ω,S) for all K ∈ Th},

where H(div,Ω,S) is the space of symmetric H(div)-conforming second-order tensors and n∂K is the outwards and

unitary normal vector over ∂K. Following the ideas of [2], the primal hybrid formulation for problem (1) consists

in finding (u,m) ∈ X ×M such that

∑

K∈Th

∫

K

(2µ ε(u) : ε(v) + λdiv u · div v) dx−
∑

K∈Th

∫

∂K

m · v ds = −
∫

Ω

f · v dx ∀v ∈ X (2a)

∑

K∈Th

∫

∂K

s · u ds = 0 ∀s ∈ M. (2b)
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The Primal Hybrid method (PH) is obtained from (2) by replacing X ×M with finite-dimensional subspaces

Xh×Mh, which must satisfy the inf-sup conditions [1, 2] in order to guarantee a unique solution for the associated

discrete problem. Unfortunately, even when using inf-sup stable approximation spaces, the PH method generally

performs poorly in the incompressibility limit, especially for the approximation of m.

An initial strategy to solve this problem is increasing the polynomial degree used in the construction of Xh while

maintaining Mh unaltered. However, numerical experiments performed in this work showed that such enrichment

is not always enough to generate locking-free approximations. This motivates a second strategy, where we modify

the variational formulation to introduce an auxiliary pressure-like variable, as originally proposed in [3].

2 Displacement-multiplier-pressure hybrid method

Consider P = L2
0(Ω,Rd) the space of square-integrable functions with zero average. Introducing the auxiliary

variable p = λdivu, informally referred to as pressure, it is possible to derive the following three-field formulation

∑

K∈Th

∫

K

2µ ε(u) : ε(v) dx−
∑

K∈Th

∫

∂K

m · v ds +
∑

K∈Th

∫

K

p divv dx = −
∫

Ω

f · v dx ∀v ∈ X (1a)

∑

K∈Th

∫

∂K

s · u ds = 0 ∀s ∈ M (1b)

∑

K∈Th

∫

K

q divu dx− 1

λ

∫

Ω

p q dx = 0 ∀q ∈ P. (1c)

The displacement-multiplier-pressure hybrid method (DPH) is then obtained by replacing X ×M×P with finite-

dimensional subspaces Xh × Mh × Ph. Satisfying the inf-sup conditions for the DPH method is central to its

convergence, especially for the simulation of nearly-incompressible materials. In the next result, we show a

convenient way to obtain stable approximations spaces Xh ×Mh × Ph.

Proposition 2.1. Let Xh×Mh be an inf-sup stable pair for the original PH method and Uh×Ph an inf-sup stable

pair for the Stokes problem, as described in Chapter 8 of [1]. If Uh ⊂ Xh, then the composition Xh ×Mh × Ph is

inf-sup stable for formulation (1).

Using inf-sup stable spaces, it is possible to prove a priori error estimates for the DPH method that do not

deteriorate as λ goes to infinity. Therefore, the discrete solutions remain accurate even in the nearly-incompressible

scenario, resulting in a locking-free method. Such theoretical claims are verified through some simple yet illustrative

numerical experiments, from which we conclude that using the displacement-multiplier-pressure formulation is a

viable option to deal with problems near the incompressibility limit.
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Abstract

This paper presents a study on a compartmental epidemic model for COVID-19, examining the stability of

its equilibrium points upon vaccination introduction as a strategy to mitigate the spread of the disease. Initially,

the Susceptible-Infectious-Quarantine-Recovered (SIQR) mathematical model and its technical aspects are

introduced. Subsequently, vaccination is incorporated as a control measure within the model scope. Equilibrium

points and the basic reproductive number are determined followed by an analysis of their stability. Furthermore,

controllability characteristics and optimal control strategies for the system are investigated, supplemented by

numerical simulations.

1 Introduction

Our objective in this work is to consider and analyze the SIQR model properties by adding vaccination as a strategy

to control the growth of the disease, study constant solution stability, calculate the basic reproductive number of

disease propagation, study system controllability and the conditions to obtain the optimal control and apply the

model in some numerical simulations (using MATLABTM software) to reach some conclusions about the control

method (vaccination).

The model is the following system (1) of ordinary differential equations:





dS
dt = ∆− αSI − µS + v

dI
dt = αSI − (γ + µ+ η)I

dQ
dt = (η − ϵ)I − (ρ+ µ)Q

dR
dt = γI + ρQ− µR

(1)

2 Main Results

We considered that A ∈ R4,4 is the Jacobian matrix of system (1) at E0 without control perturbation; B ∈ R4,2 is

a real matrix. The function x : [0, T ] → R4 represents the state, and u : [0, T ] → R2, the control. Both are vector

functions of 4 and 2 components, respectively, depending exclusively on time t.

Let T > 0 be a fixed real number, given t0 ∈ [0, T ] and x0 ∈ R4, considering a dynamic system described by the

following differential equations:

x′(t) = Ax(t) +Bu(t), t ∈ [0, T ] (1)

x(t0) = x0,

considering cost functional

J(u, x) =
1

2

[∫ T

0

xT(t)G(t)x(t) + uT(t)R(t)u(t)dt

]
(2)

Considering the set of admissible control

Uad :=
{
u ∈ L1([0, T ];R2);u(t) ∈ X ⊂ R2 a.e in [t0, T ].

}
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Theorem 2.1. Let P (t) be a continuous and differentiable symmetric matrix with respect to time t on an interval

[0, T ], considering the Riccati equation:

∂P (t)

∂t
= −ATP (t)− P (t)A+ P (t)BR−1BTP (t)−G

in which A is a constant matrix of size n× n; B is a constant matrix of size n×m; R is a positive definite matrix

of size m×m; and G is a constant symmetric matrix of size n× n. Optimal control is the form u∗ = −R−1BTλ.

Then, for each initial condition P (0) = P0, there is a unique solution P (t) to the Riccati equation defined by [0, T ],

associated with control systems (1) to (2).

We see the control is a linear function of the state only, a type of feedback control u = −R−1BTPx. The matrix

R−1BTP is called the gain.

In this next simulation, we will perform numerical simulations for an optimal control strategy given by theorem

2.1
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Figure 1: Variational curves of S, I, Q, and R with optimal control
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Abstract

In this work, a numerical simulation is shown for a Bresse-Timoshenko system with thermoelasticity of type

III. Some experiments are done to show that this solution is exponentially stable without assuming the condition

of equal wave speeds. So, when using a scheme that brings together a finite element approximation in space and

finite difference in time, some numerical results are presented to demonstrate the accuracy of the approximation

and the behaviour of the solution.

1 Introduction

We consider the Bresse-Timoshenko system with thermodiffusion of type III





ρ1ϕtt − k(ϕx + ψ)x = 0,

− ρ2ϕttx − bψxx + k(ϕx + ψ) + βθtx = 0,

ρ3θtt − δθxx + βψtx − κθtxx = 0; (x, t) ∈ (0, L)× (0,∞),

(1)

where L represents the distance along the center line of the beam, with Dirichlet boundary conditions

ϕ(0, t) = ϕ(L, t) = ψ(0, t) = ψ(L, t) = θ(0, t) = θ(L, t) = 0, t > 0, (2)

and the initial conditions are

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), ψ(x, 0) = ψ0(x), x ∈ (0, L),

θ(x, 0) = θ0(x), θt(x, 0) = θ1(x), x ∈ (0, L).
(3)

In previous work (see [1]-[5] ), researchers did not obtain exponential stability unless they assumed the condition

of equal wave speeds, since otherwise we would obtain polynomial stability. In this work, we will show the numerical

aspects of the problem (1)-(3) to corroborate that if we take the Bresse-Timoshenko system, that is, Timoshenko

system with a free second spectrum, we will obtain exponential stability without any parameter conditions (see [6]).

2 Main Results

2.1 Assumptions

In this work, the existence and uniqueness of the weak solution of the system (1)-(3) were shown. The classical

Faedo-Galerkin approximation was used together with a priori estimates and then passing through the limits using

compactness arguments. We define V = H1
0 (0, L), H = L2(0, L) and the Hilbert space H := V × V × V × V ×H.

Therefore, the following definition and theorem are necessary.
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Definition 2.1. Let the initial data (ϕ0, ϕ1, ψ0, θ0, θ1) ∈ H then a function W = (ϕ, ϕt, ψ, θ, θt) ∈ C(0, T ;H) is said

to be a weak solution of (1)-(3) if it is a solution of the weak problem for almost t ∈ [0, T ].

Theorem 2.1. Suppose that the initial data colorblue(ϕ0, ϕ1, ψ0, θ0, θ1) ∈ H then system (1) − (3) have a weak

solution satisfying

ϕ ∈ L∞ (0, T ;V ) , ϕt ∈ L∞ (0, T ;V ) , ψ ∈ L∞ (0, T ;V ) , θ ∈ L2 (0, T ;V ) , θt ∈ L2 (0, T ;H) ,

where the solution W = (ϕ, ϕt, ψ, θ, θt) depends continuously on the initial data in H. In particular, W is unique

solution of system (1)− (3).

2.2 Numerical simulations

Let the initial conditions given respectively by

φ(x, 0) =
1

4

[
L

2
cos
(νπx
L

)
+ x− L

2

]
; φt(x, 0) = −1

4

[
L

2
cos
(νπx
L

)
+ x− L

2

]
;

ψ(x, 0) =
L

4π
sin
(νπx
L

)
+
x

2
(x− L)ν; θ(x, 0) =

1

4
sin
(νπx
L

)
; θt(x, 0) = −1

4
sin
(νπx
L

)
.

(4)

The Figure 1 shows the energy decay and its logarithm for T = 10 and h = ∆t = 2−8. This experiment

corroborates exponential stability without assuming the condition of equal wave speeds (see [6]).

Figure 1: Homogeneous problem - Energy decay and its logarithm
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Abstract

In this work, we consider the numerical solution of a mixed problem for a non-linear partial differential

equation that models the vibrations of a membrane. The numerical scheme uses the finite element method for

spatial discretization and the Newmark method for time discretization. For the computational implementation

of this numerical scheme, we utilize the FEniCS software. We present numerical examples to highlight some

questions that have not been fully addressed in the literature, such as the convergence of the numerical scheme

and the decay of solutions.

1 Introduction

We consider the non-linear oscillations of a membrane associated with the bounded region Ω ⊂ R2 and assume that

the displacement u(x, t) for x ∈ Ω and t ∈ [0, T ] satisfies the following mixed problem introduced in [2]:





utt −∇ · σ(∇u) − δ∆ut = f, in Ω× [0, T ]

u = 0 on Γ0 × (0, T ) (Dirichlet boundary condition)

utt + (σ(∇u) + δ∇ut) · ν = g, on Γ1 × (0, T ) (Glued-mass boundary condition)

u(x, 0) = u0(x); ut(x, 0) = u1(x) in Ω.

(1)

where σ(∇u) =
(
1 + ϵ |∇u|2

)
∇u is a non-linear constitutive relation and the parameters ϵ, δ control the strength

of the non-linearity and internal damping, respectively. The boundary of Ω is decomposed into two disjoint parts

Γ0 and Γ1, and ν denotes the unitary outward normal to Γ1. The existence of global solutions to the problem (1)

is thoroughly discussed in [2].

2 Numerical scheme

In order to obtain approximate solutions to the problem (1), we apply the finite element method in space combined

with the Newmark method for the time discretization, both methods are widely used for the discretization of

problems in mechanics [1]. Moreover, at each time step this scheme leads to a system of non-linear equations which

is solved by applying the Newton method. For the computational implementation of this numerical scheme, we use

the free open source software FEniCS [3] which allows for an efficient automated solution of differential equations.

3 Numerical examples

We perform several tests to validate the computational implementation of the numerical scheme. In Table 1, we

summarize some results from the approximation of a synthetic exact solution of problem (1) in the unit square Ω

[see Figure 1 (left)] for different discretizations using Lagrange triangular finite elements of degree G = 1 with a

finite element mesh of size h and a time step of size k. The table shows the L2 error along with the estimated
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h k L2 Error p

0.1 1.005 0.0149 —

0.05 0.503 0.0037 2.0124

0.025 0.251 0.0009 1.9957

0.0125 0.126 0.0002 1.9957

h k L2 Error q

0.2 0.04 0.0532 —

0.1 0.02 0.0148 1.8373

0.05 0.01 0.0037 1.9955

0.025 0.005 0.0009 1.9902

Table 1: Error and estimated order of convergence of the numerical scheme for different discretizations.

convergence orders p and q related to h and k, respectively. We observe that the estimated values are close to

p = G + 1 = 2 and q = 2 which are consistent with known theoretical results for the case ϵ = 0 (linear problem)

[3]. To the best of our knowledge, no theoretical convergence result has been published for the non-linear problem.

Figure 1: Examples of finite element meshes for a unit square domain (left) and a unit square domain with a circular

hole of radius 0.125 (right). The boundaries for Dirichlet b.c. are represented in red color and for glued-mass b.c.

in blue color.

The next set of numerical examples illustrates the decay of the energy of the solutions of problem (1) in the case

f = g = 0. In Figure 2, we present the results corresponding to different values of δ for the two domains depicted

in Figure 1. In these examples, we observe an exponential decay of solutions under conditions less restrictive than

those presented in [2] where a truncated version of the function σ(∇u) was considered.

Figure 2: Time evolution of the logarithm of the scaled energy for the solution of problem (1) for the two domains

Ω presented in Figure 1.
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Abstract

In this work, we develop a class of approximations via ODEs on Banach spaces for a non-local differential

model:

u(x, t)t +

[
u(x, t)

(
1−

∫
R
w(x− τ)u(τ, t)dτ

)]
x

= 0 x ∈ R, t > 0, u(0, x) = u0(x), (1)

where w ∈ L1 ∩ L∞ is a probability density function. In real-world models, it is natural to assume that the

modeling is not fully precise. One way to account for this uncertainty is to introduce a probabilistic term

into the underlying equation. The latter approach has been used recently in [4] and [1]. To achieve a robust

approximation of model (1) using ODEs, we use the improved concept of No-Flow curves as established recently

in literature [5, 6].

1 Introduction

The approximation that we develop under the Lagrangian-Eulerian approach is based on concept of the No-Flow

curves [5, 6]. The No-Flow curve is determined by the deduction of a family of curves that define control volumes,

which are locally conservative under the function u(x, t), given by the corresponding hyperbolic conservation law

ut(x, t) + [H(u(x, t))]x = 0. On analytic terms, if (σi) for i = 1, 2, · · · is this family of curves, we have

∫ σi+1(t)

σi(t)

u(t, x)dx =

∫ σi+1(0)

σi(0)

u(0, x)dx, t ∈ (0,∞).

If we apply the derivative on the equality above and impose orthogonality of the curves with the flow we can achieve

the family of ODEs
H(u(σ(t), t))

u(σ(t), t)
= σ′(t), σ(0) = x0. (2)

For the use of the No-Flow curves on an approximation of PDEs such as (1), we use a dimensional analysis of the

the quantity H(u)/u and we have ∆x/∆t ∝ O(H(u)/u). This allow us to reach semi-discrete schemes (No-Flow

ODEs on Banach spaces) from fully-discrete schemes, by replacing the terms ∆x/∆t for H(uk)/uk and taking the

rigorous limit on ∆t→ 0 [5, 3, 6, 2].

2 Main Results

For our particular purpose, we adapt the argument made on the local case [5, 6] for the non-local traffic flow model

(1). Define N = 1/ε, G(x) = 1− x, and we use the following discretization of the convolution integral,

1−
∫

R
w(x− τ)u(τ, t)dτ ≃ VN (u)(x, t) =

N∑

k=0

G(u(x+ kε, t))Wk, Wk =

∫ (k+1)ε

kε

wn(t)dt,
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Our Lagrangian-Eulerian approach give us the following family of ODEs on the conservative form

(uε)t = −gN (uε, uε+1)− gN−1(uε−1, uε)

ε
, u(x, 0) = u0(x), (3)

with uε+k = uε+k(x, t) = uε(x+ kε) and gN defined by

gN (x, y) =
xVN (uε+1)− yVN (uε)

4
+

1

4
(VN (uε) + VN (uε+1)) (x+ y). (4)

For to ensure convergence we use the following CFL condition:

∆t

ε
(1/2 +M +M2) ≤ 1

3
, (5)

where M = ||u0||∞. A summarize the results about the approximation (3) on the following theorem:

Theorem 2.1. Under the hypothesis of u0(x) ∈ L1(R)∩L∞(R)∩BV (R) and the CFL condition (5) the family of

solutions of (3) converges as ε→ 0 for the unique entropy solution of (1) and attain to:

1) ||uε(·, t)||L1(R) ≤ ||u0||L1(R), 2) total variation bound TV (uε(·, t)) ≤ TV (u0),

3) Recover the non-local entropy
∫

R

∫ T

0

|u− c|ϕtdtdx+ |u− c|V (u)ϕx − sign(u− c)[V (u)]xcϕ(x)dxdt ≥ 0, c ∈ R.

The proof can be found in [3, 2].

3 Conclusions

We achieve a convergence and stability results for an approximation of a non-local traffic-flow model under the

same approach as made for local models. We obtained a new analytical-numerical approach for solving convolution

non-local models of type (1) discussed on [4, 1]. For a future work, we are studying the No-Flow approach as a

novel tool for solving Hyperbolic conservation laws with discontinuous flux functions and a BV criterion for ensure

uniqueness of solution of problem (2). This project was funded in part (E.A. by a CNPq grant 307641/2023-6 and

L.A by an institutional CAPES MSc fellowship).
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Abstract

We consider reaction-diffusion equations with hysteresis nonlinearity. Hysteresis naturally appears as a

mechanism of self-organization and is often used in control theory. Important features of the hysteresis operator

are discontinuity and memory. Due to the discontinuity of hysteresis, questions of well-posedness of such

equations are highly non trivial. For so-called transverse initial data we establish the existence and uniqueness

of the solution. Important part of the proof is the free boundary problem. For non-transverse initial data

we consider a spatial discretization of the problem and present a new mechanism of pattern formation, called

“rattling”. The profile of hysteresis forms a highly oscillating quasiperiodic pattern. “Rattling” is very robust

and persists in arbitrary dimensions and in systems acting on different time scales. The presentation is based

on the joint work with P. Gurevich.

1 Introduction

Hysteresis H(u)(t) for a real-valued function u(t) is defined as follows, Fig. 1.a. One fixes two thresholds α < β and

two outputs h1 ̸= h−1. If u(t) ≤ α, then H(u)(t) = h1; if u(t) ≥ β, then H(u)(t) = h−1; if u(t) is between α and β,

then H(u)(t) takes the same value as “just before.” The main features of systems with hysteresis are the dependence

of the output on the prehistory of the input, rate independence, and nonsmoothness. Hysteresis operators are

applied in mathematical descriptions of various physical, chemical and biological processes: thermocontrol, chemical

reactors, ferro-magnetism, self-organisation and others.

Parabolic equations with hysteresis appear in models with several diffusive and nondiffusive substances that

interact according to a hysteresis law. On a bounded domain Ω ⊂ Rn, consider the prototype model

ut = D∆u+ f(u, v), v = H(u), (1)

supplemented with the initial and boundary conditions, where D > 0 and f is a smooth nonlinearity. It is important

that the input u(x, t) of the hysteresis H is not only a function of time, but also of space. If we regard x as a

parameter, we can define H(u(x, ·))(t) as above. A system of type (1) was formulated for the first time in [1], in

order to model the growth of a colony of bacteria in a Petri plate. Rigorous analysis of (1) appears to be very

nontrivial because the hysteresis may switch at different spatial points at different time moments. Due to the

discontinuous nature of the hysteresis, the well-posedness of system (1) is a nontrivial question. To overcome those

difficulties, one usually replaces hysteresis by a properly defined multi-valued map. This allows one to establish

existence of a solution [2]; uniqueness and continuous dependence of the solution on initial data remains open.

2 Transverse initial data

In [5], we observed that the dynamics of solutions of system (1) is related to the evolution of the free boundary that

separates subdomains in Ω, in each of which the hysteresis is a constant. This observation suggests a connection with

parabolic obstacle-type problems [3]. For reaction-diffusion equations with hysteresis, the free-boundary approach

allowed us to distinguish a wide class of so-called transverse initial data (those initial data that cross the thresholds

α and β with nonzero slope) for which (1) is well posed in one spatial dimension Ω [4, 6].
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a) b) c)

Figure 1: a) Hysteresis H. b) Rattling for h−1 = −h1: a) profiles of hysteresis and solution, c) hysteresis pattern

for h−1 = −h1.

3 Rattling

The nontransverse case is a completely open problem even in the one-dimensional case. Preliminary numerical

results indicate that, in order to guarantee well-posedness, the operator H must be redefined in the nontransverse

case. To find the proper definition ofH, we begin with the spatially discretized system. For clarity of the explanation,

take u to be a scalar function, D = 1 and f(u, v) = v. Set β = 0 and consider the nontransverse initial data

u|t=0 = −cx2 for x ∈ R and some c > 0. Setting uj(t) = u(δj, t) for a fixed δ > 0, we rewrite (1) as



u̇j =

uj−1 − 2uj + uj+1

δ2
+H(uj),

uj(0) = −c(δj)2, j ∈ Z,
(2)

which is a lattice dynamical system. Numerical simulations of system (2) exhibit a remarkable behavior (Fig. 1.b):

number of nodes that do not switch

number of nodes that switch
≈
∣∣∣∣
h−1

h1

∣∣∣∣ . (3)

This is a very rigid phenomenon, which persists in multidimensional domains and seems to be independent of the

shape of the lattice, Fig. 1.c. Rattling is a new mechanism of pattern formation, its nature is different from other

mechanisms, such as travelling waves, Turing instability, etc. We proved the conjecture (3) for the case h−1 = 0

[7]. In this case all the nodes switch. The rattling effect in (2) gets finer and finer as δ → 0. Therefore, in the limit

of the case h−1 < 0 there is no hope to obtain the function H(u) taking values h1 or h−1 on a measurable set, but

H(u) should take an intermediate value (zero in the case of a scalar equation).
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Abstract

Measure differential equations is a recently discovered branch of differential equations that can be used as a

tool to study physical models more closely aligned with reality, such as models exhibiting jump phenomena.

Although this field has developed in recent years, the theory of measure functional differential equations

remains scarce, and some classes of these equations have yet to be described. In this work, we explore neutral

measure functional differential equations with infinite delay. Using techniques known in the literature, we obtain

qualitative properties of their solutions, such as existence, uniqueness, and continuous dependence.

1 Introduction

Every study of Ordinary Differential Equations (ODE) has come across some phase portrait. It is common to

find figures on the covers of books on this topic that represent trajectories in phase space. The history of the term

“phase space” is unclear and is intertwined with the development of multidimensional spaces, involving great names

such as Joseph Liouville, Pierre de Fermat, Ludwig Boltzmann, James Clerk Maxwell, Henri Poincaré and Paul

Ehrenfest [2]. Phase space is an important tool in the study of dynamic systems (which can be biological, physical,

economic models, etc.) when the intention is to understand qualitative behavior and obtain information about the

properties of trajectories, such as stability and bifurcations. Roughly speaking, phase space is a multidimensional

space in which each point represents a complete state of a physical system.

When we talk about functional differential equations (FDE) with finite delay time, instead of a point in a

multidimensional (finite-dimensional) space, the state is represented by a function in an infinite-dimensional space.

For example, if τ > 0 is the delay time of an FDE, then the phase space could be the space C([−τ, 0],Rn) of

continuous functions defined in [−τ, 0] that take values in Rn. In this case, the state at time r is determined by the

function xt defined in [t− τ, t]. Thas is, phase space describes the state of the system at a past time. We can think

of pahse space as a generalization of the concept of ODE, considering τ = 0.

In the case of EDF’s with infinite delay, still within the space of continuous functions, [4] and [2] have

axiomatically defined phase spaces. These spaces were used by many authors later, such as [3].

Expanding these ideas and moving on to differential equations in measure with infinite delay, whose solutions

are no longer continuous functions, [5] proposes a phase space. In this work, we will use the phase space, also

defined axiomatically, proposed by [1].

2 Main Results

A measure neutral functional differential equation with infinite delay, here abbreviated by NFDE, is an equation of

the form

y(t) = y(t0) +

∫ t

t0

f(s, ys) dg(s) +N(t)yt −N(t0)yt0 , (1)
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where g : [t0, t0 +σ] → R is a non decreasing function, f,N : [t0, t0 +σ]×B → Rn are continuous applications, with

N(t) : B → Rn bounded linear for each t ∈ [t0, t0 + σ]. If yt0 = φ ∈ B, we say (1) has de the initial condition φ.

Let O ⊂ H a nonempty bounded subset, where

H = H(t0, σ) =
{
y : (−∞, t0 + σ) → Rn : y|[t0,t0+σ] is regulated and yt0 ∈ B

}
.

Our goal is to associate with the equation (1) a generalized ODE

dx

dτ
= DF (t, x), t ∈ [t0, t0 + σ], (2)

where x : [t0, t0 + σ] → O and F : [t0, t0 + σ]×O → G((−∞, t0 + σ],Rn) is given by

F (t, x)(v) =





0, v ∈ (−∞, t0),
∫ v

t0

f(s, xs) dg(s) +N(v)xv, v ∈ [t0, t],

∫ t

t0

f(s, xs) dg(s) +N(t)xt, v ∈ [t, t0 + σ],

(3)

according with the following relation, between the solution x of (2) and the solution y of (1),

x(t)(v) =




y(v), v ∈ (−∞, t],

y(t), v ∈ [t, t0 + σ].

The function F defined in (3) is well-defined so that it is possible establish that the sentences composing the

function F really take values in the space of regulated functions.

Also, we will restrict ourselves to the study of equations whose F function in (2) satisfies two common conditions

in generalized ODE theory and in order to ensure a correspondence between (1) and (2) will assume the some

conditions over the bounded of the Kurzweil integrals which appear in (3).
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Abstract

In this work, we investigate the existence and regularity of solutions for a semilinear elliptic equation with

singular nonlinearity, following the studies of Lucio Boccardo and Luigi Orsina in [2]. This problem is given by:
−div(M(x)∇u) = f(x)

uγ
, in Ω

u > 0, in Ω

u = 0, on ∂Ω

where Ω is a bounded subset of RN of class C1, N ≥ 2, f : Ω −→ R is a function belonging to some Lebesgue

Space, γ > 0 and M is a bounded elliptic matrix.

1 Introduction

In this work, following the studies of Lucio Boccardo and Luigi Orsina in [2], we will investigate the existence and

regularity of the solution of the following semilinear elliptical problem with singular nonlinearity





−div(M(x)∇u) = f(x)
uγ , in Ω

u > 0, in Ω

u = 0, on ∂Ω

(1)

where Ω ⊂ RN is a bounded open of class C1, N ≥ 2, γ > 0, f ∈ Lm(Ω), m ≥ 1, and M is a bounded elliptic

matrix, that is, there are α, β > 0 such that

α|ξ|2 ≤M(x)ξ · ξ, |M(x)| ≤ β ∀ ξ ∈ RN , a.e. x ∈ Ω.

In the same way as [2], the Problem (1) was divided into three parts with respect to γ, when it is equal to 1,

greater than 1 and less than 1. To obtain the results, we initially consider the following approximate problem

{
− div(M(x)∇un) = fn

(un+
1
n )γ

in Ω

un = 0 on ∂Ω
(2)

where f is a non-negative measurable function, n ∈ N, fn = min{f, n} and M is a bounded elliptic matrix.

2 Main Results

Below, we highlight the main results discussed in this work.

Proposition 2.1. Problem (2) has a unique solution un ∈W 1,2
0 (Ω) ∩ L∞(Ω) non-negative, so that

i) un is increasing with respect to n;

ii) un > 0 in Ω;
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iii) For every Ω̂ ⊂⊂ Ω, there is a KΩ̂ > 0, independent of n, such that

un(x) ≥ KΩ̂ > 0 (1)

for all x ∈ Ω̂ and for all n ∈ N.

Proof The key to demonstrating the existence of KΩ̂ is a Maximum Principle in [3].

Theorem 2.1. In Problem (1), consider f ∈ L1(Ω) a non-negative function not identically null and γ = 1. Then

there is a solution u ∈W 1,2
0 (Ω) in the sense of

∫

Ω

M(x)∇u · ∇ϕ =

∫

Ω

fϕ

u
∀ ϕ ∈ C∞

c (Ω).

Proof Proving that un is limited in W 1,2
0 (Ω), it is sufficient to use the weak convergence on the left side of the

above equality and use Lebesgue’s Dominated Convergence Theorem. The conclusion is immediate by Proposition

2.1.

Theorem 2.2. Let γ > 1 and f ∈ L1(Ω) be non-negative and not identically null. Then there is a solution

u ∈W 1,2
loc (Ω) of Problem (1) in the sense of

∫

Ω

M(x)∇u · ∇ϕ =

∫

Ω

fϕ

u
∀ ϕ ∈ C∞

c (Ω).

Furthermore, u = 0 in ∂Ω.

Proof Proving that un is bounded in W 1,2
loc (Ω), u

γ+1
2

n is bounded in W 1,2
0 (Ω) and using the definition of u = 0 in

∂Ω, the result follows.

Theorem 2.3. Considering the Problem (1) with γ < 1 and f ∈ Lm(Ω) non-negative and non-identically null,

where m = 2N/[N + 2 + γ(N − 2)] = [2∗/(1− γ)]
′
, there is a solution u ∈W 1,2

0 (Ω) in the sense of

∫

Ω

M(x)∇u · ∇ϕ =

∫

Ω

fϕ

u
∀ ϕ ∈ C∞

c (Ω).
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Abstract

In this paper we present a mathematical model to study the dynamics of Human Immunodeficiency Virus

(HIV) and Acquired Immune Deficiency Syndrome (AIDS). This model incorporates vertical transmission along

with nonlinear dynamics governing transmission between adults, individuals in treatment and those living with

the disease. Employing rigorous mathematical analysis techniques, we explore crucial epidemiological metrics

such as basic reproduction number, equilibrium points, and conditions that dictate infection persistence or

extinction, which are inferred through stability analysis. Simulations and sensitivity analysis results shed light

on the nuanced interplay of these factors, providing insight into the intricate dynamics of transmission. In

particular, our findings underscore the great importance of adult-to-adult transmission in influencing disease

dynamics, overshadowing other contributing factors. Furthermore, we found that birth rate and mother-to-child

transmission exert a comparatively less significant impact on the escalation of infections.

1 Introduction

Transmission of HIV/AIDS can occur in several ways, including sexual transmission, parenteral transmission, where

the primary way it occurs is needle sharing in injection drug users, and finally, vertical transmission from mother to

child during pregnancy, childbirth or breastfeeding. [1] state that although sexual transmission is the most common

route of HIV infection, needle-sharing and vertical transmission also contribute significantly to the spread of the

virus. For example, [2], [3] claim that in some cities, the prevalence of HIV/AIDS among people who inject drugs

is significantly higher than in the general population, indicating the importance of parenteral transmission in the

HIV epidemic.

2 Main Result

2.1 A Model with Child and Adult Population

Two age groups are considered: 1. Adults (over 13 years of age), who are infected by sexual intercourse and by

sharing infected needles in injecting drug users. 2. Children who are infected only by vertical transmission.

Regarding the notation of variables, the total population is N(t), and is divided into 6 compartments, S means

susceptible, I means infected, T are treated with antirretroviral therapy and finally A are individuals living with

AIDS, the subscript c means children.

Infected partners who are on antirretroviral treatment are less likely to be infected than those who are not on

treatment. Thus, is assumed that treated and untreated individuals living with AIDS are outside of the transmission

dynamics. Therefore, the forces of infection, it is the form how the infection is transmitted and mathematically

modeled, will be as follows:

λs =
csbsI

S + I
(Sexual Contagion) λn =

cnbnI

S + I
(Contagion by needle sharing in IDU) (1)

To summarize, we consider that λs + λn =
βI

S + I
where β = csbs + cnbn. (2)
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The above information allows for the construction of the following compartmental diagram, figure 1, which is

proposed that adequately explains the dynamics of the model.

Figure 1: Flux diagram.
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With initial conditions given by
(
Sc(0), Ic(0), S(0), I(0), T (0), A(0)

)
∈ R6

+ that give us some numerical results:

Figure 2: Varying the β parameter in untreated infected children.
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Figure 3: Varying the β parameter in untreated infected adults.
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Abstract

This work investigates a degenerate non-local boundary value problem of logistic type. The presence of the

non-local term prevents us from using the classical sub and supersolution methods to characterize the existence

of positive solutions and ascertain their point-wise behavior with respect to on parameters of the problem.

Combining some ideas from [2] with the theory of large solutions from [3], we conduct a detailed study of

the asymptotic point-wise behavior of positive solutions, revealing a behavior substantially different from that

exhibited by the positive solutions of the underlying local problem due to the presence of the non-local term.

1 Introduction

In this work we analyze the existence, the uniqueness, and the limiting point-wise behavior in λ of the positive

solutions of the non-local degenerate boundary value problem





−∆u = λu− b(x)up − a(x)u

∫

Ω

c(y)|u(y)|r dy in Ω,

u = 0 on ∂Ω,
(1)

where Ω ⊂ RN , N ≥ 1, is a bounded domain with smooth boundary, p > 1, r ≥ 1, a, b ∈ Cν(Ω), ν ∈ (0, 1], vanish

in some subsets of positive measure of Ω, say Ω0,a and Ω0,b, and 0 < c ∈ L∞(Ω).

The problem (1) provides us with the steady-states of a reaction-diffusion model in Population Dynamics. In

these models, Ω models the inhabiting territory of a species whose density at the position x ∈ Ω is given by u(x).

As homogeneous Dirichlet boundary conditions are considered on ∂Ω, the surroundings are assumed to be hostile

for the species u. The diffusion term on the left side hand of (1) describes a random spatial movement of the

individuals of u, while the reaction term on the right hand side provides us with the local reproduction rate per

individual, i.e., the per capita population growth rate. As observed in [1], the “crowding effect” of the population

is given by g(x, u,
∫
Ω
c(x)ur) = 1 − (a(x)

∫
Ω
c(x)ur + b(x)up−1)/λ. It turns out that this is the most direct way of

introducing the non-local effects. Adopting this perspective, the term

C(x, , u,

∫

Ω

c(x)ur) =
λ

b(x)up−1 + a(x)

∫

Ω

c(x)ur

measures the carrying capacity at each x ∈ Ω, which is related to the amount of individuals that the region can

support so that the higher the value of C, the more individuals can inhabit that zone. As we are assuming that

both a and b may be simultaneously zero in certain patches, we are allowing C to be infinite on some regions of the

domain, referred to as “refuge zones” or “protected areas”, where the species grows according to the Malthus law.

Naturally, where C is finite, the species grows according to the Verhulst law. We emphasize that, in the model (1),

the carrying capacity depends on a sort of weighted nonlinear average of the total population,
∫
Ω
c(y)ur(y) dy.
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2 Main Results

To state the main findings of this work, we need to introduce the following notation. Define Ω0 := Ω0,a ∩ Ω0,b,

which might be empty, and consider

σ1 := σ1[−∆] and σ0
1 := σ1[−∆;Ω0],

where σ0
1 = ∞, if Ω0 = ∅. With respecto to the existence of positive solution, we have:

Theorem 2.1. Under the above assumptions, the problem (1) possesses a positive solution in C2,ν(Ω) if, and only

if, λ ∈ (σ1, σ
0
1). Moreover, it is unique if it exists, and if we denote it by uλ, then

C := {(λ, uλ) : λ ∈ (σ1, σ
0
1)}

is a continuous curve in R× C2,ν(Ω) such that

lim
λ↓σ1

∥uλ∥∞ = 0, lim
λ↑σ0

1

∥uλ∥∞ = ∞. (2)

Furthermore, if:

(a) Ω0 ̸= ∅, then

lim
λ↑σ0

1

uλ
∥uλ∥2

=

{
φ0 in Ω̄0,

0 in Ω \ Ω0,
(3)

where φ0 stands for the principal eigenfunction associated to σ0
1 normalized so that

∫
Ω0
φ2
0 = 1.

(b) Ω0 = ∅, then
lim
λ↑∞

uλ = +∞ uniformly in compact subsets of Ω0,a.

Now, regarding the asymptotic behavior of the solutions, we have the following result:

Theorem 2.2. Assume that Ω0 ̸= ∅ is a smooth subdomain of Ω. Then:

(a) For every smooth subdomain D of RN such that D ⊂ Ω \ Ω0,b, there exists a constant C(D) > 0 such that

sup
λ∈(σ1,σ0

1)

∥uλ∥L∞(D) ≤ C(D).

(b) For every compact subset K ⊂ Ω \ (Ω0,a ∪ Ω0,b), limλ↑σ0
1
∥uλ∥L∞(K) = 0.

(c) If r > 1 and c
1

1−r ∈ L1(Ω), then, for every compact subset K of Ω \ Ω0,a, limλ↑σ0
1
∥uλ∥L1(K) = 0.

This theorem leads us to the following interpretation from the point of view of population dynamics in a model

with refugee zone (i.e., Ω0 ̸= 0). It can be proved that the average of the total population, measured by
∫
Ω
curλ,

increases monotonically to infinity as λ ↑ σ0
1 . Such growth leads to a devastating effect of the population in the

region a > 0, that becomes inhospitable for the species as λ ↑ σ0
1 (Theorem 2.2 (a) and (b)).

We also obtain a complete description of the asymptotic behavior in the particular case Ω0,a ⊂ Ω0,b.
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Abstract

The presentation is devoted to viscous / gravitational fingering phenomenon - the unstable displacement

of miscible liquids in porous media with the speed determined by Darcy’s law. Laboratory and numerical

experiments show the linear growth of the mixing zone, and we are interested in determining the exact speed of

propagation of fingers. One of the possible mechanisms of slowing down the fingers’ growth is due to convection

in the transversal direction, that we try to explain by introducing a semi-discrete model of incompressible

porous medium equation (IPM). In the simplest setting we show the structure of gravitational fingers - the

mixing zone consists of space-time regions of constant intermediate concentration and the profile of propagation

is characterized by two consecutive travelling waves which we call a terrace. Based on joint work with S.

Tikhomirov and Ya. Efendiev (arXiv:2401.05981).

1 Introduction

We present a semi-discrete model (1)-(4) of the two-dimensional viscous incompressible porous medium (IPM)

equation describing gravitational fingering instability. The IPM equation describes evolution of concentration

carried by the flow of incompressible fluid determined via Darcy’s law in the field of gravity:

∂tc+ div(uc) = ν∆c, div(u) = 0, u = −∇p− (0, c). (1)

Here c = c(t, x, y) is the transported concentration, u = u(t, x, y) is the vector field describing the fluid motion,

p = p(t, x, y) is the pressure, and ν ≥ 0 is an inverse of the Peclet number. Usually the spatial domain (x, y) is

either the whole space R2 or cylinder [0, 1]×R with periodic conditions, but here we consider a discretization in x.
We are interested in studying the exact rate of the linear growth of mixing

zone formed when the initial condition is close to the unstable stratification:

c(0, x, y) =




+1, y ≥ 0, (heavy fluid)

−1, y < 0. (light fluid)
(2)

A theoretical approach to estimate the width h(t) of the mixing zone was done in [2]. In particular, the authors

get h(t) ≤ 4t using energy estimates (no proven pointwise estimates). Quantification of the size of the mixing zone

in laboratory and numerical experiments for 2D case does not give exact answer: it shows that (see e.g. [3])

h(t) ∼ αt, for some α ∈ [1.34, 2]. (3)

The semi-discrete model of IPM that we introduce in Sec. 2 explains the possible mechanism of slowdown of fingers

and has potential to give better estimates for the size of the mixing zone h(t).
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2 Main Results

The semi-discrete model consists of a system of advection-reaction-diffusion equations on concentrations ck =

ck(t, y), velocities uk = uk(t, y), pressures pk = pk(t, y), describing motion of miscible liquids in several vertical

tubes (n real lines, y ∈ R, k = 1, . . . , n) and interflow between them (governed by velocities uk+1/2).

Let n ∈ N, n ≥ 2, be the number of tubes. The n-tubes IPM model is obtained as a

formal limit of the upwind finite-volume scheme and reads as follows, k = 1, . . . , n:

(transport eq. in k-th tube) ∂tck + ∂y(ukck)− ν∂yyck = fk−1/2 − fk+1/2, (1)

(incompressibility condition) l · ∂yuk − uk−1/2 + uk+1/2 = 0. (2)

Function fk+1/2 is responsible for the interflow between k-th and (k + 1) tubes:

fk+1/2 =




ck · uk+1/2

l , uk+1/2 ≥ 0, (fluid flows from tube k to (k + 1))

ck+1 · uk+1/2

l , uk+1/2 ≤ 0. (fluid flows from tube (k + 1) to k)
(3)

The velocities uk and uk+1/2 are given by the Darcy’s law:

uk = −∂ypk − ck, uk+1/2 =
pk+1 − pk

l
. (4)

Here l > 0 is a parameter equal to the distance between the tubes. We assume that the last, n-th tube, is connected

with the 1-st tube, thus all the indexes in the equations should be understood modulo n.

Numerical modelling shows that the typical asymptotic solution as t→ ∞ for initial data close to (2) for a small

number of tubes looks like a stacked combination of traveling waves which we call a propagating terrace.
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Figure 1: Typical asymptotic solution ck, k = 1, . . . , n for n = 2, 3, 4 tubes
In the presentation we give a rigorous justification of the existence of a propagating terrace in the simplest

setting of two tubes — equations (1)-(4) for n = 2 (see [1]). The main result of [1] claims:

Theorem 2.1. For fixed ν > 0 and sufficiently small values of l > 0 there exist

two intermediate concentrations c∗1(l) ∈ (−1, 1), c∗2(l) ∈ (−1, 1) and two traveling

wave (TW) solutions of the system (1)–(4) that connect the states:

(−1,−1)
TW−−→ (c∗1(l), c

∗
2(l))

TW−−→ (1, 1). (5)

Moreover, the speeds of the traveling waves approach −1/4 and 1/4 as l → 0.
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