
Anais do XVI ENAMA

Comissão Organizadora

Abdeladhim Tahimi (CECA-UFAL)

Gerardo Cardenas (IM-UFAL)
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por Rômulo M. Vermersch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Approximation numbers of kernels satisfying an abstract Hölder condition., por
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Morales-Rodrigo & Antonio Suárez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Global existence of solutions for Boussinesq system with energy dissipation, por

Charles Amorim, Eder Mateus & Marcelo Fernandes de Almeida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Brezis-Kamin type results involving locally integrable weights, por Diego Ferraz., Ailton

R. da Silva & Pedro Ubilla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Quasilinear elliptic problems with general concave-convex nonlinearities, por J.

Rodrigues, Edcarlos D. Silva & M. L. M. Carvalho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Global strong solutions for Navier-Stokes equations with density variable and mass

diffusion in thin domains, por Felipe W. Cruz, Mirelle M. Sousa & Marko A. Rojas-Medar . . . . . . 93

Fractional powers approach of operators for abstract evolution equations of third

order in time, por Flank D. M. Bezerra & Lucas A. Santos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Elliptic systems of hénon type involving one-sided critical growth, por Eudes Barboza &

Bruno Ribeiro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A perturbed elliptic problem involving the p(x)-kirchhoff type triharmonic operator,
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Carvalho, José Carlos de Albuquerque & Edcarlos D. Silva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Global solutions for a fractional diffusion equation with gradient nonlinearity, por
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Gastão A. Braga & Antônio M. Silva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Control results with overdetermination condition for higher order dispersive system,

por Roberto de A. Capistrano–Filho & Luan Soares de Sousa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

The initialization problem for bioconvective flow, por Luis Friz & Marko Rojas-Medar . . . . 157

A singular parabolic equation with concave non linearity., por Miguel Loayza & Mohamed

Majdoub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



7

Massera’s theorems for a higher order dispersive system, por Roberto de Almeida Capistrano

Filho & Isadora Maria de Jesus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Regularity results for degenerate wave equations in a neighborhood of the boundary,
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Abstract

Let X1, . . . , Xn, Y be classes of Banach spaces-valued sequences. An n-linear operator A between Banach

spaces belongs to the ideal of (X1, . . . , Xn;Y )-summing multilinear operators if (A(x1j , . . . , x
n
j ))

∞
j=1 belongs to

Y whenever (xkj )
∞
j=1 belongs to Xk, k = 1, . . . , n. In this paper we develop techniques to generate non trivial

symmetric ideals of this type. Illustrative examples are provided.

1 Introduction

For Banach spaces E,E1, . . . , En, F over K = R or C, L(E1, . . . , En;F ) denotes the space of continuous n-linear

operators from E1 × · · · × En to F . If E = E1 = · · · = En, we write L(nE;F ). An ideal of n-linear operators is a

subclass Mn of the class of continuous n-linear operators between Banach spaces such that, for all E1, . . . , En, F ,

Mn(E1, . . . , En;F ) := Mn ∩ L(E1, . . . , En;F )

is a linear subspace of L(E1, . . . , En;F ) containing the n-linear operators of finite type and satisfying the following

ideal property: if A ∈ Mn(E1, . . . , En;F ), uj : Gj −→ Ej , j = 1, . . . , n, and t : F −→ H are bounded linear

operators, then the composition t ◦A ◦ (u1, . . . , un) belongs to Mn(G1, . . . , Gn;H). Details can be found in [1, 2].

In this work we are interested in ideals defined, or characterized, by the transformation of vector-valued

sequences. We follow the approach from [3], which we describe next.

The symbol E
1
↪→ F means that E is a linear subspace of F and ∥ · ∥F ≤ ∥ · ∥E on E. By c00(E) and ℓ∞(E)

we denote the spaces of eventually null and bounded E-valued sequences. By (ej)
∞
j=1 we denote the canonical

sequences. A sequence class is a rule that assigns, to each Banach space E, a Banach space X(E) of E-valued

sequences such that c00(E) ⊆ X(E)
1
↪→ ℓ∞(E) and ∥ej∥X(K) = 1 for every j ∈ N, in symbols E 7→ X(E).

Let 1 ≤ p < ∞. The following correspondences are examples of sequence classes: E 7→ ℓ∞(E), E 7→ c0(E),

E 7→ c(E), E 7→ cw0 (E), E 7→ ℓp(E), E 7→ ℓwp (E), E 7→ ℓup(E), E 7→ Rad(E), E 7→ RAD(E), E 7→ ℓp⟨E⟩,
E 7→ ℓmidp (E). All sequences spaces aforementioned are endowed with their natural norms.

An n-linear operator A ∈ L(E1, . . . , En;F ) is said to be (X1, . . . , Xn;Y )-summing if (A(x1j , . . . , x
n
j ))

∞
j=1 ∈ Y (F )

whenever (xkj )
∞
j=1 ∈ Xk(Ek), k = 1, . . . , n. The ideal of (X1, . . . , Xn;Y )-summing n-linear operators is denoted by

ΠX1,...,Xn;Y .

The symmetrization of the n-linear operator A ∈ L(nE;F ) is denoted by As. According to [1], an ideal Mn of

n-linear operators is said to be symmetric if As belongs to Mn whenever A belongs to Mn. The purpose of this

work is to develop techniques to generate symmetric ideals of the kind ΠX1,...,Xn;Y that are non trivial in the sense

that Xi ̸= Xj for some i, j and Y ̸= ℓ∞(·).

2 Main Results

Definition 2.1. The sequence classes X1, . . . , Xn are said to be jointly dominated if there exists a finitely determined

sequence class X such that Xi(E)
1
↪→ X(E) and ∥ · ∥Xi(E) ≤ ∥ ·∥X(E) on c00(E) for every Banach space E and all i.
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Theorem 2.1. If the sequence classes X1, . . . , Xn are jointly dominated, then the ideal ΠX1,...,Xn;Y is symmetric

for every finitely determined sequence class Y .

Definition 2.2. Let X be a sequence class.

(a) For a Banach space E, we define c00
X(E) as the closure of c00(E) in X(E) endowed with the norm ∥ · ∥X(E).

(b) X is finitely shrinking if, regardless of the Banach space E, the sequence (xj)
∞
j=1 ∈ X(E) and k ∈ N, it holds

(xj)j ̸=k := (x1, . . . , xk−1, xk+1, . . .) ∈ X(E) and ∥(xj)j ̸=k∥X(E) ≤ ∥(xj)∞j=1∥X(E).

(c) Suppose that X is finitely shrinking. If (xj)
∞
j=1 ∈ X(E), then (xn, xn+1, . . .) ∈ X(E) for every n ∈ N. For a

Banach space E, we define

Xu(E) :=
{
(xj)

∞
j=1 ∈ X(E) : lim

n
∥(xn, xn+1, . . .)∥X(E) = 0

}
, endowed with the norm ∥ · ∥X(E).

Corollary 2.1. Let X and Y be finitely determined sequence classes with X finitely shrinking. The ideal ΠX1,...,Xn;Y

is symmetric for every n ≥ 2 and all Xi ∈ {c00X , Xu, X}, i = 1, . . . , n.

Example 2.1. Let 1 ≤ p < ∞. Π
ℓ
θ1
p ,...,ℓθnp ;Y

and ΠX1,...,Xn;Y are non trivial sequential symmetric ideals for

every n ≥ 2, all θ1, . . . , θn ∈ {u,w} with θi = u and θj = w for some i and j, all X1, . . . , Xn ∈ {ℓmidp , (ℓmidp )u}
(respectively, {RAD,Rad}) with Xi = ℓmidp (respectively, Xi = RAD) and Xj = (ℓmidp )u (respectively, Xj = Rad)

for some i and j, and every finitely determined sequence class Y ̸= ℓ∞(·).

Several usual sequence classes are finitely determined, such as ℓp(·), ℓwp , ℓ∞, RAD, ℓp⟨·⟩ and ℓmidp ; and the bad

news is that some are not, such as c0(·), cw0 , c(·), ℓup , Rad and (ℓmidp )u. In this case, we have the following theorem.

Definition 2.3. For a sequence class X and regardless of the Banach space E we define

Xfd(E) :=

{
(xj)

∞
j=1 ∈ EN : ∥(xj)∞j=1∥Xfd(E) := sup

k
∥(xj)kj=1∥X(E) <∞

}
.

We say that X is finitely zero invariant if the sequence (xj)
∞
j=1 ⊆ E and k ∈ N for which xk = 0, it holds

(xj)
∞
j=1 ∈ X(E) ⇔ (xj)j ̸=k ∈ X(E) and ∥(xj)∞j=1∥X(E) = ∥(xj)j ̸=k∥X(E).

Theorem 2.2. Let X and Y be finitely shrinking and finitely zero invariant sequence classes. For every n ∈ N,
the ideal ΠX1,...,Xn;Y is symmetric whenever Xi ∈ {Xu, X,Xfd} for every i = 1, . . . , n, and Xk = Xu for some

k ∈ {1, . . . , n}. Moreover, in this case ΠX1,...,Xn;Y = ΠX1,...,Xn;Y u .

Example 2.2. The ideals Π
ℓ
θ1
p ,...,ℓθnp ;Y

and ΠX1,...,Xn;Y from Example 2.5 are non trivial sequential symmetric

ideals for every finitely shrinking and finitely zero invariant sequence class Y ̸= ℓ∞(·).
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Abstract

In this work, among other results, we prove some general criteria for the notion of (α, β)-spaceability and, as

applications, we extend recent results of different authors.

1 Introduction

The notions of lineability and spaceability were introduced in the seminal paper [2] by Aron, Gurariy and Seoane-

Sepúlveda and its essence is to investigate linear structures within exotic settings. More precisely, A ⊂ V is

α-lineable in a vector space V , if A ∪ {0} contains an α-dimensional subspace of V . In addition, if V is endowed

with a topology, we say that A is α-spaceable in V if there is an α-dimensional closed subspace of V contained in

A ∪ {0}.
It turns out that the vast literature related to this subject has shown that positive results of lineability and

spaceability are rather common; we refer the reader to [1]. Recently, in [7] the notions of (α, β)-lineability and (α, β)

-spaceability were introduced as an attempt to investigate how far positive results of lineability and spaceability

remain valid under stricter assumptions.

From now on N denotes the set of all positive integers and K represents the real scalar field R or the complex

scalar field C. All vector spaces are considered over K.

Let V be a vector space and let A be a non-void subset of V .

� If α, β are cardinal numbers, α ≤ β, and then A is called (α, β)-lineable if it is α-lineable and for each

α-dimensional subspace Wα ⊂ A ∪ {0} there is a β-dimensional subspace Wβ such that

Wα ⊂Wβ ⊂ A ∪ {0} . (1)

� When V is endowed with a topology and the subspace Wβ satisfying (1) can always be chosen closed, we say

that A is (α, β)-spaceable. Moreover, we shall also say that A is (α, β)-dense lineable if it is α-lineable and

for each α-dimensional subspace Wα ⊂ A ∪ {0} there is a β-dimensional dense subspace Wβ such that

Wα ⊂Wβ ⊂ A ∪ {0} .

The letters α, β will always represent cardinal numbers, card (A) denotes the cardinality of the set A,

ℵ0 := card (N) and c := card (R).

2 Main Results

Theorem 2.1. Let α ≥ ℵ0 and V be an F -space. Let A, B be subsets of V such that A is α-lineable and B is

1-lineable. If A∩B = ∅ and A is stronger than B, then A is not (α, β)-spaceable, regardless of the cardinal number

β.

11
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Corollary 2.1. Let α ≥ ℵ0 and β be a cardinal number. The set ND [0, 1] is not (α, β)-spaceable.

Corollary 2.2. Let α ≥ ℵ0 and β be a cardinal number. For p > 0, the set Lp[0, 1] \
⋃
q∈(p,∞) Lq[0, 1] is not

(α, β)-spaceable.

Corollary 2.3. If F = c0 or F = c, then ℓ∞ \ F is not (α, β)-spaceable if α ≥ ℵ0.

Theorem 2.2. Let V be an infinite dimensional Banach space and W be a closed vector subspace of V . If W has

infinite codimension, then V \W is (n, c)-spaceable, for every n ∈ N.

Corollary 2.4. Let F = c or c0. Then ℓ∞ \ F is (α, c)-spaceable if, and only if, α < ℵ0.

Given a topological vector space V , let BV be the set of all basis for the topology of V . Since cardinal numbers

are well-ordered, we can consider B0 ∈ BV of minimal cardinality. The cardinality of B0 is called the weight of V

and denoted by w(V ).

Theorem 2.3. Let V ̸= {0} be a topological vector space and W ⊂ V be a linear subspace such that w(V ) ≤
dim (V/W ). Then V \W is (α, β)-dense lineable for each α < dim (V/W ) and

max {α,w (V )} ≤ β ≤ dim (V/W ) .

Corollary 2.5. Let 0 < p <∞. The set Lp[0, 1] \
⋃
q∈(p,∞) Lq[0, 1] is (α, β)-dense lineable, for each α < c and

max {α,ℵ0} ≤ β ≤ c.
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Abstract

We prove when a Banach ideal of linear operators defined, or characterized, by the transformation of vector-

valued sequences is maximal. Known results are recovered as particular cases and new information is obtained.

1 Introduction

The theory of operator ideals is central in modern mathematical analysis and, in this context, maximal ideals play

a key role. A number of important operator ideals are defined, or characterized, by the transformation of vector-

valued sequences; and some of these ideals are known to be maximal. A unifying approach to this kind of operators

ideals was proposed in [1] using the concept of sequence classes.

The purpose of this talk is to present results on the maximality of the Banach operator ideals of the type

LX;Y dual obtained in the work [3]. The main result establishes conditions on the sequences classes X and Y under

which the Banach operator ideal LX;Y dual is maximal. We prove our main results defining, developing and applying

a tensor quasi-norm αX;Y determined by the sequence classes X and Y . The tensor quasi-norms αX;Y are based

on – and can be regarded as generalizations of – the classical Chevet-Saphar tensor norms (see [6]).

Banach spaces over K = R or C are denoted by E and F . The symbol E
1
↪→ F means that E is a linear subspace

of F and ∥x∥F ≤ ∥x∥E for every x ∈ E. The symbol (xj)
n
j=1, where x1, . . . , xn ∈ E, stands for the sequence

(x1, x2, . . . , xn, 0, 0, . . .) ∈ EN. By ε we denote the injective tensor norm on the tensor product of Banach spaces.

The theory and symbology of the sequence class environment and about the dual of sequence classes are present

in [1] and [2]. The other notations and symbols used here are either usual in functional analysis or are present in

the references already cited.

2 Main Results

We need LX;Y dual to be a Banach operator ideal. So, whenever we refer to LX;Y dual we assume that the sequence

classes X and Y are linearly stable, Y is spherically complete and X(K)
1
↪→ Y dual(K). For the other properties and

definitions concerning sequence classes used here we refer to [1, 2] and [3].

Let X and Y be sequence classes. For Banach spaces E and F , consider the map αX,Y : E ⊗ F −→ R given by

αX,Y (u) = inf
{∥∥(xj)nj=1

∥∥
X(E)

·
∥∥(yj)nj=1

∥∥
Y (F )

: u =
∑n
j=1 xj ⊗ yj

}
.

The idea is to identify conditions on the sequences classes X and Y , as weak as possible, so that αX,Y is a

quasi-norm on E ⊗ F . So, we have the following

Proposition 2.1. If X and Y are monotone sequence classes and ε ≤ αX,Y , then, for all Banach spaces E and

F , αX,Y is a quasi-norm on E ⊗ F such that α(x⊗ y) ≤ ∥x∥ · ∥y∥ for all x ∈ E and y ∈ F .

Proposition 2.2. If X and Y are monotone, linearly stable and finitely injective sequences classes and ε ≤ αX,Y ,

then αX,Y is a tensor quasi-norm.
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For M ∈ F(E) (finite dimensional subspaces of E) we denote by IM : M −→ E the inclusion operator and for

L ∈ CF(F ) (finite codimensional subspaces of E) we denote by QL : F −→ F/L the quotient operator.

Here is our main result:

Theorem 2.1. Suppose that αX,Y is a tensor quasi-norm and that X and Y are finitely determined or finitely

dominated. For an operator T ∈ L(E;F ), T ∈ LX;Y dual(E;F ) if and only if

s := sup
{
∥QL ◦ T ◦ IM∥X;Y dual : (M,L) ∈ F(E)× CF(F )

}
<∞,

and, in this case, ∥T∥X;Y dual = s. In particular, the Banach operator ideal LX;Y dual is maximal.

The next corollary is combination of the theorem above with a well-known characterization of maximal ideals.

Corollary 2.1. Let u ∈ L(E;F ) be given. Under the assumptions of Theorem 2.1 we have u ∈ LX;Y dual(E;F ) if

and only if u∗∗ ∈ LX;Y dual(E∗∗;F ∗∗) and ∥u∥X,Y dual = ∥u∗∗∥X,Y dual .

Some examples of applications of our results:

(a) Theorem 2.1 recovers the following well known facts.

• The Banach ideal of absolutely (q, p)-summing operators: Πq,p := Lℓwp (·);ℓq(·) = Lℓwp (·);[ℓq∗ (·)]dual , with 1 ≤ p ≤
q <∞, is maximal. In particular, the ideal Πp of absolutely p-summing operators is maximal.

• The Banach ideal of Cohen strongly (q, p)-summing operators: Dq,p := Lℓp(·);ℓq⟨·⟩ = Lℓp(·);[ℓwq∗(·)]dual , 1 ≤ p ≤ q <

∞, is maximal. Although we found no reference to quote, we believe this is a well known fact.

• The Banach ideal of cotype q operators: Cq := LRAD(·);ℓq(·) = LRAD(·);[ℓq∗ (·)]dual , 2 ≤ q <∞, is maximal [6, 17.4].

(b) Just to illustrate the new information that can be obtained from Theorem 2.1 we mention that the Banach ideals

Lℓmid
p (·);ℓq⟨·⟩ = Lℓmid

p (·);[ℓwq∗(·)]dual and Lℓmid
p (·);ℓq(·) = Lℓmid

p (·);[ℓq∗(·)]dual , which were studied in [4, 5], are maximal.
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UFAL - Universidade Federal de Alagoas
XVI ENAMA - Novembro 2023 15–16

GROTHENDIECK’S COMPACTNESS PRINCIPLE ON BANACH LATTICES
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Abstract

In this talk we present recent results obtained by the authors about the Grothendieck compactness principle

for the absolute weak topology in the context of Banach lattices.

1 Introduction

Grothendieck’s compactness principle was proved by Grothendieck in 1955 and claims the following: in a Banach

space E, every compact subset is contained in the closed convex hull of a null sequence (see [6]).

In 2012, Dowling, Freeman, Lennard, Odell, Randrianantoanina and Turett studied the Grothendieck

compactness principle for the weak topology and proved the following: every weakly compact subset of a Banach

space E is contained in the closed convex hull of a weakly null sequence if and only if E has the Schur property

(that is, every weakly null sequence in E is norm null) (see [3]). Later, another proof appeared in [7] using an

operator theoretic approach.

Other works about this compactness-type principle have appeared in the literature in the last years from different

approaches (see [2], [4] and [5]). In this talk, we present recent results about this principle for the absolute weak

topology on Banach lattices.

2 Main Results

Before we present our main result (Theorem 2.3) we need to prove some results about the absolute weak topology

on Banach lattice whose analogues are well known for the weak topology on Banach spaces. Below we list some of

these results. By BE we denote the closed unit ball of the Banach space E.

The first result is a Smulyan-type theorem for the absolute weak topology:

Theorem 2.1. Absolutely weakly compact subsets of Banach lattices are absolutely weakly sequentially compact.

The next result shows that there is no Alaoglu’s theorem for the absolute weak topology:

Proposition 2.1. Let E be a Banach lattice. If BE∗ is absolutely weak∗ compact, then E has order continuous

norm.

The following is a partial Eberlein-type theorem for the absolute weak topology.

Theorem 2.2. Let K be an absolutely weakly sequentially compact subset of a Banach lattice E. If E is separable

or BE∗∗ is absolutely weak∗ compact, then K is absolutely weakly compact.

Proposition 2.2. Let E be Banach lattice such that E∗ and E∗∗ have order continuous norms and E∗∗ is atomic.

Then BE∗∗ is absolutely weak∗ compact. In particular, BE∗∗ = BE is absolutely weak∗ compact for every reflexive

atomic Banach lattice.
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We also present the following characterizations of the positive Schur property (meaning that every positive

weakly null sequence is norm null) by means of the absolute weak topology.

Proposition 2.3. The following are equivalent for a Banach lattice E:

(a) E has the positive Schur property.

(b) Absolutely weakly null sequences in E are norm null.

(c) Positive absolutely weakly null sequences in E are norm null.

(d) Positive disjoint absolutely weakly null sequences in E are norm null.

(e) Disjoint absolutely weakly null sequences in E are norm null.

These preliminary results allow us to present and prove our main result:

Theorem 2.3. A Banach lattice E has the positive Schur property if and only if every absolutely weakly compact

subset of E is contained in the closed convex hull of an absolutely weakly null sequence.

It is natural to wonder how the dual positive Schur property (meaning that positive weak∗-null sequences in the

dual space are norm null) can be connected to the absolute weak∗ topology. In this direction we prove the following

corollary.

Corollary 2.1. The following are equivalent for a Banach lattice E:

(a) E has the dual positive Schur property.

(b) Every absolutely weak* null sequence in E∗ is norm null.

(c) E has the positive Grothendieck property and every sequentially absolutely weak∗-compact subset of E∗ is

contained in the closed convex hull of an absolutely weak∗ null sequence.
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Abstract

The classical Kahane-Salem-Zygmund inequality is investigated within the multipolynomials framework,

a scenario encompassing multilinear and polynomial topics. The study compares the results obtained

concerning the constants involved and the multilinear forms and polynomials derived from them. We provide a

multipolynomial version of the inequality with optimal constants, among other results obtained.

1 Introduction

Here we present a multipolynomial version of the Kahane-Salem-Zygmund (KSZ) inequality, which one depends

on the multilinear result used as tool. Before further going, let us recall some basic facts about polynomials and

multipolynomials. We recall that if E and F are Banach spaces, a mapping P : E → F is said to be an m-

homogeneous polynomial when there exists an m-linear mapping A : Em → F which is equal to P on the diagonal

(we refer [4] or [3] to the basics of the theory).

The concept of homogeneous polynomial mentioned above has a natural generalization, due to I. Chernega and

A. Zagorodnyuk in [2, Definition 3.1]. Namely, given positive integers m and n1, . . . , nm, a mapping

P : E1 × · · · × Em → F

is said to be an (n1, . . . , nm)-homogeneous polynomial if, for each i with 1 ≤ i ≤ m, the mapping

P (z1, . . . , zi−1, ·, zi+1, . . . , zm) : Ei → F

is an ni-homogeneous polynomial for all fixed zj ∈ Ej with j ̸= i. It reduces to an m-linear mapping when m > 1

and n1 = . . . = nm = 1 and to an n1-homogeneous polynomial when m = 1. Continuous multipolynomials are all

those bounded on the product of unit balls BEi
of Ei (i = 1, . . . ,m). In that case,

∥P∥ := sup {∥P (z1, . . . , zm)∥ : zi ∈ BEi , i = 1, . . . ,m}

defines a norm on the vector space P(n1E1, . . . ,
nm Em;F ) of all continuous (n1, . . . , nm)-homogeneous polynomials

from E1 × · · · × Em into F (see [2] and [6] for the basics of theory).

Let us fix some useful and standard notation. For 1 ≤ p < ∞, we consider the Banach space ℓnp , which is just

Kn with the norm ∥z∥p = (
∑n
j=1 |zj |

p
)1/p, whereas ℓn∞ is just Kn with the norm ∥z∥∞ = maxj=1,...,n |zj |. For

1 < p <∞, the conjugate number is denoted as p∗, that is 1/p+1/p∗ = 1. We use the convention that 1 and ∞ are

conjugated to each other. For z = (z1, . . . , zn) ∈ ℓnp , we shall write zα to describe the product zα1
1 · · · zαn

n , where α

denotes an n-tuple (α1, . . . , αn) of non-negative integers; we will let |α| and α! represent the sum α1+· · ·+αn and the

product α1! · · ·αn!, respectively. Finally, for fixed m and n1, . . . , nm positive integers, we shall writeM :=
∑m
i=1 ni.
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2 Main Results

We apply the KSZ multilinear version due to Pellegrino et al. [5, Theorem 1.1], and it is a refined version of the

KSZ multilinear inequality with optimal exponents.

Theorem 2.1. [5, Theorem 1.1] Let m and n be positive integers, and let p1, . . . , pm ∈ [1,∞]. Then, there exist a

universal constant Cm, a choice of signs +1 and −1, and an m-linear form Am,n : ℓnp1 × · · · × ℓnpm → K of the type

Am,n (z1, . . . , zm) =

n∑
j1,...,jm=1

±z1j1 · · · zmjm ,

such that

∥Am,n∥ ≤ Cm · n
1

mink{max{2,p∗
k}}

+
∑m

k=1 max
{

1
2−

1
pk
,0
}
. (1)

Moreover, the exponent in the right-hand side of inequality (1) is optimal.

We get the following multipolynomial extension of the Theorem 2.1.

Theorem 2.2. Let m,n, and n1, . . . , nm be positive integers, and let p1, . . . , pm ∈ [1,∞]. Then, there exist

a universal constant CM , a choice of signs +1 and −1, and an (n1, . . . , nm)-homogeneous polynomial PM,n :

ℓnp1 × · · · × ℓnpm −→ K of the type

PM,n (z1, . . . , zm) =
∑

|α1|=n1,...,|αm|=nm

± cαz
α1
1 · · · zαm

m , (2)

with cα =
∏m
i=1

(
ni

αi

)
−2k for some non-negative integer k with 0 ≤ k ≤ [

∏
i

(
ni

αi

)
]/2 e at least nm coefficients cα = 1,

such that

∥PM,n∥ ≤ CM · n
1

min1≤i≤m{max{2,p∗
i }}

+
∑m

i=1 max
{
ni

(
1
2−

1
pi

)
,0
}
. (3)

Theorem 2.2 reduces to [5, Theorem 1.1] when m > 1 and n1 = . . . = nm = 1. Another application by assuming

m = 1, n1 = d, and p1 = p, on the other hand, provides a particular version for homogeneous polynomials; we have

the following corollary of the theorem.

Corollary 2.1. Let n and d be positive integers, and let p ∈ [1,∞]. Then, there exist a universal constant Cd, a

choice of signs +1 and −1, and a d-homogeneous polynomial Pd,n : ℓnp −→ K of the type Pd,n (z) =
∑

|α|=d±cαzα,
with at least n coefficients cα = 1, such that ∥Pd,n∥ ≤ Cd · nmax{d( 1

2−
1
p )+

1
2 ,1−

1
p}.

References

[1] albuquerque, n. g., l. coleta & velanga, t. - Extensions of Kahane–Salem–Zygmund inequality and

applications, preprint.

[2] chernega, i. & zagorodnyuk, a. - Generalization of the polarization formula for nonhomogeneous

polynomials and analytic mappings on Banach spaces, Topology, 48, (2009), 197–202.

[3] dineen, s. - Complex Analysis on Infinite-Dimensional Spaces, Springer Monographs in Mathematics,

Springer-Verlag London, Ltd., London, (1999).

[4] mujica, j. - Complex Analysis in Banach Spaces, Dover Publication, Inc., New York, (2010).
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Abstract

First we prove that the second adjoint of every bounded linear operator taking values in a Dedekind σ-

complete Banach lattice containing a copy of ℓ∞ is almost Dunford-Pettis. Next we generalize some known

results concerning conditions on the Banach lattices E and F under which the adjoint T ∗ and the second adjoint

T ∗∗ of any positive almost Dunford-Pettis operator T : E −→ F are almost Dunford-Pettis. Finally we prove

when T ∗ and T ∗∗ are almost Dunford-Pettis whenever T is a (not necessarily almost Dunford-Pettis) order

weakly compact operator.

1 Introduction

A linear operator between Banach spaces is completely continuous, or a Dunford-Pettis operator, if it sends weakly

null sequences to norm null sequences. The lattice counterpart of this important operator ideal is the class of

almost Dunford-Pettis operators: an operator from a Banach lattice to a Banach space is almost Dunford-Pettis

if it sends disjoint weakly null sequences to norm null sequences. Almost Dunford-Pettis operators have attracted

the attention of many experts, for example see [2, 4, 5, 6].

In this work we investigate when the adjoint and the second adjoint of a linear operator between Banach lattices

are almost Dunford-Pettis. These and related problems were treated in, e.g., [2, 4, 5]. The results we prove in this

work improve upon all known results on the topic we are aware of.

To see that second adjoints are not always almost Dunford-Pettis, recall that a Banach lattice E has the positive

Schur property if positive (or disjoint, or positive disjoint) weakly null sequences in E are norm null. The literature

on this property is extensive. By idE we denote the identity operator on E. If the Banach lattice E fails the positive

Schur property, which is a quite usual occurrence, then id∗∗E = idE∗∗ is not almost Dunford-Pettis.

2 Main Results

By T ∗ we denote the adjoint of a linear operator T and by T ∗∗ its second adjoint. For basic notions, notation and

results on Banach lattices we refer to [1, 7]. Operators are always supposed to be linear.

Theorem 2.1. Let E be a Banach lattice and F be a Dedekind σ-complete Banach lattice containing a copy of ℓ∞.

The following are equivalent.

(a) For every bounded operator T : E −→ F , T ∗∗ is almost Dunford-Pettis.

(b) For every regular operator T : E −→ F , T ∗∗ is almost Dunford-Pettis.

(c) For every positive operator T : E −→ F , T ∗∗ is almost Dunford-Pettis.

(d) E∗∗ has the positive Schur property.

Note that adjoint and second adjoint of almost Dunford-Pettis operators not always are almost Dunford-Pettis.

Example 2.1. (a) The identity idℓ1 is positive and almost Dunford-Pettis because ℓ1 is a Schur space and

id∗ℓ1 = idℓ∞ is not almost Dunford-Pettis because ℓ∞ fails the positive Schur property [8, p. 82].
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(b) Put E =

(⊕
n∈N

ℓn∞

)
1

. (i) The identity on E is positive and almost Dunford-Pettis because E has the positive

Schur property [8, p. 17], whereas idE∗∗ = id∗∗E is not almost Dunford-Pettis because E∗∗ fails the positive Schur

property [3, Example 2.8]. (ii) Calling on [3, Example 2.8] again, E∗ contains a lattice copy of ℓ1, so the norm of

E∗∗ is not order continuous [7, Theorem 2.4.14]. Since dual Banach lattices are Dedekind complete and, as we have

already mentioned, E∗∗ fails the positive Schur property, Theorem 2.1 gives a positive operator T : E −→ E∗∗ such

that T ∗∗ fails to be almost Dunford-Pettis. The positive Schur property of E assures that T is almost Dunford-Pettis.

Theorem 2.2. The following are equivalent for the Banach lattices E and F .

(a) If T : E −→ F is positive and almost Dunford-Pettis, then T is positively limited, hence T ∗ is almost Dunford-

Pettis.

(b) E∗ has order continuous norm or F has the dual positive Schur property.

Remark 2.1. (1) Theorem 2.2 gets the same conclusion of the combination of [4, Theorem 3] and [5, Theorem

4.3] without asking F to have property (d).

(2) Theorem 2.2 gets a stronger conclusion on one of the implications in [2, Theorem 5.1] with the same assumption.

Theorem 2.3. Let E,F be Banach lattices such that E∗ and F haver order continuous norms. If T : E −→ F is

positive and almost Dunford-Pettis, then T ∗ is positively limited, that is, T ∗ is almost limited, hence T ∗∗ is almost

Dunford-Pettis.

Theorem 2.4. Let E be a Banach lattice in which every positive bounded disjoint sequence is order bounded. Then,

(a) no matter the Banach lattice F , every order weakly compact regular operator T : E −→ F is positively limited,

hence T ∗ is almost Dunford-Pettis.

(b) no matter the Banach space G, the adjoint T ∗ of every bounded order weakly compact operator T : E −→ G is

almost limited, hence T ∗∗ is almost Dunford-Pettis.

The Theorem 2.4 applies to the Banach lattice E = C(K), where K is a compact Hausdorff space.
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Abstract

We introduce the space of weak Orlicz sequences and the concept of Orlicz-limited sets, which generalizes the

notion of p-limited sets. Some features and results concerning these notions are established and, as a byproduct,

another “mid-type” sequence space is obtained.

1 Introduction

In [1], A. Karn and D. Sinha introduce and study the concept p-limited sets generalizing the concept of limited

sets. Here a subset S of a Banach space X is limited if for every sequence (fn)
∞
n=1 satisfying limn→∞ fn(x) = 0, for

all x ∈ X, we have fn → 0 uniformly on S. Not every set that enjoys this property is compact, an error by I. M.

Gelfand, and a counterexample of this is presented by R. Phillips in [3], which motivated the concept of a limited

set.

In this work we introduce this “limited theory”, mentioned above, in the context of the Orlicz spaces.

Given an Orlicz function M and a Banach space E, one can define the Orlicz sequence space ℓM (E) as the set

of all sequences (xj)
∞
j=1 in E that satisfy

∑∞
j=1M

(
∥xj∥
η

)
< ∞, for some η > 0. The subspace of ℓM (E), formed

by sequences (xj)
∞
j=1 satisfying the same property for all η > 0 is denoted by hM (E).

The space ℓM (E) is complete with the norm ∥ · ∥M , given by ∥(xj)∞j=1∥M = inf
{
η > 0 :

∑∞
j=1M

(
∥xj∥
η

)
≤ 1
}
.

We refer to book [2] for further study of Orlicz sequence space.

For an Orlicz function M , we will denote its complementary Orlicz function by M∗. Also, the letters E and F

will denote Banach spaces over K = R or C.

2 Main Results

We define the set of all weak Orlicz sequences in E by ℓwM (E) := {(xj)∞j=1 : (φ(xj))
∞
j=1 ∈ ℓM , ∀φ ∈ E′}. This set

is actually a linear space and the expression ∥(xj)∞j=1∥w,M := supφ∈BE′ ∥(φ(xj))∞j=1∥M defines a complete norm in

ℓwM (E).

Every sequence (xj)
∞
j=1 ∈ ℓwM (E) can be identified with an continuous operator ξx : hM∗ −→ E given by

ξx(α) =
∑∞
j=1 αjxj , α = (αj)

∞
j=1 ∈ hM∗ . The map x 7→ ξx is an isometric isomorphism between ℓwM (E) and

L(hM∗ ;E).

We also have ℓM (E) ⊆ ℓwM (E) with ∥ ·∥w,M ≤ ∥·∥M and the equality ℓM (E) = ℓwM (E) does not occur in general.

Theorem 2.1 (Dvoretzky-Rogers type). Let M be an Orlicz function such that ℓM has no copy of c0. If E is an

infinite-dimensional Banach space, then ℓM (E) ⊊ ℓwM (E).

It is not difficult to show that the space ℓw
∗

M (E′) :=
{
(φj)

∞
j=1 in E′ : (φj(x))

∞
j=1 ∈ ℓM , ∀x ∈ E

}
is a Banach

space equipped with the norm given by ∥(φj)∞j=1∥w∗,M = supx∈E ∥(φj(x))∞j=1∥M . We also prove an isometric

isomorphism between ℓw
∗

M (E′) and L(E; ℓM ).

Here is one of our main definitions.
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Definition 2.1. A non-empty subset S of a Banach space E is said to be ℓM -limited if for every sequence (φn)
∞
n=1

in ℓw
∗

M (E′), there is (αn)
∞
n=1 ∈ ℓM such that |φn(x)| ≤ αn, for every x ∈ S and all n ∈ N.

Lemma 2.1. Let M be an Orlicz function and x = (xj)
∞
j=1 ∈ ℓwM (E). The set ξx(BhM∗ ) is ℓM -limited if and only

if we have ((φn(xj))
∞
j=1)

∞
n=1 ∈ ℓM (ℓM ) for all (φn)

∞
n=1 ∈ ℓw

∗

M (E′).

Definition 2.2. Let x = (xj)
∞
j=1 a sequence in E. We say that x is mid Orlicz if it satisfies the conditions of

Lemma 2.1. We will denote the space of all mid Orlicz sequences by ℓmid
M (E).
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Abstract

In this talk we present some contributions to the theory of sequence spaces associated to a bilinear application.

In addition, we present and study some classes of linear operators associated with this theory.

1 Introduction

A new kind of summability in Banach spaces was introduced by O. Blasco, T. Signes and J. M. Calabuig in [1]

from ideas about bilinear convolution. Given Banach spaces X,Y, Z, a real number 1 ≤ p < ∞ and an admissible

bilinear application B : X × Y −→ Z, they define a (B, p)-summable sequence in X as those sequences (xj)
∞
j=1

such that
∑∞
j=1 ∥B(xj , y)∥pZ <∞, ∀y ∈ Y . The space of all such sequences is denoted by ℓB,p(X).

In this talk, we study this kind of summability from the point of view of operator theory, presenting some

contributions to the environment of (B, p)-summable sequences and introducing some classes of operators associated

with this theory. These results come from our work in [4].

Here the letters X,Y, Z,H and F denote Banach spaces over the field K = R or C. The symbol X
1
↪→ Y means

thatX is a linear subspace of Y and ∥x∥Y ≤ ∥x∥X for every x ∈ X, andX
1
= Y means thatX and Y are isometrically

isomorphic. The symbol (xj)
n
j=1, where x1, . . . , xn ∈ X, stands for the sequence (x1, x2, . . . , xn, 0, 0, . . .) ∈ XN.

Other notations and symbols used here are well known or can be found in [2, 3].

2 Main Results

We say that a continuous bilinear application B : X × Y −→ Z is admissible if, ∀y ∈ Y , B(x, y) = 0 ⇒ x = 0.

The expression ∥ · ∥B,p: ℓB,p(X) −→ [0,∞), (xj)
∞
j=1 7−→ sup

y∈BY

∥(B(xj , y))
∞
j=1∥p defines a norm on ℓB,p(X). Another

useful equivalent assertion is: (xj)
∞
j=1 ∈ ℓB,p(X) if (By(xj))

∞
j=1 ∈ ℓp(Z), for all y ∈ Y , where By := B(·, y) : X → Z.

In addition to the examples of spaces ℓB,p(X) given in [3], we present a new example: For B : X×ℓwp (X ′) −→ ℓp

given by B(x, (x∗k)
∞
k=1) = (x∗k(x))

∞
k=1, we have ℓB,p(X)

1
= ℓmidp (X), space studied in [2].

If X is a B-normed space (that satisfies: there is a constant C > 0 such that ∥x∥ ≤ C supy∈BY
∥(B(x, y))∥, for

all x ∈ X), then ℓB,p(X) is a Banach space and ℓB,p(X)
1
↪→ ℓwp (X).

Let us introduce the weakly (B, p)-summability for sequences in X as a generalization of the concept of B-

unconditionally summability introduced in [1].

Definition 2.1. A sequence (xj)
∞
j=1 in X is weakly (B, p)-summable if (B(xj , y))

∞
j=1 ∈ ℓwp (Z), for all y ∈ Y (or

equivalently, (z∗(B(xj , y)))
∞
j=1 ∈ ℓp, whenever y ∈ Y and z∗ ∈ Z ′).

The notation ℓwB,p(X) will be used to the linear space of all weakly (B, p)-summable sequences and the expression

∥ · ∥B,p,w : ℓwB,p(X) −→ [0,∞), (xj)
∞
j=1 7−→ sup

y∈BY

∥(B(xj , y))
∞
j=1∥w,p defines a norm on ℓwB,p(X).

Definition 2.2. Let X be a B-normed space. We say that
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a) T ∈ L(X;F ) is (p;B, q)-summing, if (T (xj))
∞
j=1 ∈ ℓp(F ) whenever (xj)

∞
j=1 ∈ ℓB,q(X).

b) T ∈ L(H;X) is weakly (B, p; q)-summing, if (T (uj))
∞
j=1 ∈ ℓB,p(X) whenever (uj)

∞
j=1 ∈ ℓwq (H).

Keeping in mind the definition of space ℓB,p(X), note that an operator T is weakly (B, p; q)-summing if and

only if (By ◦ T (uj))∞j=1 ∈ ℓp(Z), for all y ∈ Y , and whenever (uj)
∞
j=1 ∈ ℓwq (H). We denote the space of all (p;B, q)-

summing and weakly (B, p; q)-summing operators by ΠBp,q(X;F ) and WB
p,q(H;X), respectively. If p = q, we write

only ΠBp (X;F ) and WB
p (H;X). These are normed spaces (as proved in [4]) with norms denoted by πBp,q(·) and

wBp,q(·), respectively.
Here are our main results.

Theorem 2.1 (Pietsch domination-type I). An operator T ∈ L(H;X) is weakly (B, p)-summing if and only if for

all y ∈ Y , there exist a constant Cy > 0 and a regular probability measure µ on the borelians of BH′ , with the weak

star topology, such that ∥By ◦ T (u)∥Z ≤ Cy

(∫
BU′

|u∗(u)|p dµ(u∗)
) 1

p

, for all u ∈ H.

Theorem 2.2 (Pietsch domination-type II). Let B : X × Y ′ −→ Z be a bilinear application with X B-normed.

If for all x ∈ X we have Bx := B(x, ·) ∈ Lw∗,∥·∥(Y
′;Z), then T ∈ ΠBp,q(X;F ) if and only if there exist a

constant C > 0 and a probability measure µ on the borelians of BY ′ , with the weak star topology, such that

∥T (x)∥F ≤ C
(∫

BY ′
∥B(x, y∗)∥pZ dµ(y∗)

) 1
p

, for all x ∈ X.

Theorem 2.3 (Splitting property). Let 1 ≤ q ≤ p, r <∞ be such that 1/q = 1/p+1/r. Let B : X ×Y ′ −→ Z be a

bilinear application with X B-normed and such that Bx ∈ Lw∗,∥·∥(Y
′;Z), for all x ∈ X. Then, every T ∈ ΠBr (X;F )

is (q; p)-mixing, that is, for every n ∈ N and (xj)
n
j=1 ∈ Xn, there exist (λj)

n
j=1 ∈ Kn and (yj)

n
j=1 ∈ Fn, such that

T (xj) = λjyj , 1 ≤ j ≤ n. Besides that, ∥(λj)nj=1∥r∥(yj)nj=1∥w,p ≤ πBr (T )∥(xj)nj=1∥B,q.

Inclusion and coincidence results relating the classes studied and other classes of operators, consequences of the

above theorems, will be presented in this talk.
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Abstract

Let Pw∗K(nX∗, Y ) denote the Banach space of all compact n-homogeneous polynomials from X∗ to Y which

are w∗-w-continuous, endowed with the supremum norm. We show that Pw∗K(nX∗, Y ) contains ℓ∞ iff either

X or Y contains ℓ∞.

1 Introduction

If X and Y are Banach spaces, we denote by P( nX∗, Y ) the Banach space of all n-homogeneous polynomials from

X∗ to Y , endowed with the norm:

∥P∥ = sup
x∗∈BX∗

∥P (x∗)∥, P ∈ P( nX∗, Y ).

Also let Pw∗(nX∗, Y ) be the closed subspace of P( nX∗, Y ) consisting of all those w∗-w-continuous members.

Definition 1.1. A polynomial P ∈ P( nX,Y ) is called compact if P (BX) is a relative compact subset of Y .

To go on, let Pw∗K( nX∗, Y ) be the closed subspace of all compact elements of Pw∗( nX∗, Y ). So, we have:

1. P( 1X,Y ) = L(X,Y ), that is, the Banach space of all linear operators from X to Y ;

2. Pw∗( 1X∗, Y ) = Lw∗(X∗, Y ), the closed subspace of L(X∗, Y ) which consists of all w∗-w-continuous operators.

3. Pw∗K( 1X∗, Y ) = Kw∗(X∗, Y ), that is, the Banach space of all compact linear operators from X to Y which

are w∗-w-continuous.

In [1], L. Drewnowski proved:

Theorem 1.1. Kw∗(X∗, Y ) contains a subspace isomorphic to ℓ∞ if and only if either X or Y contains a subspace

isomorphic to ℓ∞.

The goal of the talk is to extend the aforementioned result to Pw∗K( nX∗, Y ). This result is part of the submitted

paper [2].

2 Main Results

We will prove:

Theorem 2.1. Let X and Y be Banach spaces and n ∈ N. Pw∗K( nX∗, Y ) contains a subspace isomorphic to ℓ∞

if and only if either X or Y contains a subspace isomorphic to ℓ∞.
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To prove Theorem 2.1, we need the following tool: let X and Y be Banach spaces, and n ≥ 2. If P ∈ P(nX∗, Y ),

then we define d(P ) : X∗ → P(n−1X∗, Y ) by

d(P )(x∗)(y∗) =
∨
P (x∗, y∗, y∗, . . . , y∗), x∗, y∗ ∈ X∗.

The upcoming lemma establishes a fundamental property of the operator d(P ).

Proposition 2.1. Let X and Y be Banach spaces, n ≥ 2 and P ∈ P( nX∗, Y ). Then, P ∈ Pw∗K(nX∗, Y ) if and

only if d(P ) ∈ Kw∗(X∗,Pw∗K( n−1X∗, Y )).

The proof of Theorem 2.1 is based on the following result: for all Banach spaces X, Y and n ≥ 2, the map

P ∈ Pw∗K(nX∗, Y ) 7→ d(P ) ∈ Kw∗(X∗,Pw∗K(n−1X∗, Y ))

is an embedding.
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Abstract

In the context of the recently introduced notions of (α, β)-lineability, where α and β are cardinal numbers,

we generalize known results on (1, c)-lineability of sets of non-injective linear operators between sequence spaces.

In particular, our main result generalizes a result proved in [6] in several directions. Illustrative examples are

provided.

1 Introduction

The study of lineability consists in the search for linear structures in subsets of vector spaces that are not vector

subspaces. The study of lineability goes back to 2005 with Aron, Gurariy and Seoane-Sepúlveda [2]. However, well

before that, although not yet formalized, results concerning the existence of linear substructures of certain sets were

already being investigated, see, e.g. Gurariy [5] (1966).

In the last two decades, the search for linear structures in certain sets has been widely explored, and a huge

number of papers in the area have been published every year in good journals. The references [1, 3] contain long

lists of references in the area up to the time of their publication.

Several concepts related to lineability have appeared, such as, spaceability, α-lineability, where α is a cardinal

number, dense-lineability, algebrability, latticeability, etc, each of them attracting the attention of many experts.

In this work we are interested in the refinement recently introduced by V.V. Fávaro, D. Pellegrino and D. Tomaz

in [6]. This refinement searches linear structures with more robust geometric properties of the investigated sets.

Our focus is the following particular case of the more general concept introduced in [6]: A subset A is a topological

linear space E is said to be (1, c)-lineable if for every x ∈ A there exists a c-dimensional subspace W of E such that

x ∈W ⊆ A ∪ {0}. Of course, c denotes the cardinality of R.
Note that this concept is stronger than the earlier notions of lineability and c-lineability.

(1, c)-lineability of several different sets have already been investigated. For instance, (1, c)-lineability of sets

of injective maps and of non injective maps were studied in [4, 6]. In this work we generalize the result on (1, c)-

lineability of sets of non injective maps obtained in [6].

2 Main Results

The main purpose of this work is to generalize the following result proved in [6] in several directions.

Theorem 2.1. Let p, q ≥ 1. Then the set of non injective bounded linear operators from ℓp to ℓq is (1, c)-lineable.

The main result of this work generalizes the theorem above by replacing the domain space with an arbitrary set

(not necessarily a linear space), the target space with a q-normed sequence space satisfying some special properties,

and the space of bounded linear operators with much more general sets. For example, our result covers the case of

non injective operators from ℓp to ℓq for 0 < p, q ≤ 1. To state this result, we need the following definitions:
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Definition 2.1. (a) Let W ̸= {0} be a linear space and WN = {(aj)∞j=1 : aj ∈ W for every j ∈ N} be the linear

space ofW -valued sequences endowed with the usual operations. By a spreading sequence space we mean a topological

linear subspace V of WN satisfying the following condition:

If (aj)
∞
j=1 ∈ V e N0 = {j1 < j2 < j3 < · · · } is an infinite subset of N, then the sequence (bj)

∞
j=1 defined as

bk =

{
ai if k = ji,

0 otherwise,

belongs to V . In this case, we the sequence (bj)
∞
j=1 is called the spreading of (aj)

∞
j=1 by N0 and write (bj)

∞
j=1 =

E((aj)
∞
j=1;N0).

(b) Let Ω be a set, V Ω = {f : Ω → V : f is function} and 0 < q ≤ 1 A space of V -valued spreading functions is

a linear subspace A of V Ω with the pointwise operations endowed with a complete q-norm satisfying the following

conditions:

(i) If f, g ∈ A and N0 ⊆ N are such that f(x) = E(g(x);N0) for every x ∈ Ω, then ∥f∥A ≤ ∥g∥A.
(ii) If f ∈ A and u : V → V is a continuous linear operator, then u ◦ f ∈ A.

The main result of this work reads as:

Theorem 2.2. Let V be a spreading sequence space and A be a space of V -valued spreading functions. Then the

set N = {f ∈ A : f is non injective} is either (1, c)-lineable or {0}.

Example 2.1. The following generalizations of Theorem 2.1 follow from our main result.

• For p, q ≥ 1, the set of non injective approximable linear operators from ℓp to ℓq is (1, c)-lineable. Therefore, the

corresponding sets of compact, completely continuous and weakly compact operators are (1, c)-lineable as well.

• For 0 < p, q < +∞, the set of non injective bounded linear operators from ℓp to ℓq is (1, c)-lineable.
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topological vector spaces, Bulletin of the American Mathematical Society (N.S.), 51, (2014), 71–130.
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[6] fávaro, v. v., pellegrino, d. & tomaz, D. - Lineability and spaceability: a new approach, Bulletin of the

Brazilian Mathematical Society, 51, (2020), 27–46.



ENAMA - Encontro Nacional de Análise Matemática e Aplicações
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Abstract

Theories of Generalized Functions have been used to obtain solutions of differential equations containing

singularities and nonlinearities and also to explain phenomena in physical reality such as in General Relativity

and Fluid Dynamics. However the milieus in which this has always been done are the classical environments

although results and developments in the generalized environments were used. Here we change the underlying

structure R to R̃ and, relying on a Generalized Differential Calculus already developed, propose a Generalized

Differential Geometry together with several other tools useful to fall back to classical milieus or classical solutions.

In particular, given a classical oriented Riemannian manifold M , we embed M discretely into a generalized

manifold M∗ in such a way that M and its differential structure are the shadow of the differential structure of

M∗. Among the tools we propose are a Fixed Point Theorem, based on the notion of hypersequences, the notion

of support and ways to calculate generalized probabilities and transition probabilities. We extend an existing

embedding theorem by proving that there exists an algebra embedding κ : Ĝ(M) −→ C∞(M∗, R̃f ), thus relating

the generalized construction on classical manifolds to the classical construction on generalized manifolds.

1 Introduction

The theory of generalized functions goes back to Schwartz. More recently, J.F. Colombeau and E. Rosinger has

undertaken the challenge of developing a nonlinear theory of generalized functions, thus extending Schwartz premier

work. Colombeau’s proposal has been extensively used. Several mayor contributions were given by prominent

researchers in the field. In spite of these important contributions and development, somehow the underlying

algebraic structure remained R or C. It might be that one of the reasons to sticks to the classical underlying

structure is the concern that introducing another underlying structure might lead to controversies either about the

existence and rigor or about how much of nonstandard tools one needs to know to understand these structures.

However, this should not really be concern since, for example, in [1], the Fermat reals •R were used as the algebraic

underlying structure of a generalized differential calculus. The totally ordered topological ring •R is basically the

union of halows of real numbers, each halow consisting of unique real number ◦x and elements y = ◦x+ dta, with

dta, a ∈ [1,∞[ being nilpotent elements. In particular, the group of invertible elements Inv(•R) is open but not

dense and zero and nonzero infinitesimals are precisely the noninvertible elements.

It happens though that in applications and certain areas one must deal with infinitesimals and infinities which,

in certain situations, are cancelled out by each other and thus suggesting that they are invertible elements. Can an

environment be constructed in which infinitesimals and infinities coexists and some of which are invertible elements

or at least invertible in some sense? There are several of such milieus and most of which are non-Archimedean

rings. Recall that such non-Archimedean rings somehow originate with J. Tate. Here we focus on R̃ which was

constructed in Colombeau’s approach to generalized functions. Originally, it was just a ring where generalized

functions took values, but, over time, it turned out to have a very rich topological and algebraic structure making

it suitable to be the underlying algebraic milieu of a new Differential Calculus, a Generalized Differential Calculus.

Let’s sum up some of its features. Infinitesimals and infinities live like ebony and ivory in R̃ and when rendezvous

occurs an interleaving of real numbers may be the result. Moreover, Inv(R̃) is open and dense, B(R̃), its Boolean
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algebra of idempotent elements, consists of the characteristic functions of subsets of the real interval I =]0, 1] and

if x /∈ Inv(R̃) then there exist e, f ∈ B(R̃) such that e · x = 0 and f · x ∈ Inv(f · R̃).
Our purpose is to piece the puzzle using as pieces all the important concepts resulting in an ultra-metric milieu

R̃n, for each n ∈ N, in which Rn is the shadow, or support, of points of R̃n. In R̃n, Rn− {⃗0} is a grid of equidistant

points sitting between infinitesimals, the elements of B1(⃗0) − {⃗0}, and infinities and hence, algebraically, it is the

result of the rendezvous of such elements which go undetected in physical reality. The notion of the support of

elements can be defined in each milieu and similar discrete embedding results hold. If Ω ⊂ Rn is open, then there

exists a discrete embedding of D′(Ω) into C∞(Ω̃c, R̃), where Ω̃c is a subset of R̃n consisting of those elements of

B1(⃗0) whose support is contained in Ω and their norm is less than some real number. In particular, Dirac’s infinity

δ, becomes a C∞−function on R̃c and xδ becomes nonzero and, when evaluated at certain infinitesimals, produces

real values. Generalized Space-Time is constructed and applications to physical reality are given.

2 Main Results

Theorem 2.1 (Fixed Point Theorem). Let Ω ⊂ Rn, A = [(Aφ)φ] ⊂ Br(0) ∩ Gf (Ω), r < 2, be an internal set, and

T : A→ A be a mapping with representative (Tφ : Aφ → Aφ)φ∈A0(n). If there exists k = [(kφ)φ] ∈ Ñ such that each

T
kφ
φ is a λ-contraction, then T k is well-defined, continuous, and has a unique fixed point f0 ∈ A.

Theorem 2.2 (Down Sequencing Argument). Let f ∈ Gf (Ω) with Ω ⊂ Rn. If f ∈W 0
m,r[0] with r > 0 and p0 ∈ Nn,

then f ∈W
∥p0∥
m,s [0] where s = 4−n∥p0∥r, i.e., W 0

m,r[0] ⊂W
∥p0∥
m,s [0].

Theorem 2.3 (Embedding Theorem). Let M be an n−dimensional orientable Riemannian manifold. There

exists an n−dimensional Gf−manifold M∗, in which M is discretely embedded, and an algebra monomorphism

κ : Ĝ(M) −→ C∞(M∗, R̃f ) which commutes with derivation. Moreover, equations whose data have singularities or

nonlinearities defined on M naturally extend to equations on M∗ and, on M∗, these data become C∞−functions.

Theorem 2.4. Let Ω ⊂ C and let f ∈ H(Ω)∗ be holomorphic, Zf = {z ∈ Ω̃c : f(z) = 0C̃} and Zf = Ω
⋂

Zf , the
generalized and classical zero set of f . Then Zf = Interl(Zf ). In particular, Zf is the support of points of Zf .
If given f ∈ HG(Ω)) a holomorphic net, E ⊂ Ω a set of uniqueness, such that Ẽ ⊂ Zf , then f = 0. Consequently,

f = 0 if and only if supp(Zf ) is a set of uniqueness.

Theorem 2.5. Let T = [(Tϵ)] ∈ B(GH) be a selfadjoint operator such that each Tϵ is selfadjoint. Then

supp(ν(T )) = {ν(T0) : T0 ∈ supp(T )}. In particular, the support of the generalized transition probabilities of

T equals the transition probabilities of the elements of the support of T .
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Abstract

The motion of incompressible electrical conducting fluids can be modeled by magnetohydrodynamics

equations, which consider the Navier-Stokes equations coupled with Maxwell’s equations. For the classical

Navier-Stokes system, there exists an extensive study of the convergence rate for the Galerkin approximations.

These results were extended to the equations of magnetohydrodynamics in [2]. In this work we extend these

results to the equations of magnetohydrodynamics with variable density. We reach basically the same level of

knowledge as in the case of the Navier-Stokes with variable density.

1 Introduction

This paper is concerned with the nonhomogeneous incompressible MHD system in 3D bounded domains. The

governing equations are the following (see for instance the book [1]):
ρut + ρ(u · ∇)u− µ∆u+∇

(
P + 1

2 |h|
2
)
= ρf + (h · ∇)h,

ht + (u · ∇)h− η∆h = (h · ∇)u,

ρt + u · ∇ρ = 0,

divu = divh = 0.

(1)

Here, t ≥ 0 is time and x ∈ Ω ⊊ R3 is the spatial coordinate. Moreover, the unknowns are ρ(x, t) ∈ R+,

u(x, t) ∈ R3, P (x, t) ∈ R and h(x, t) ∈ R3, representing, respectively, the density, the incompressible velocity field,

the hydrostatic pressure and the magnetic field of the fluid as functions of position x and time t. The function |h|2/2
is the magnetic pressure. Thus, we denote by p

def
= P + 1

2 |h|
2 the total pressure of the fluid. The positive constants

µ and η represent, respectively, the viscosity and the resistivity coefficients. The later is inversely proportional to

the electrical conductivity constant and acts as the magnetic diffusivity coefficient.

We complement the system (1) with the following initial and boundary conditions:{
(ρ,u,h)

∣∣
t=0

= (ρ0,u0,h0) in Ω,

(u(x, t),h(x, t)) = (0, 0) for all (x, t) ∈ Γ× (0,∞),
(2)

where Γ is the boundary of Ω.

2 Main Result

We use the usual function spaces for the Navier-Stokes equations.
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Concerning the existence of solutions for equations (1)-(2), they can be obtained by using a semi-Galerkin

approximation, that is, we consider a Galerkin approximations

uk(x, t) =

k∑
i=1

cik(t)w
i(x), hk(x, t) =

k∑
i=1

dik(t)w
i(x)

where wi, i = 1, · · · , are the eigenfunctions of the Stokes operator for the velocity and magnetic fields,

respectively and an infinite dimensional approximation ρk(x, t) for the density satisfying the following equations

(uk,hk, ρk) ∈ C2([0, T ];Vk)× C2([0, T ];Vk)× C1(QT ) of

ρkt + uk · ∇ρk = 0 for (x, t) ∈ QT ,

(ρkukt ,v) + (ρk(uk·)∇uk,v) + µ(∇uk,∇v)

= (ρkf ,v) + ((hk · ∇)hk),v) for t ∈]0, T [,∀v ∈ Vk,

(hkt ,w) + ((uk · ∇)hk,w) + η(∇hk,∇w)

= ((hk · ∇)uk),w for t ∈]0, T [,∀w ∈ Vk,

uk(x, 0) = Pku0(x), h
k(x, 0) = Pkh0(x), ρ

k(x, 0) = ρ0(x) for x ∈ Ω.

(3)

Here Vk is the subspace generated by the first k eigenfunctions of the Stokes operator, we denote by λk the eigenvalue

associated with the eigenfunction wk.

Theorem 2.1. If u0 h0 ∈ V ∩H2(Ω), ρ0 ∈ W 1,∞(Ω) and f ∈ L2(0;T ;H1(Ω)), ft ∈ L2(0, T ;L2(Ω)) then there

exists T > 0 with T ≤ T such that the system (1)-(2) has a unique strong solution in the class

u, h ∈ C
(
[0, T ];V ∩H2(Ω)

)
, (1)

ut, ht ∈ C ([0, T ];H) ∩ L2(0, T ;V ), (2)

ρ ∈W 1,∞(Ω× [0, T ]). (3)

Moreover, the following bounds are true

(a)

∥ρ(t)− ρk(t)∥2L∞(Ω) ≤
G1(t)

λk+1
,

(b)

∥u(t)− uk(t)∥2 + ∥h(t)− hk(t)∥2 ≤ G2(t)

(
1

λ2k+1

+
1

λ
3/2
k+1

)

for any t ∈ [0, T ]. The continuous functions Gi(t) depend on t, i = 1, 2.
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Abstract

In this work we define and study a new vector-valued sequence space, called the space of anisotropic (s, q, r)-

summable sequences, that generalizes the space of (s; q)-mixed sequences. Furthermore, we define two classes of

linear operators involving this new space and also show that they satisfy a Pietsch domination-type theorem.

1 Introduction

Throughout this work, X is a Banach space and we will consider: ℓp(X) (space of absolutely p-summable X-valued

sequences with the usual norm ∥·∥p); ℓwp (X) (space of weakly p-summable X-valued sequences with the usual norm

∥·∥w,p); ℓ∞(X) (space of limited X-valued sequences with the sup norm); c00(X) (space of eventually null X-valued

sequences with the sup norm) and the symbol X
1
↪→ Y means that X is a subspace of Y and ∥x∥X ≤ ∥x∥Y , for

every x ∈ X. Now, we will define a more general family of sequence spaces, which we call an anisotropic sequence

(s, q, r)-sumable, denoted by ℓA(s,q,r)(X), with 1 ≤ s, r, q <∞.

Definition 1.1. Let q < s and r ≤ s be real numbers. A sequence (xj)
∞
j=1 ∈ XN is said to be anisotropic (s, q, r)-

summable if
∞∑
j=1

( ∞∑
k=1

|x∗k(xj)|s
) q

s

<∞, whenever (x∗k)
∞
k=1 ∈ ℓr(X

∗). (1)

Remark 1.1. Straightforward calculations show that if s < r then ℓA(s,q,r)(X) = {0} and if s ≤ q we obtain

ℓA(s,q,r)(X) = ℓwq (X).

The expression

∥(xj)∞j=1∥A(s,q,r) := sup
(x∗

k)
∞
k=1∈Bℓr(X∗)

 ∞∑
j=1

( ∞∑
k=1

|x∗k(xj)|q
)s/q1/s

(2)

defines a norm on the space ℓA(s,q,r)(X) and, moreover,
(
ℓA(s,q,r)(X); ∥ · ∥A(s,q,r)

)
is Banach space.

2 Main Results

The space of anisotropic (s, q, r)-summable X-valued sequences satisfies the following statements:

(a) ℓq(X)
1
↪→ ℓA(s,q,r)(X)

1
↪→ ℓwq (X).

(b) c00(X) ⊆ ℓA(s,q,r)(X)
1
↪→ ℓ∞(X).

(c) ℓA(s1,q1,r1)(X)
1
↪→ ℓA(s2,q2,r2)(X), whenever r2 ≤ r1 ≤ q1 ≤ q2, s1 ≤ s2 < q2 and s1 < q1.

The next theorem will assure us that the space of (s; q)-mixed sequences with the norm ∥·∥m(s;q) (see [2, 3]),

denoted by (ℓm(s;q)(X), ∥·∥m(s;q)), is a particular case of ℓA(s,q,r)(X). Furthermore, it will provide us with another

interpretation of ∥·∥m(s;q).
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Theorem 2.1. Let X be a Banach space. If 1 ≤ q < s <∞, then

ℓm(s;q)(X) = ℓA(s,q,s)(X) and
∥∥(xj)∞j=1

∥∥
m(s;q)

=
∥∥(xj)∞j=1

∥∥
A(s,q,s)

.

Now, we will study some classes of operators that are characterized by transformations of vector-valued sequences

and deal with anisotropic summable sequences. In what follows, 1 ≤ s, r, q, p <∞ are real numbers and T : U → X

is a continuous linear operator between Banach spaces.

Definition 2.1. Let 1 ≤ p ≤ q < s and 1 ≤ r ≤ s be real numbers. We say that T is weakly anisotropic (s, q, r; p)-

summing (T ∈ WA
(s,q,r;p)(U ;X)) if there is a constant D > 0 such that ∥ (T (uj))∞j=1 ∥A(s,q,r) ≤ D∥(uj)∞j=1∥w,p, for

every (uj)
∞
j=1 ∈ ℓwp (U).

Definition 2.2. Let 1 ≤ q < s, q ≤ p and 1 ≤ r ≤ s be real numbers. We say that T is anisotropic (p; s, q, r)-

summing (T ∈ ΠA(p;s,q,r)(U ;X)) if there is a constant C > 0 such that ∥(T (uj))∞j=1∥p ≤ C · ∥(uj)∞j=1∥A(s,q,r),

whenever (uj)
∞
j=1 ∈ ℓA(s,q,r)(U).

Furthermore, the infimum of all the constants D and C satisfying the inequalities above defines a norm for the

classes WA
(s,q,r;p)(U ;X) and ΠA(p;s,q,r)(U ;X), denoted by wA(s,q,r;p)(·) and π

A
(p;s,q,r)(·), respectively.

Proposition 2.1. The pairs
(
WA

(s,q,r;p);w
A
(s,q,r;p)(·)

)
and

(
ΠA(p;s,q,r);π

A
(p;s,q,r)(·)

)
are injective Banach ideals of

operators.

The next results show that these classes of operators satisfy a Pietsch domination-type theorem.

Theorem 2.2. The operator T ∈ WA
(s,p,r;p)(U ;X) if and only if there are a positive constant C and a regular

probability measure µ on the Borel subsets of BU∗ , with the weak star topology, such that

∥Ψx∗(T (u))∥s ≤ C

 ∫
BU∗

|φ(u)|p dµ(φ)

 1
p

, for all u ∈ Uand any x∗ = (x∗k)
∞
k=1 ∈ Bℓr(X∗). (3)

Theorem 2.3. The operator T ∈ ΠA(p;s,p,r)(U ;X) if and only if there are a positive constant C and a regular

probability measure µ on the Borel subsets of B(ℓr∗ (U))∗ , with the weak star topology, such that

∥T (u)∥ ≤ C

∫
B(ℓr∗ (U))∗

( ∞∑
k=1

|φx∗(u · ek)|s
) p

s

dµ(φx∗)

 1
p

, for every u ∈ U. (4)

This work is a part of the paper [1].
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Abstract

For a homeomorphism T on a compact metric space X, a T -invariant Borel probability measure µ on X

and a measure-theoretic quasifactor µ̃ of µ, we study the relationship between the local entropy of the system

(X,µ, T ) and of its induced system (M(X), µ̃, T̃ ), where T̃ is the homeomorphism induced by T on the space

M(X) of all Borel probability measures defined on X.

1 Introduction

By ameasure-theoretic dynamical system (MDS) we mean a triple (X,µ, T ), where (X,T ) is a topological dynamical

system and µ is a T -invariant Borel probability measure on X. The induced homeomorphism T̃ is defined on the

space of Borel probability measures M(X) by the formula (T̃ (µ))(A) := µ(T−1(A)) (µ ∈ M(X), A ⊂ X Borel set).

A measure-theoretic quasifactor of X [2] is a T̃ -invariant Borel probability measure µ̃ on M(X) which satisfies the

so-called barycenter equation: ∫
X

f(x)dµ(x) =

∫
M(X)

∫
X

f(x)dθ(x)dµ̃(θ)

for every continuous function f : X → R. We denote by Q(µ) the set of all measure-theoretic quasifactors of µ. We

say that a two-set Borel partition P = {P0, P1} of X is a replete partition if intP0 ̸= ∅ and intP1 ̸= ∅ [1]. We say

that X has µ-UPE if hµ(T,P) > 0 for every replete partition P. In other words, a µ-UPE system is a MDS that

has measure-theoretic uniformly positive entropy.

In this work we are concerned with the relationship between the local entropy of the measure-theoretic dynamical

systems (X,µ, T ) and (M(X), µ̃, T̃ ), where µ̃ is a quasifactor of µ.

Let us introduce some elements of Kerr-Li machinery [6] that we shall use in the sequel. Let X = (X,µ, T )

be a MDS and let A = (A1, . . . , Ak) be a tuple of subsets of X. For a subset D of X, we say that J ⊂ N is an

independence set for A relative to D if for every nonempty finite subset I ⊂ J and every map σ : I → {1, . . . , k},
we have

D ∩
⋂
j∈I

T−jAσ(j) ̸= ∅.

For each δ > 0, we denote by B(µ, δ) the collection of all Borel subsets D of X such that µ(D) ≥ 1 − δ. For each

m ⩾ 1 and δ > 0, we define

φ(A, δ,m) = min
D∈B(µ,δ)

max
{
|{1, . . . ,m} ∩ J | : J is an independence set for A relative to D

}
.

Now, put

Iµ(A, δ) := lim sup
m→∞

φ(A, δ,m)

m
.

Finally, let us define the upper µ-independence density of A as Iµ(A) := supδ>0 Iµ(A, δ).

The following useful characterization of µ-UPE is due to Kerr and Li [6].
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Theorem 1.1. Let (X,µ, T ) be a MDS. Then, (X,µ, T ) has µ-UPE if and only if for every pair U = (U0, U1) of

nonempty disjoint open sets in X, one has Iµ(U) > 0.

Now, let us introduce some notations. For each n ∈ N, let

Mn(X) :=
{ 1

n

n∑
i=1

δxi ∈ M(X) : x1, . . . , xn ∈ X not necessarily distinct
}
,

where δx denotes the unit mass concentrated at the point x of X. It is classical that
⋃
n∈N Mn(X) is dense in

M(X). Since Mn(X) is T̃ -invariant, we can consider the TDS (Mn(X), T̃ ), where we are also denoting by T̃

the corresponding restricted map. For each n ∈ N, let us consider (X(n), µ(n)) the canonical symmetric n-fold

joining of (X,µ) [3], where µ(n) := µ × · · · × µ is the product measure on X(n) := X × · · · ×X. We also consider

Tn := T × · · · × T and, given any µ̃ ∈ Q(µ), we consider the MDS (Mn(X), µ̃, T̃ ), where we are also denoting

by µ̃ the corresponding normalized induced measure. Denote by Sn the group of all permutations of n elements

and let us consider τ : X(n) → X̂(n) := X(n)/Sn the quotient map. A typical element of X̂(n) will be denoted by

⟨x1, . . . , xn⟩. Moreover, we can consider the quotient measure τ∗(µ
(n)) := µ(n) ◦ τ−1 on X̂(n). Now let us consider

the maps ψ : (x1, . . . , xn) ∈ X(n) 7→ (1/n)

n∑
l=1

δxl
∈ Mn(X) and ψ̂ : ⟨x1, . . . , xn⟩ ∈ X̂(n) 7→ (1/n)

n∑
l=1

δxl
∈ Mn(X).

Clearly, ψ̂ is a Borel isomorphism and we can consider the measure (ψ̂ ◦ τ)∗(µ(n)) on Mn(X).

2 Main Results

Theorem 2.1. For every ergodic MDS (X,µ, T ), the following assertions are equivalent:

(i) (X,µ, T ) has µ-UPE;

(ii) (Mn(X), (ψ̂ ◦ τ)∗(µ(n)), T̃ ) has (ψ̂ ◦ τ)∗(µ(n))-UPE for some 1 ≤ n <∞;

(iii) (Mn(X), (ψ̂ ◦ τ)∗(µ(n)), T̃ ) has (ψ̂ ◦ τ)∗(µ(n))-UPE for every 1 ≤ n <∞.

Theorem 2.2. For every ergodic MDS (X,µ, T ) and every µ̃ ∈ Q(µ), if (M(X), µ̃, T̃ ) has µ̃-UPE, then (X,µ, T )

has µ-UPE.
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Abstract

Kernels admitting Fourier series expansion with positive coefficients will be considered satisfying an extended

Hölder condition defined in terms of generalized smoothness on the d-dimensional unit sphere of the Euclidean

space. We provide sharp upper bounds for the Kolmogorov widths of the unit ball of reproducing kernel Hilbert

spaces generated by kernel satisfiying an abstract Hölder condition. We estimate the widths from the decay rates

for the sequence of eigenvalues of the integral operator.

1 Introduction

This work provides sharp upper bounds for the Kolmogorov widths in the case in which the kernel satisfies an

abstract Hölder condition and is based on [1]. The Kolmogorov n-width of a subset A of a Hilbert space H ([2]) is

the quantity δn(A;H) that measures how n-dimensional subspaces of H can approximate A. In other words, it is

defined as

δn(A;H) := inf
Vn⊂H

sup
f∈A

inf
fn∈Vn

∥f − fn∥H ,

where the first infimum is taken over all n-dimensional subspaces Vn of H. If the infimum is attained, for some

n-dimensional subspace V of H, then V is called an optimal subspace. The estimation of the Kolmogorov n-th width

of the unit ball of the reproducing kernel Hilbert space in L2(Sm) and the identification of the so-called optimal

subspace usually suffice. These Kolmogorov widths can be computed through the eigenvalues of the integral operator

associated to the kernel.

We consider the unit sphere Sm, m ≥ 2, of Rm+1 with its usual geodesic distance and write σm to denote the

induced Lebesgue measure on Sm. If K : Sm × Sm → R is a symmetric and positive definite kernel on Sm, write

(H(K), ∥ · ∥H) to denote the unique separable Hilbert space of functions f : Sm → R where K is a reproducing

kernel. If K is continuous, the space H(K) is embeddable in the usual space L2(Sm) := L2(Sm, σm). The integral

operator K : L2(Sm) → L2(Sm) given by

K(f) =

∫
Sm

K(x, y)f(y)dσm(y), f ∈ L2(Sm), (1)

is well-defined, compact, and self-adjoint. Its range is a dense subset of H(K) and, in addition,

⟨f, g⟩L2(Sm) = ⟨f,K(g)⟩H(K), f ∈ H(K), g ∈ L2(Sm).

Since a version of the classical Mercer’s Theorem hold, the integral operator K is positive and has countably many

nonnegative eigenvalues, say, λ1 ≥ λ2 ≥ · · · ≥ 0, with respective eigenfunctions φ1, φ2, . . .. The set {φi : i = 1, 2, . . .}
is orthonormal in L2(Sm) and orthogonal in H(K). Further,

K(x, y) =

∞∑
i=1

λiφi(x)φi(y), x, y ∈ Sm,
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where the sum is absolutely and uniformly convergent. It follows that the set {
√
λi φi : i = 1, 2, . . .} is an orthonormal

basis of H(K).

We will write Ωn := span {
√
λi φi : i = 1, . . . , n}, for n = 1, 2, . . .. The optimality of Ωn ([2], Chapter 6) remains

for this alternative definition of the Kolmogorov n-with for S the unit sphere in H(K), that is,

δn
(
S;L2(Sm)

)
= sup
f∈S

∥∥∥∥∥f −
n∑
i=1

⟨f, gi⟩H(K)gi

∥∥∥∥∥
2

=
√
λn,

where {g1, g2, . . . , gn} is an H(K)-orthonormal basis of Ωn.

2 Main Results

The Hölder condition used in the paper depends upon a fixed sequence of measures zonal Borel measures

{µt : t ∈ (0, π)} generating convolution operators Tt(f) = f ∗ µt, f ∈ L2(Sm). Consider ρ ∈ (0, 2] and

B : Sm → [0,∞) a function belonging to L∞(Sm). The kernel K : Sm × Sm −→ R is (µt, B, ρ)-Hölder if

|(K(x, ·) ∗ µt)(y)−K(x, y)| ≤ B(x)tρ, t ∈ (0, π), x, y ∈ Sm, (2)

In the next result we write vm(t) = σm(supp(Kt(x, ·)), for the volume of support of the function y ∈
Sm → Kt(x, y). This quantity does not depend upon x due to the invariance of σm with respect to orthogonal

transformations on Rm+1. Also, P βk represents the usual Gegenbauer polynomial of degree k associated to order

dimension β and normalized as P βk (1) = 1.

Theorem 2.1. Let {µt : t ∈ (0, π)} be a uniformly bounded family of measures such that, for each t, the multiplier

of µt is {
ck,m(vm(t))−1P βα(k)(cos t)(sin t)

γ
}∞

k=0
,

where {ck,m}∞k=0 is a sequence of nonzero real numbers, α : Z+ → Z+ is strictly increasing, γ > 0 and 2β is

an integer at least γ. Assume that for every positive integer l, there exists q = q(l,m) > 0 so that ln ≤ α(qn),

n = 1, 2, . . .. If K is (µt, B, ρ)-Hölder, then the sequence of eigenvalues {λn}∞n=1 of the integral operator K satisfies

λn = O(n−1−ρ/m), n→ ∞.

Theorem above is the key to obtain the following estimates for the Kolmogorov widths.

Theorem 2.2. Under the assumptions in Proposition 2.1, if K is (µt, B, ρ)-Hölder, then

δn(S;L
2(Sm)) = O

(
(n+ 1)−1/2−ρ/2m

)
, n→ ∞.
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Integral Operators, Results Math, 74, (2019), 1-18.

[2] Pinkus, A. - n-widths in approximation theory, Results in Mathematics and Related Areas, 3, Springer-Verlag,

Berlin, (1985).

[3] Jordão, T. & Zampieri, B. C. - Fourier sums and eigenvalues estimates in terms of generalized smoothness,

preprint, (2023).



ENAMA - Encontro Nacional de Análise Matemática e Aplicações
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Abstract

In this talk we study a version of the Bishop-Phelps-Bollobás theorem called Lipschitz-Bishop-Phelps-Bollobás

property (Lip-BPBp for short). Under appropriate conditions for a pointed metric space M and a function

module space X, it was possible to prove that the pair (M,X) satisfies the Lip-BPBp.

1 Introduction

Let (M,d1), (N, d2) be metric spaces. A mapping f : M → N is called Lipschitz if there is a constant C ≥ 0

such that d2(f(x1), f(x2)) ≤ C.d1(x1, x2), for every pair of points x1, x2 ∈ M . If, in addition, (M,d) is a pointed

metric space (that is, there is a distinguished point in M denoted by 0) and Y is a Banach space then the space

Lip0(M,Y ) of all Lipschitz maps from M to Y which vanish at 0 is a Banach space when endowed with the

norm ||F ||L = sup
{

||F (p)−F (q)||
d(p,q) : p, q ∈M, p ̸= q

}
. A map F ∈ Lip0(M,Y ) attain its norm in the strong sence or

strongly attains its norm if there exist p, q ∈ M , p ̸= q such that ||F (p)−F (q)||
d(p,q) = ||F ||L. The set of those Lipschitz

maps F :M → Y which strongly attain their norms is denoted by LipSNA(M,Y ). In this sense, a natural question

is to decide for which metric spaces M the set LipSNA(M,Y )
||.||

= Lip0(M,Y ), for all Banach space Y . In [2],

the autors proved that LipSNA([0, 1],R) is not dense in Lip0([0, 1],R). Considering M a pointed metric space, the

function δ :M → Lip0(M,Y )∗ defined by δ(f) = f(p), for every p ∈M and f ∈ Lip0(M,Y ), is called the canonical

isometric embedding. The norm-closed linear span of δ(M) in the Banach space Lip0(M,Y )∗ is denoted by F(M),

which is usually called Lipschitz-free space over M . It was proved in [1] that if F(M) has the Radon-Nykodym

property (RNP), then LipSNA(M,Y )
||.||

= Lip0(M,Y ), for all Banach space Y . Denoting by NA(F(M), Y ) the

set of norm-attaining operators from F(M) to Y , it is known that the density of LipSNA(M,Y ) in Lip0(M,Y )

implies that NA(F(M), Y ) = L(F(M), Y )), but the reciprocal is not true, since LipSNA([0, 1],R) is not dense in

Lip0([0, 1],R), while NA(F([0, 1],R) is a dense set in L(F([0, 1],R), by the Bishop-Phelps Theorem. In [5], the

authors presented an extension of the Biship-Phelps-Bollobás property to the Lipschitz context, which they called

Lipschitz-Bishop-Phelps-Bollobás property.

Definition 1.1. Let M be a pointed metric space and Y be a Banach space. We say that the pair (M,Y ) has

the Lipschitz-Bishop-Phelps-Bollobás property (Lip-BPBp for short), if given ϵ > 0 there is η(ϵ) > 0 such that for

every norm-one F ∈ Lip0(M,Y ) and every p, q ∈M , p ̸= q such that ||F (p)−F (q)|| > (1− η(ϵ))d(p, q), there exist

G ∈ Lip0(M,Y ) and r, s ∈M , such that

||G(r)−G(s)||
d(r, s)

= ||G||L = 1, ||G− F || < ϵ,
d(p, r) + d(q, s)

d(p, q)
< ϵ.

In the same article, they presented some pairs (M,Y ) satisfying the Lip-BPBp. In this way, in [6], the authors

study the stability behavior of the Bishop-Phelps-Bollobás property for Lipschitz maps. Among others, they proved

that if M a pointed metric space such that (M,R) has the Lip-BPBp then for every compact Hausdorff topological

space K, the pair (M,C(K)) has the Lip-BPBp for Γ-flat operators, where Γ is the 1-norming set.
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2 Main Result

In this note we study the Lipschitz-Bishop-Phelps-Bollobás property when the range space is a function module

space. We obtained analogous result that presented in [6].

Definition 2.1. Function Module is (the third coordinate of) a triple (K, (Xt)t∈K , X), where K is a nonempty

compact Hausdorff topological space, (Xt)t∈K a family of Banach spaces, and X a closed C(K)-submodule of the

C(K)-module
∏∞
t∈K Xt (the ℓ∞-sum of the spaces Xt) such that the following conditions are satisfied:

1. For every x ∈ X, the function t→ ∥x(t)∥ from K to R is upper semi-continuous.

2. For every t ∈ K, we have Xt = {x(t) : x ∈ X}.

3. The set {t ∈ K : Xt ̸= 0} is dense in K.

Theorem 2.1. Let (K, (Xt)t∈K , X) be a function module space and M a pointed metric space. If (M,R) has the

Lip-BPBp then (M,X) has the Lip-BPBp for Γ-flat operators, where Γ is the 1-norming set.
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Abstract

It is well known that the surjective isometries in ℓp (for 1 ≤ p ≤ ∞ and p ̸= 2) are given by permutations

with signs. In this work we prove that the isometries on the classical Lorentz sequence space, d(w, 1), and on

its predual, d∗(w, 1), behave in the same way. This is a joint work with Christina Brech.

1 Introduction

We say that a Banach sequence space X has standard group of isometries if every T ∈ Isom(X) (where Isom(X)

denotes the set of all isometries from X to X) is induced by a sequence of signs ε ∈ {−1, 1}N and a permutation

π ∈ S∞, i.e.:

T (xn) = (εnxπ(n))n≥1

For example, the classical sequence spaces c, c0 and ℓp (for p ̸= 2) all have standard group of isometries (see

[1]). Given a decreasing sequence of positive real numbers sequence w = (wn)n≥1 such that w ∈ c0 \ ℓ1, we define

the Lorentz sequence, denoted by d(w, 1) as follows:

d(w, 1) =
{
x = (xn)n≥1 ∈ RN : ∥x∥w,1 <∞

}
,

where ∥x∥w,1 = sup
π∈S∞

∞∑
i=1

|xπ(n)|wn and S∞ denotes the set of all permutations of natural numbers.

The space d(w, 1) endowed with ∥ · ∥w,1 is a Banach sequence space and the canonical vectors (en)n≥1 form a

symmetric Schauder basis (as well as the classical ℓp spaces) and it is well known that ∥x∥w,1 is attained by its

decreasing rearrangement, i.e., the sequence x∗ = (x∗n)n≥1 that is obtained from reordering (|xn|)n≥1 as a decreasing

sequence via a permutation.

In what follows, we will use the following notation: Wn = W (n) =
n∑
i=1

wi, supp(x) = {n ∈ N : x(n) ̸= 0},

extBX denotes the set of extreme points of the closed unit ball of the Banach space X and all isometries here are

surjective.

It is easy to check that the standard unitary vectors (en) form a boundedly complete Schauder basis for d(w, 1),

thus it admits a predual. It is well known that the predual of the Lorentz sequence spaces is:

d∗(w, 1) = {x = (xn) ∈ RN : lim
n

∑n
i=1 x

∗(i)

W (n)
= 0},

endowed with the norm ∥(xn)∥W = sup
n

∑n
i=1 x

∗(i)

W (n)
.

Unfortunately, to our knowledge, no isometry is explicitly given in the classical literature to describe the above

identification. For instance, the Lorentz sequence space is a particular case of the Köthe space µw, and the above

description is obtained in [3] passing through the α-dual space µ×
w and no isometry is given. Thus, we add one here

for the sake of completeness, that is based on arguments from [2]:

Proposition 1.1. The operator Φ : d∗(w, 1)
∗ → d(w, 1) given by Φ(f) = (f(en))n≥1 is an isometry.
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2 Main Results

To show that the spaces d(w, 1) and d∗(w, 1) have standard group of isometries we exploit the fact that (surjective)

isometries preserve extremal points of the unit ball, as well as the following characterization:

Theorem 2.1 ([4, Theorem 2.6]). An element x ∈ Sd(w,1) is an extreme point of Bd(w,1) if, and only if, there exists

n0 ∈ N such that:

x∗n =


1

W (n0)
, if n ≤ n0

0 , if n > n0

and w1 > wn0
, when n0 > 1.

Without passing through the rearrangement of x, the previous result states that x ∈ extBd(w,1) if, and only if,

x = 1
W (n0)

εχA, where |A| = n0, ε ∈ {−1, 1}N and, when A is not a singleton, wn0
< w1.

For d(w, 1) we will denote k0 = max{n ∈ N : w1 = wk0}. Notice that k0 ≥ 1 is well defined because w ∈ c0 and:

w1 = . . . = wk0 > wk0+1 ≥ . . .

It follows from Theorem 2.1 that if x is an extremal point of d(w, 1) then either supp(x) is a singleton or

|supp(x)| > k0. To achieve our main result, Theorem 2.2, our proof is based on the following three steps:

We fix an arbitrary T ∈ Isomd(w, 1) and we show that:

Step 1: For all n,m ∈ N, suppT (en) and suppT (em) are either equal or disjoint;

Step 2: The cardinalities |suppT (en)| are all equal (and finite);

Step 3: For all n,m ∈ N, |suppT (en)| = |suppT−1(em)| = 1.

Theorem 2.2. The spaces d(w, 1) and d∗(w, 1) have standard group of isometries.

Sketch of the proof: Because T is an isometry, N =
⋃
supp(T (en)) and from step 3 we obtain that T (en) = εjnejn

with εjn = ±1. Thus, π(jn) = n defines a permutation such that:

T (xn) = (εnxπ(n))n≥1

Then d(w, 1) has standard group of isometries and this property is inherited by d∗(w, 1) via the isomorphism in

Proposition 1.1.

Remark 2.1. The author was funded by CNPq (Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico),

process number 150193/2022-0.
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Abstract

In this talk we present recent results obtained by the authors concerning operators and adjoint operators

between Banach lattices that are disjoint p-convergents.

1 Introduction

Recall that a linear operator between Banach spaces is said to be completely continuous, or a Dunford-Pettis

operator, if it sends weakly null sequences to norm null sequences. Notions alike have been considered in the

mathematical literature. For instance, in the Banach lattice context the so-called almost Dunford-Pettis operators

were introduced in [5]: a linear operator from a Banach lattice to a Banach space is almost Dunford-Pettis if it

sends disjoint weakly null sequences to norm null sequences; or equivalently, if it sends positive disjoint weakly null

sequences to norm null sequences. Around the summability properties, the notion of p-convergent operators, or a

Dunford-Pettis operator of order p, was introduced in [4]. Letting 1 ≤ p < ∞, a linear operator between Banach

spaces is said to be p-convergent if it sends weakly p-summable sequences to norm null sequences. The lattice

counterpart of this class was introduced in [6]: a linear operator from a Banach lattice to a Banach space is disjoint

p-convergent if it sends disjoint weakly p-summable sequences to norm null sequences; or equivalently if it sends

positive disjoint weakly p-summable sequences to norm null sequences. This class of operators on Banach lattices

was also studied in the recent paper of Alikhani [1] under the name of almost p-convergent operators.

2 Main Results

Since weakly p-summable sequences are weakly null, every almost Dunford-Pettis is disjoint p-convergent.

Nevertheless, the reciprocal is not true, and so a natural question is under which conditions on a Banach lattice

E, is every disjoint p-convergent operator from E into any Banach space X almost Dunford-Pettis? In order to

answer this question, we introduced the following property: a Banach lattice E is said to have the disjoint property

of order p, for 1 ≤ p < ∞, if every norm bounded disjoint sequence in E is weakly p-summable. For example, c0

has the disjoint property of order p for all 1 ≤ p <∞.

In particular, we provide a positive answer to our question in the following result:

Theorem 2.1. Let E be a Banach lattice. If E has the disjoint property of order p (1 ≤ p <∞) or E∗ has cotype

p (2 ≤ p <∞), then every almost Dunford-Pettis operator on E is disjoint p-convergent.

It is a classical topic in the theory of operators between Banach lattices to study when the adjoint of a positive

operator between Banach lattices belongs to some class of operators. For instance, this problem was addressed to

the class of almost Dunford-Pettis operators in [2], and to the class of disjoint p-convergent operators in [1]. In

order to study this problem, Alikhani introduced the class of almost weak p-convergent operators. Following [1],

an operator T : E → F between two Banach lattices is said to be almost weak p-convergent if for every weakly null

sequence (xn)n ⊂ E and for every disjoint weakly p-summable sequence (y∗n)n ⊂ F ∗, we have that y∗n(Txn) → 0.
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Theorem 5.11 in [1] states that the adjoint of every positive operator which is almost weak p-convergent and

p-convergent T : E → F is disjoint p-convergent if and only if E∗ has order continuous norm or F ∗ has the positive

Schur property of order p (meaning that the identity operator IF∗ is disjoint p-convergent). In our preprint [3], we

dropped the p-convergence condition in T , and proved the following:

Theorem 2.2. The adjoint of every almost weak p-convergent positive operator T : E → F is disjoint p-convergent

if and only if E∗ has order continuous norm or F ∗ has the positive Schur property of order p.

We observe that the equivalent condition given in [1, Theorem 5.11] is a better approach than our Theorem 2.1

in order to obtain that E∗ has order continuous norm or F ∗ has the positive Schur property of order p. Nevertheless,

in most times, we already have one of these conditions, and so to obtain that the adjoint of a positive operator is

disjoint p-convergent, our Theorem 2.1 is more usefully than [1, Theorem 5.11] as we see in the next example.

Example 2.1. The identity operator Iℓ3 : ℓ3 → ℓ3 is an almost weak 3
2 -convergent operator which is not 3

2 -

convergent, and so [1, Theorem 5.11] cannot be applied to this operator. Nevertheless, since ℓ∗3 = ℓ3/2 has order

continuous norm, we can apply Theorem 2.1 to obtain that I∗ℓ3 is a disjoint 3
2 -convergent operator.

As an application of Theorem 2.1, we have the following:

Corollary 2.1. The adjoint of every almost weak p-convergent operator T : E → E is disjoint p-convergent if and

only if E∗ has order continuous norm.

Acknowledgments: Geraldo Botelho was supported by FAPEMIG PPM-00450-17 and Vińıcius Miranda was

supported by CNPq 150894/2022-8 and FAPEMIG APQ-01853-23
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Abstract

In this work we introduce and investigate the notions of topological expansivity and uniform topological

expansivity for operators on locally convex spaces. We prove that uniformly topologically expansive operators

on Hausdorff locally convex spaces are never Li-Yorke chaotic.

1 Introduction

A fundamental concept in dynamical systems is that of expansivity, which was introduced by Utz [5]. Expansive and

uniformly expansive operators on Banach spaces were studied by several authors (see for instance [3] and references

therein). One of the main results obtained in [3] is the following:

� A uniformly expansive operator on a Banach space is never Li-Yorke chaotic.

On the other hand, many important linear dynamical systems are defined on spaces that are not normable. For

instance, the translation operators of Birkhoff and the differentiation operator of MacLane, which are the classical

examples of chaotic operators, are defined on the (non-normable) Fréchet space of all entire functions on C. Our

main goal in the present work is to initiate an investigation on a notion of expansivity for operators on Fréchet

spaces (or in the more general setting of locally convex spaces).

2 Basic Definitions and Main Result

Given a topological vector space X over K := R or C, we denote by GL(X) the set of all continuous linear operators

on X that have a continuous inverse. Given a seminorm ∥ · ∥ on a vector space X, we define the unit sphere of ∥ · ∥
by

S∥·∥ := {x ∈ X : ∥x∥ = 1}.

If X is a normed space with norm ∥ · ∥, we also write SX instead of S∥·∥.

Given a metric space M with metric d, a homeomorphism h : M → M is said to be expansive if there is a

constant c > 0 such that, for every x, y ∈M with x ̸= y, there exists n ∈ Z with d(hn(x), hn(y)) ≥ c.

Below we will propose a notion of (uniform) expansivity for operators on locally convex spaces, which is motivated

by the following simple characterizations in the case of invertible operators on normed spaces, as observed in [3,

Proposition 19]:

� T is expansive ⇔ supn∈Z ∥Tnx∥ = ∞ for every nonzero x ∈ X.

� T is uniformly expansive ⇔ SX = A∪B where limn→∞ ∥Tnx∥ = ∞ uniformly on A and limn→∞ ∥T−nx∥ = ∞
uniformly on B.

Definition 2.1. Let X be a locally convex space over K whose topology is induced by a directed family (∥ · ∥α)α∈I
of seminorms. We say that an operator T ∈ GL(X) is topologically expansive if the following condition holds:
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(E) For each nonzero x ∈ X, there exists α ∈ I such that supn∈Z ∥Tnx∥α = ∞.

We say that the operator T is uniformly topologically expansive if:

(UE) For every α ∈ I, there exists β ∈ I such that we can write S∥·∥α
= Aα ∪Bα, where

∥Tnx∥β → ∞ uniformly on Aα as n→ ∞

and

∥T−nx∥β → ∞ uniformly on Bα as n→ ∞.

The classical notion of Li-Yorke chaos was introduced for continuous maps on metric spaces. This notion was

extended to group actions on Hausdorff uniform spaces in [1]. In the case of a continuous linear operator T on a

Hausdorff topological vector space X, the definition reads as follows: the operator T is said to be Li-Yorke chaotic

if there is an uncountable set S ⊂ X such that each pair (x, y) of distinct points in S is a Li-Yorke pair for T , in

the sense that the following conditions hold:

(LY1) For every neighborhood V of 0 in X, there exists n ∈ N such that Tnx− Tny ∈ V .

(LY2) There exists a neighborhood U of 0 in X such that Tnx− Tny ̸∈ U for infinitely many values of n.

Now we are in position to enunciate the main result of this work.

Theorem 2.1. A uniformly topologically expansive operator on a Hausdorff locally convex space cannot be Li-Yorke

chaotic.

For the proof of this result we use a characterization of Li-Yorke chaos by the existence of semi-irregular vector.

For a continuous linear operator T on a Fréchet space X, the following equivalence was obtained in [2]:

(i) T is Li-Yorke chaotic;

(ii) T admits a semi-irregular vector, that is, a vector x ∈ X such that the sequence (Tnx)n∈N does not converge

to zero but has a subsequence converging to zero.

It was observed in [4] that this equivalence remains true in this more general setting, where x semi-irregular for T

means that the sequence (Tnx)n∈N does not converge to zero but has a subnet converging to zero.

Final comments. The results of this work are based on a joint work with N. C. Bernardes Jr., B. M. Caraballo,
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Abstract

We prove a local version of Gowers’ Ramsey-type theorem [2], as well as local versions both of the Banach

space first dichotomy (the “unconditional/HI” dichotomy) of Gowers [2] and of the third dichotomy (the

“minimal/tight” dichotomy) due to Ferenczi–Rosendal [1]. As a consequence we obtain new information on the

number of subspaces of non-Hilbertian Banach spaces, making some progress towards the “ergodic” conjecture

of Ferenczi–Rosendal and towards a question of Johnson.

1 Introduction

A Banach space is said to be homogeneous if it is isomorphic to all of its (closed, infinite-dimensional) subspaces. A

famous problem due to Banach, and known as the homogeneous space problem, asked whether, up to isomorphism,

ℓ2 is the only homogeneous Banach space. The answer turned out to be positive; this problem was eventually

solved in the 1990’s by a combination of results by Gowers–Maurey [3], Komorowski–Tomczak-Jaegermann [4], and

Gowers [2].

The homogeneous space characterization of the Hilbert space shows that, as soon as a separable Banach space

X is non-Hilbertian, it should have at least two non-isomorphic subspaces. Thus, the following general question

was asked by Godefroy:

Question. (Godefroy) How many different subspaces, up to isomorphism, can a separable, non-Hilbertian

Banach space have?

This question seems to be very difficult in general, although good lower bounds for several particular classes of

spaces are now known. The seemingly simplest particular case of Godefroy’s question is the following question by

Johnson:

Question. (Johnson) Does there exist a separable Banach space having exactly two different subspaces, up

to isomorphism?

Even this question is still open. More generally, it is not known whether there exist a separable, non-Hilbertian

Banach space with at most countably many different subspaces, up to isomorphism.

It seems to be believed that such a space does not exist. In the rest of this paper, a separable Banach space

having exactly two different subspaces, up to isomorphism, will be called a Johnson space.

2 Main Results

We study dichotomies associated to the Hilbertian degree, that is, the local degree defined by the Banach Mazur

distance dBM (F, ℓ
dim(F )
2 ), for which small spaces are exactly Hilbertian spaces. We shall denote this degree d2:

d2(F ) = dBM (F, ℓ
dim(F )
2 ).

To save notation, we say that an FDD (Fn)n∈N of a Banach space X is d-better if d(X,Fn) −−−−→
n→∞

∞. A

Banach space X is a d2-HI space if it contains no direct sum of two non-Hilbertian subspaces, and d2-minimal if it
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embeds into all of its non-Hilbertian subspaces (“minimal among non-Hilbertian spaces”). An FDD is d2-tight if all

non-Hilbertian spaces are tight in it. In the case of the Hilbertian degree, our two dichotomies can be summarized

as follows:

Theorem 2.1. Let X be a non-Hilbertian Banach space. Then X has a non-Hilbertian subspace Y satisfying one

of the following properties:

(1) Y is d2-minimal and has a d2-better UFDD;

(2) Y has a d2-better d2-tight UFDD;

(3) Y is d2-minimal and d2-hereditarily indecomposable;

(4) Y is d2-tight and d2-hereditarily indecomposable.

It is clear from the definitions that if a Banach space X does not contain any isomorphic copy of ℓ2, then the

d2 −HI property is just the HI property and the d2-minimality is just classical minimality. It is also easy to check

that if X is not ℓ2-saturated, then our two local dichotomies do not provide more information than the original

ones.

For the ergodicity question we have the following consequence

Theorem 2.2. Every non-ergodic, non-Hilbertian separable Banach space contains a d2-minimal subspace.

The results are part of the work: Wilson Cuellar Carrera, Noé de Rancourt, Valentin Ferenczi, Local Banach-

space dichotomies and ergodic spaces. J. Eur. Math. Soc. (2022), https://doi.org/10.4171/jems/1257.
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Abstract

The current paper discusses the global existence and asymptotic behavior of solutions of the following new

nonlocal problem

utt −M
(∫

Ω

|∇u|2 dx
)
△u+ δut = |u|ρ−2u log |u| in Ω×]0,∞[,

where

M(s) =

a− bs, for s ∈ [0, a
b
[,

0, for s ∈ [a
b
,+∞[.

If the initial data are appropriately small, we derive existence of global strong solutions and the exponential

decay of the energy.

1 Introduction

In this research we study the following nonlocal problem

utt −M
(∫

Ω

|∇u|2 dx
)
△u+ δut = |u|ρ−2u log |u| in Ω×]0,∞[,

u = 0 on Γ×]0,∞[,

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω

(1)

where Ω is a bounded domain in Rn with smooth boundary Γ,

M(s) =

a− bs, for s ∈ [0, ab [,

0, for s ∈ [ab ,+∞[,
(2)

a, b > 0, ρ > 2. Equations with logarithmic nonlinearity have a lot of applications in the fields of geophysics,

quantum mechanics, inflationary cosmology and so on. A number of results on the solutions to problem (1) with

polynomial nonlinearities instead of the logarithmic source have been established by many researches through various

approaches and assumptive conditions; see [1, 4] and references therein. Concerning nonlinear wave equations with

logarithmic nonlinearities also there is many literature; see [2, 5] and references therein. In [6] Yin et al. investigated

the existence and multiplicity of nontrivial solution for the new nonlocal problem

−
(
a− b

∫
Ω

|∇u|2 dx
)
△u = |u|ρ−2u in Ω,

u = 0 on Γ.

(3)

Also see [3, 7] for generalizations of (3). Inspired by the aforementioned studies, we are concerned with the global

solvability of (1) with the nonlocal operator given in (3). In this sense, it is worth noting that to handle the

logarithmic term we do not use the famous logarithmic Sobolev inequality and when a = 0 = δ the equation (1)

becomes the quasilinear non well posed problem.
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2 Main Results

Theorem 2.1. Let N = 3 and 8
3 < ρ < 4. Assume further that {u0, u1} ∈ (H1

0 (Ω)∩H2(Ω))×H1
0 (Ω) is sufficiently

small. Then problem (1) admits a unique global solution

u ∈ C([0,+∞[;H1
0 (Ω) ∩H2(Ω)) ∩ C1([0,+∞[;H1

0 (Ω)) ∩ C2([0,+∞[;L2(Ω)),

and the energy satisfies

E(t) ≤ Ce−kt for t ≥ 0, (1)

with some constant C > 0.

Proof. First, we prove a local existence result. Then, we establish global existence of solutions by using of Tartar

method combined with suitable a priori estimates including |△u(t)| and |∇tu(t)| in addition to the usual energy

estimate.
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Abstract

Results on the convergence and stability of widely used integrators for stochastic differential equations (SDEs)

are typically obtained assuming global Lipschitz assumptions on the coefficients of the equation. Therefore, in

principle, these methods cannot be reliably applied to a number of models that do not meet these conditions.

In this work, we first introduce a random conjugacy between a class of SDEs and random differential equations

to then propose an approach to devise numerical methods for systems of SDEs with nonstandard coefficients

and multiplicative noise. Simulation studies, including a comparative analysis with other integrators commonly

used in applications, confirm the advantages of the proposed methods. This work is based on some ideas from

our paper [1].

1 Introduction

Stochastic Differential Equations (SDEs) have become a fundamental tool for the mathematical modeling of many

phenomena in which noise plays an important role. Currently, there is a wide variety of numerical methods

available for the computational integration of stochastic systems, many of which have been motivated by the need

to integrate particular types of SDEs in applications. However, results on important issues related to convergence,

stability and long-time behavior of widely used methods are typically obtained assuming restrictive assumptions

on the coefficients of the equation which may not be satisfied by many models [3]. In fact, the standard literature

in stochastic numerics concentrates on numerical integrators under the hypothesis of globally Lipschitz coefficients,

and when this condition is violated they can diverge or show high instability [2]. Therefore, in principle, these

methods cannot be reliably applied to a number of models that do not meet these conditions. The low performance

of numerical approximations is even more severe when the simulation of the system is required on long-time intervals

and it is necessary that the integrator replicates, as best as possible, meaningful long-term properties of the modeled

system. In this work we propose an approach that allows to devise numerical integrators for systems of SDEs with

non global Lipschitz drift coefficient f = (f1, . . . , fd)
⊺
and multiplicative noise of the form

dX1 = f1(t,X1, X2, . . . , Xd)dt+ (σ11X1 + α1) dWt (1)

dX2 = f2(t,X1, X2, . . . , Xd)dt+ (σ21X1 + σ22X2 + α2) dWt

...

dXd = fd(t,X1, X2, . . . , Xd)dt+ (σd1X1 + σd2X2 + · · ·+ σddXd + αd) dWt

where (Wt)t∈R+ is a standard Wiener processes. SDEs with this type of structure appear in several important

models in applications (see e.g., [2]).

The approach we develop consists in finding an appropriate invertible continuous transformation, linking the

solution of the SDE (1) to the solution of an auxiliary random differential equation (RDE) that has the stationary

Ornstein-Uhlenbeck process as the only input parameter of the system. In this way, new pathwise numerical schemes
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can be constructed without the need to assume global Lipschitz conditions for f . Remarkably, this framework allows

to devise integrators able to approximate, with high stability, meaningful probabilistic features of the continuous

system, including its stationary distribution and ergodicity.

2 Proposed approach and main results

Consider the random transformation

Yk := e−Uk(t)
(
ω
(k)
1 X1 + ω

(k)
2 X2 + · · ·+(k)

k−1 Xk−1 +Xk + γk

)
, k = 1, . . . d (2)

with


σ11 σ21 · · · σk−1,1

σ22 · · · σk−1,2

. . .
...

σk−1,k−1



ω
(k)
1

ω
(k)
2
...

ω
(k)
k−1

 =


σk,1

σk,2
...

σk,k−1

 , γk = σ−1
kk

k∑
i=1

αiωi and dUk(t) = −Uk(t)dt+ σkkdWt.

The Ito-formula applied to Yk leads to a RDE of the form

Y ′(t) = 𭟋(t, Y (t), U(t)), with Y (t) = (Y1(t), . . . , Yd(t))
⊺

and U(t) = (U1(t), . . . , Ud(t))
⊺
,

which can be studied pathwise without the need of stochastic calculus for its treatment. This allows to construct

explicit numerical integrators of the form Ŷn+1 = Ŷn + ϕ
(
tn, Ŷn, U (tn) , h

)
(where h is the stepsize) for this RDE,

that do not need to satisfy such a restrictive assumptions as in the case of SDEs. Then, from (2), we readily get

the numerical integrator
(
X̂n

)
n=1,...

for (1) defined by


ω
(1)
1 0 · · · 0

ω
(2)
1 ω

(2)
2 · · · 0

...
...

. . .
...

ω
(d)
1 ω

(d)
2 · · · ω

(d)
d

 X̂n+1 =


eU1(tn)

(
Ŷ

(1)
n+1 − γ1

)
eU2(tn)

(
Ŷ

(2)
n+1 − γ2

)
...

eUd(tn)
(
Ŷ

(d)
n+1 − γd

)

 .

We have the following theorem concerning the convergence of the method.

Theorem 2.1. If the numerical integrator
(
Ŷn

)
n=1,...

is stable and pathwise convergent with rate of convergence

p, and Uk (t0) is selected ∼ N(0,
σ2
kk

2 ), then the corresponding numerical integrator
(
X̂n

)
n=1,...

for (1) is stable and

pathwise convergent with the same order p.
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JEAN FRANÇOIS1, PAOLA FERRAZ2 & EDUARDO ABREU3

FECLI, UECE, CE, Brasil1, CNPEM, SP, Brasil2, IMECC, UNICAMP, SP, Brasil3

jean.francoisuece.br† paola.ferraz@lnls.br‡ eabreu@ime.unicamp.br§

Abstract

A genuinely multidimensional Semi-Discrete Lagrangian-Eulerian scheme for solving initial value problems

for scalar models and systems of conservation laws [2], based on the concept of no-flow curves [1] is presented.

The scheme is positivity preserving and Riemann solver free. The rigorous numerical analysis is carried out

in [2]. We provide numerical examples considering coupling of two-phase and three-phase fluid flow problems

with discontinuous porous media for verifying the theory and illustrating the capabilities of the approach being

presented.

1 Semi-Discrete Lagrangian-Eulerian formulation

The semi-discrete Lagrangian-Eulerian scheme construction is started considering the 1D scalar problem

∂u

∂t
+
∂H(u)

∂x
= 0, x ∈ R, t > 0, u(x, 0) = u0(x), u0(x) ∈ L∞(R) where H ∈ C2(Ω), H : Ω → R, (1)

and u = u(x, t) : R× R+ −→ Ω ⊂ R. Following [1, 2], we obtain the fully discrete Lagrangian–Eulerian scheme,

un+1
j = unj − ∆t

∆x

[
F
(
unj , u

n
j+1

)
− F

(
unj−1, u

n
j

)]
, with a numerical flux function given by F

(
unj , u

n
j+1

)
= (2)

1

4

[
∆x

∆t

(
unj −unj+1

)
+∆x

fnj +f
n
j+1

∆xj

(
unj +u

n
j+1

)
+

∆x2

4

fnj + fnj+1

∆xj

(
(ux)

n
j −(ux)

n
j+1

)
+
∆x2

4∆t

(
(ux)

n
j + (ux)

n
j+1

)]
. (3)

By the aid of the no-flow property

[
∆x

∆t

]
∝ [O(H(u)/u)], (see [1] and u and H(u) given by (1)), we can remove

the blow-up singularity of the numerical flux F (unj , u
n
j+1) in (2)–(3) replacing

∆x

∆t
with a stability condition that

depends on O((H(u)/u)), which allows us to have ∆t → 0+ and produce an accurate approximation of the local

speeds. This no-flow property allows to obtain a suitable function

bj+ 1
2
= bj+ 1

2
(fj , fj+1), fj ≡

H(uj)

uj
≈ H(u)

u
for each j ∈ Z per time step [tn, tn+1]. (4)

Thus, the new class of SDLE schemes for hyperbolic-transport initial value problems (1) is given by[
d

dt
uj(t) = − 1

∆x
[F (uj , uj+1)−F (uj−1, uj)], F (uj , uj+1)=

1

4

[
bj+ 1

2

(
u−
j+ 1

2

−u+
j+ 1

2

)
+(fj + fj+1)

(
u−
j+ 1

2

+u+
j+ 1

2

)]
,

]
where lim

∆t−→0
F
(
unj , u

n
j+1

)
̸= ∞, with u−

j+ 1
2

= uj +
∆x

4
((ux)j) and u+

j+ 1
2

= uj+1 −
∆x

4
((ux)j+1). The formal

2D extension of the semi-discrete scheme is straightforward and given by

d

dt
uj,k(t) = −

Fj+1/2,k −Fj−1/2,k

∆x
−

Gj,k+1/2 − Gj,k−1/2

∆y
, for the following scalar conservation law (5)
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ut +H(u)x +G(u)y = 0, u(x, y, 0) = u0(x, y), where H,G,∈ C2, u0(x, y) ∈ L∞
loc(R2). (6)

The corresponding multidimensional numerical fluxes in the x− and y−directions are, respectively, given by

Fj+ 1
2 ,k

=
1

4

[
bxj+ 1

2 ,k

(
u−
j+ 1

2 ,k
− u+

j+ 1
2 ,k

)
+ (fj,k + fj+1,k)

(
u−
j+ 1

2 ,k
+ u+

j+ 1
2 ,k

)]
and

Gj,k+ 1
2
=
1

4

[
by
j,k+ 1

2

(
u−
j,k+ 1

2

− u+
j,k+ 1

2

)
+ (gj,k + gj,k+1)

(
u−
j,k+ 1

2

+ u+
j,k+ 1

2

)]
, (7)

where the discretized multi-D (2D) space-time no-flow curves [1], given by (u, H(u), G(u) as defined in (6))

fj,k =
H(ujk)

ujk
and gj,k =

G(ujk)

ujk
, with

[
∆x

∆t

]
∝ [O(H(u)/u)] and

[
∆y

∆t

]
∝ [O(G(u)/u)]. (8)

More details can be seen at [2]. An immiscible and incompressible displacement two-phase flow model of water (w)

and oil (o) in heterogeneous porous media coupled with the hyperbolic conservation law is given by

∇ · v = 0, v = −λ(S)K(x)∇ · p, x ∈ Ω, p the pressure, (9)

∂S

∂t
+∇ · (H(S)v) = 0, x ∈ Ω, t > 0, or

∂S

∂t
+

∂

∂x
(vxH(S)) +

∂

∂y
(vyH(S)) = 0, (10)

with no effects of capillarity and gravity. Here v is the total seepage velocity, S = Sw is the water saturation

and So = 1 − Sw the oil saturation. The scalar hyperbolic-transport model (10) is handled by our semi-

discrete scheme with the water fractional flow function H(S) =
krw(S)/µw

λ(S)
linked to the prescribed initial data,

S(x, y, 0) =: S0(x, y) = 1 if x ≤ 0 and S0(x, y) = 0. We consider quadratic relative permeability curves krw(S) = S2

and kro(S) = (1− S)2 with µw = 1, µo = 2 and the total mobility λ(S) as λ(S) =
krw(S)

µw
+
kro(S)

µo
. The elliptic-

pressure-velocity model (9) is treated by the hybrid mixed finite element discretization approach on lower index

H(div) Raviart-Thomas spaces [3] where the permeability fields set initially to be layers of the 3D SPE10 field with

boundary conditions set as a zero pressure in the boundary y = Y and pressure equal to one in y = 0. The absolute

permeability K(x) ≡ 1 in homogeneous case.
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SÔNIA M. GOMES.1, KAROLINNE O. COELHO2 & PHILIPPE R. B. DEVLOO2

IMECC, Unicamp, SP, Brasil1, LabMeC-FECFAU, Unicamp, SP, Brasil2

soniagunicamp.br† karolinneoc@gmail.com‡ phil@unicamp.br§

Abstract

The Scaled Boundary Finite Element Method (SBFEM) stands out for a Galerkin method where the

approximation spaces are constructed using a semi-analytical approach. They are based on partitions of

the computational domain by polygonal/polyhedral subregions (called S-elements), where the shape functions

approximate local Dirichlet problems with piecewise polynomial trace data. The design of SBFEM was motivated

by the numerical treatment of mechanical problems with singularities and non-smooth solutions, such as in the

presence of re-entrant corners, cracks, V-notches, and free edges formed by dissimilar materials, for which poor

performance occurs by classical Finite Element Methods. In the absence of body loads, the application of SBFEM

to this class of problems has shown optimal rates of convergence, due to its ability to mimic the properties of the

analytical solution. We extend the SBFEM applicability to non-homogeneous problems, by considering enriched

spaces by some properly chosen energy-orthogonal bubble functions. We prove optimal convergence rates, which

are verified by implemented versions of different 2D and 3D SBFEM geometry, using trianglular, tetrahedral,

and pyramidal subpartitions of the S-elements.

1 Introduction

SBFEM approximations are based on partitions of the domain Ω into general polygonal/polyhedral subregions S,

also called S-elements. These elements need to obey the star-shaped requirement, which means that any point at

∂S is directly visible from a center point inside S (named scaling center). Based on such element geometry, the

local SBFEM approximation spaces in S for homogenous problems are composed of two components [1]:

1. A trace finite element (FE) discretization over ∂S.

2. A radial extension into S by expansions in terms of eigenfunctions and eigenvalues, obtained by an approach

similar to the separation of variables.

Therefore, polynomial approximations are only adopted by SBFEM at ∂S, whilst inside S the fields are constructed

by numerically solving Dirichlet local versions of the model problem.

The incorporation of analytic knowledge about the local behavior of the exact solution in the approximation

spaces is the main property of SBFEM. For instance, when applying SBFEM to Poisson’s equation, a semi-analytical

approximation of Laplace’s equation is computed in the interior of the S domain by approximate radial harmonic

extensions of surface components. Because of that, SBFEM is considered a semi-analytical approach. In fact, as

pointed out in [2], SBFEM can also be viewed as an operator adapted method, following principles closely related

with the Partition of Unity Method or with the Virtual Element Method, according to [3] and [4], respectively, or

to citations therein enclosed. On the other hand, the requirement of incorporating polynomial approximations in

SBFEM spaces only at the level of the element skeleton leads to a more flexible mesh generation. It means that the

meshes can be partitioned into S-elements with an arbitrary number of sides. Polygonal surface meshes, quadtrees

surface meshes and octrees surface meshes can be used naturally.
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1.1 The main contributions

SBFEM has been successfully applied to singular mechanical problems with vanishing force terms. In this

contribution, we propose and analyze a novel procedure to approximate non-homogeneous systems of partial

differential equations using a SBFEM-bubble function extension, whose main aspects are:

1. The SBFEM spaces are described in the context of composite Duffy approximation spaces in S allowing

to explore the advantage of an extended energy-orthogonality relation. The orthogonality properties were

initially proven in [2] for harmonic approximations. They are extended here for homogeneous elasticity

problems, where local SBFEM spaces are orthogonal to a generic bubble approximation space of Duffy type

in each S-element.

2. This energy-orthogonal property suggests the employment of orthogonal bubble functions to enrich the

SBFEM formulation of non-homogeneous problems: some properly chosen bubble functions are added to

the scaled boundary shape functions to recover convergence rates of SBFEM approximations when applied to

problems with non-vanishing source terms.

3. Optimal convergence rates are demonstrated when using SBFEM for approximations of non-homogeneous

Poisson and elasticity in 2D and 3D problems.

4. The decomposition of the formulation into boundary and bubble contributions allows the partition of the

resulting SBFEM stiffness matrix into two uncoupled submatrices associated with the boundary and bubble

functions, reducing the computational cost.

5. The bubbles are simple linear combination of Duffy shape functions. The integration of stiffness terms

associated with the bubble functions can also be done semi-analytically, similarly to the stiffness matrix

associated with the boundary shape functions.

6. High-order simulations for 2D meshes and different mesh configurations for 3D problems were performed

using different subpartitions for the S-elements, such as triangles, tetrahedrons, and pyramids. Verification

experiments illustrate numerically the expected convergence rates for examples of the model Poisson and

elasticity problems in 2D and 3D.
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Abstract

It will be considered the steps to be followed in the analysis and interpretation of the quantization problem

related to the C2,8 channel, where the Fuchsian differential equations and the generators of the Fuchsian groups

associated with the specific case g = 3 are presented. In order to obtain these results, it is necessary to determine

the genus g of each surface which this channel may be embedded. After that, the procedure is to determine the

algebraic structure (Fuchsian group generators) associated with the fundamental region of each surface. For this,

there exists an associated linear second order Fuchsian differential equation whose linearly independent solutions

provide the generators of this Fuchsian group. The aim of this work is to present a specific case, related to the

genus g = 3, due some specificities, by using a second order Fuchsian differential equation and some structures

of the hiperbolic geometry.

1 Introduction

The goals of designing a new digital communication system are to construct more reliable and less complex systems

than previously known ones, [1].

Massey [4] has shown that under the error probability criterion, the performance of a binary digital

communication system using soft-decision in the demodulator, for instance, an 8-level quantizer, leading to a

binary input, 8-ary output symmetric channel, denoted by C2,8, achieves a gain of up to 2 dB when compared to

the performance of a binary digital communication system using hard-decision (a 2-level quantizer, leading to a

binary symmetric channel (BSC), denoted by C2,2).

One way to carry out these analyzes is to utilize an important type of ordinary differential equations, in

the complex plane, the so-called Fuchsian differential equations and the Fuchsian group generators, by using the

hyperbolic geometry.

According to [3], Fuchsian differential equations represent an important class of linear ordinary differential

equations whose main characteristic is that every singular point in the extended complex plane is regular. These

differential equations are widely used in mathematical physics problems. The most studied cases involve equations

with three regular singular points, such as the hypergeometric, Legendre, and Tchebychev equations.

The genus g of a compact orientable surface M is determined by the number of handles connected to a sphere

or the number of “holes” in M. As the Euler characteristic of a surface, the genus is a topological invariant. We

can identify surfaces with genus g = 1 with the torus, and the geometry associated with these surfaces is Euclidean

geometry. For surfaces of genus g ≥ 2, g-tori, the geometry to be considered is the hyperbolic geometry, [2].

In [5], relevant connections are made among Fuchsian differential equations, Riemann surfaces and Fuchsian

groups, in order to analyze the uniformizing process of algebraic curves of the form y2 = z2g+1 ± 1.
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The aim of this work is to present the Fuchsian groups generators by the polygon side-pairings, related to the

cases g = 3, in order to analyze the channel C2,8 quantization problem, which can be embedded in surfaces of genus

0 ≤ g ≤ 3, through a second order Fuchsian differential equation.

2 Main Results

Let us consider the hyperelliptic curves with genus 3, given by y2 = z7 − 1. There is a bijective correspondence

between the set of solutions of z7 − 1 and the values −3, −2, −1, 0, 1, 2 and 3, since the roots of the unit divide

the circumference into seven equal parts. The associated Fuchsian differential equation and the generators of the

Fuchsian group will be presented in the sequence, in order to show the characterization of the channel quantization

process, related to the case g = 3. The Fuchsian differential equation is given by:

(z7−14z5+49z3−36z)y′′+

[
(z7 − 14z5 + 49z3 − 36z)

(
2

z + 1
+ k1

)]
y′+

[
(z7 − 14z5 + 49z3 − 36z).k2]y

]
= 0, k1, k2 ∈ C.

(1)

The linearly independent solutions of Eq. (1) result in elliptic transformations of the form:

Si(t) =
ait+ bi

cit+ di
, with |ai + di| = 0, for all 1 ≤ i ≤ 7. (2)

By fixing one of these transformations and multiplying it by the remaining ones, the generators of the Fuchsian

group (Γ4g or Γ4g+2) are determined. The generators associated with the analyzed case are presented below; they

are given by S1S2, S1S3, S1S4, S1S5, S1S6 and S1S7:

S1S2 =

(
1.400969 + 0.3197621i 1.0060962− 0.2296349i

1.0060962 + 0.2296349i 1.400969− 0.3197621i

)
, S1S3 =

(
1.62349− 0.1423075i 1.0060962 + 0.802335i

1.0060962− 0.802335i 1.62349 + 0.1423075i

)
,

S1S4 =

(
1.1234898− 0.2564293i −2.220D − 16 + 0.5727001i

−2.220D − 16− 0.5727001i 1.1234898 + 0.2564293i

)
,

S1S5 =

(
1.1234898 + 0.2564293i 0.447755− 0.3570727i

0.447755 + 0.3570727i 1.1234898− 0.2564293i

)
,

S1S6 =

(
1.62349 + 0.1423075i 1.2545815 + 0.28635i

1.2545815− 0.28635i 1.62349− 0.1423075i

)
, S1S7 =

(
1.400969− 0.3197621i 0.447755 + 0.9297727i

0.447755− 0.9297727i 1.400969 + 0.3197621i

)
.
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Abstract

The theory of generalized ordinary differential equations (generalized ODEs, for short) has been shown to

be a very powerful theory once several types of equations can be regarded as them. In the present lecture, we

introduce a new concept of stability, called decreasing stability, and deal with some Lyapunov techniques on

decreasing and exponential stability.

1 Introduction

In recent years, there has been an increasing interest in the theory of generalized ordinary differential equations,

shortly known as generalized ODEs. This is due to the fact that generalized ODEs encompass other types of

equations, as for instance, to mention the least, measure functional differential equations, dynamic equations on

time scales and integral equations. Generalized ODEs are based on the non-absolute integration theory due to

Jaroslav Kurzweil and Ralph Henstock. The Kurzweil-Henstock integral is known to handle well not only many

discontinuities but also highly oscillating functions. The well-known real-valued Kurzweil-Henstock integral is

equivalent to the Perron and to the restricted Denjoy integrals which, on the other hand, encompass the Newton,

Riemann and Lebesgue integrals as well as their improper integrals. In the framework of generalized ODEs, an

“integral equation” appears containing an integral in Kurzweil’s sense. This enables one to deal with integrands

which are of unbounded variation, for instance. Moreover, Stieltjes-type integrals, often used to describe differential

equations involving measures can be handled naturally, once the Kurzweil-Henstock integral contains the Perron-

Stieltjes integral. This is why measure functional differential equations are clearly a particular case of generalized

ODEs.

Motivated by these features, we are interested here in in investigating stability criteria for generalized ODEs.

Consider the generalized ODE

dx

dτ
= DF (x, t), (1)

where F : X × [t0,+∞) → X belongs to an appropriate class of functions, t0 ≥ 0 and X is Banach space. We

assume that the generalized ODE (1) admits the trivial solution. At first, we recall the concept of exponential

stability presented in [2] and we introduce a new concept of stability, called decreasing stability, which generalizes

exponential stability.

Definition 1.1. Let s0 ≥ t0 ≥ 0, x0 ∈ X and x : [s0,+∞) → X be the global forward solution of the generalized

ODE (1) with initial condition x(s0) = x0. The trivial solution of the generalized ODE (1) is called

1. exponentially stable, if there exist positive constants ρ, α, β such that

∥x(t)∥ = ∥x(t, s0, x0)∥ < αe−β(t−s0), for all t ∈ [s0,+∞),

whenever ∥x0∥ < ρ;

2. decreasingly stable, if there exist δ > 0 and a decreasing function σ : [0,+∞) → R+ such that σ(0) <∞ and,

if ∥x0∥ < δ, then ∥x(t)∥ = ∥x(t, s0, x0)∥ < σ(t− s0) for all t ∈ [s0,+∞).
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2 Main Results

In this section, we present our main results concerning decreasing stability. The first result is a direct Lyapunov

theorem.

Theorem 2.1. If there exists a functional V : [t0,+∞)×X → R such that

1. V (t, z) ≥ 0 for every (t, z) ∈ [t0,+∞)×X;

2. the mapping [s0,+∞) ∋ t 7→ V (t, x(t)) is nonincreasing along every solution x : [s0,+∞) → X of the

generalized ODE (1);

3. there exists a positive constant γ such that γ∥z∥ ≤ V (t, z) for all (t, z) ∈ [t0,+∞)×X;

then the trivial solution of the generalized ODE (1) is decreasingly stable.

The second main result is a converse Lyapunov theorem for decreasing stability.

Theorem 2.2. If the trivial solution of the generalized ODE (1) is decreasingly stable, then there exist δ > 0 and

a functional V : [t0,+∞)×Bδ → R+, Bδ = {x ∈ X; ∥x∥ < δ}, such that

1. V (t, y) ≥ 0 for all (t, y) ∈ [t0,+∞)×Bδ;

2. V (·, y) : [t0,+∞) → R+ is left-continuous on (t0,+∞) for all y ∈ Bδ;

3. there exists a monotonically increasing and continuous function a : R+ → R+ such that ∥y∥ ≤ V (t, y) ≤ a(∥y∥)
for all (t, y) ∈ [t0,+∞)×Bδ;

4. the mapping [s0,+∞) ∋ t 7→ V (t, x(t)) is nonincreasing along every solution x : [s0,+∞) → Bδ of the

generalized ODE (1).

This lecture is mainly based on the submitted paper [1].

The first author was supported by FAPESP grant 2021/12213-5. The second author was supported by FAPEMIG

grants CEX APQ 01745/18 and RED-00133-21 and by CNPq grant 312833/2022-9.
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Abstract

A continuous dynamical system can be related to an impulsive dynamical system and to a discrete dynamical

system. In this work, we present a relationship among the attractors of these systems.

1 Introduction

Let (X, d) be a metric space. A semidynamical system on X, denoted by (X,π), is a family of maps {π(t) : t ∈ R+}
acting from X to X such that π(0) = I (I : X → X is the identity operator), π(t+ s) = π(t)π(s) for all t, s ∈ R+,

and R+ ×X ∋ (t, x) 7→ π(t)x ∈ X is a continuous map.

A nonempty closed subset M ⊂ X is called an impulsive set if for every x ∈M there exists ϵx > 0 such that⋃
t∈(0,ϵx)

{π(t)x} ∩M = ∅.

Let (X,π) be a semidynamical system and M be an impulsive set. The impact function ϕ : X → (0,∞] is given

by

ϕ(x) =

{
s, if π(s)x ∈M and π(t)x /∈M for 0 < t < s,

∞, if π(t)x /∈M for all t > 0.

Note that, if ϕ(x) <∞ then this value represents the smallest positive time such that the trajectory of x meets M .

An impulsive dynamical system (X,π,M, I) consists of a semidynamical system (X,π), an impulsive setM ⊂ X

and a continuous function I : M → X called impulsive function. The impulsive positive trajectory of a point x ∈ X

in (X,π,M, I) is represented by a map π̃(·)x : Jx → X defined on some interval Jx ⊆ R+ containing 0, given

inductively by the following rule: if ϕ(x) = ∞ then π̃(t)x = π(t)x for all t ∈ R+. But, if ϕ(x) < ∞, then we set

x = x+0 and we define π̃(·)x on [0, ϕ(x+0 )] by

π̃(t)x =

π(t)x+0 , if 0 ⩽ t < ϕ(x+0 ),

I(π(ϕ(x+0 ))x
+
0 ), if t = ϕ(x+0 ).

Now, we write s0 = ϕ(x+0 ), x1 = π(s0)x
+
0 and x+1 = I(π(s0)x

+
0 ). Since s0 <∞, the previous process can go on, but

now starting at x+1 . If ϕ(x+1 ) = ∞ then we define π̃(t)x = π(t− s0)x
+
1 for all t ≥ s0. But, if s1 = ϕ(x+1 ) < ∞ i.e.,

x2 = π(s1)x
+
1 ∈M then we define π̃(·)x on [s0, s0 + s1] by

π̃(t)x =

π(t− s0)x
+
1 , if s0 ⩽ t < s0 + s1,

I(x2), if t = s0 + s1.

Here, denote x+2 = I(x2). This process ends after a finite number of steps if ϕ(x+n ) = ∞ for some n ∈ N, or it may

proceed indefinitely, if ϕ(x+n ) < ∞ for all n ∈ N and, in this case, π̃(·)x is defined in the interval [0, T (x)), where

T (x) =

∞∑
i=0

si can be finite or infinite. From now on, we shall assume that T (x) = ∞ for all x ∈ X. See [1, 2, 3, 4].

In the next definition, dH denotes the Hausdorff semidistance between two nonempty sets.
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Definition 1.1. A nonempty set Ã ⊂ X is called a global attractor for (X,π,M, I) if Ã is pre-compact and

Ã = Ã\M , Ã is π̃-invariant (π̃(t)Ã = Ã for all t ∈ R+), and dH(π̃(t)B, Ã)
t→∞−→ 0 for every bounded set B ⊂ X.

If M = ∅ in Definition 1.1, then Ã is the global attractor of the continuous semidynamical system (X,π), which

will be denoted by A.

Let X̂ = {x ∈ I(M) : ϕ(x+k ) <∞ for all k ∈ N} and assume that X̂ is nonempty. The map g : X̂ → X̂ given by

g(x) = I(π(ϕ(x))x),

maps X̂ to X̂ and, hence, defines a discrete dynamical system on X̂, represented by (X̂, g), which is associated

with the impulsive dynamical system (X,π,M, I). Note that g0(x) = x and gn(x) = x+n for all x ∈ X̂ and n ∈ N.
Consequently, g(x+n ) = x+n+1 for all x ∈ X̂ and n ∈ N.

Definition 1.2. A nonempty set Â ⊂ X̂ is called a discrete global attractor for (X̂, g) if Â is compact, Â is

g-invariant (g(Â) = Â), and dH(gn(B̂), Â)
n→∞−→ 0 for every bounded set B̂ ⊂ X̂.

Condition (T): If x ∈M , {zn}n∈N ⊂ X is a sequence that converges to z and t > 0 are such that π(t)zn
n→∞−→ x,

then there exist a subsequence {znk
}k∈N and a sequence {αk}k∈N ⊂ R, αk

k→∞−→ 0, such that t + αk ≥ 0 and

π(t+ αk)znk
∈M .

Condition (T) plays an important role in obtaining a well-behaved evolution of an impulsive dynamical system,

see [1] for more details.

2 Main Results

Let A be the global attractor of (X,π) and Â be the discrete global attractor of (X̂, g). In Theorem 2.1, we exhibit

sufficient conditions for the existence of the global attractor Ã of (X,π,M, I). By B(X) we mean the set of all

bounded subsets from X.

Theorem 2.1. Assume that (X,π) admits a global attractor A with A ∩M = ∅, (X̂, g) has a global attractor Â,

(X,π,M, I) is dissipative (i.e., there exists a set B0 ∈ B(X), such that for every B ∈ B(X) there exists a time

TB ≥ 0 such that π̃(t)B ⊂ B0 for all t ≥ TB) and ϕ(x) < ∞ for all x ∈ I(M). If I(M) ∩M = ∅, there exists

ξ > 0 such that ϕ(x) ≥ ξ for every x ∈ I(M), and condition (T) holds, then (X,π,M, I) admits a global attractor

Ã given by

Ã = A ∪

⋃
a∈Â

π([0, ϕ(a)))a

 .
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Abstract

Similarly to generalized ODEs that comprise various types of classical deterministic equations, generalized

stochastic equations (GSEs) were created to contain equations involving stochastic processes. The main goal

of this work is to investigate several types of stability and boundedness for non-autonomous GSEs by means of

Lyapunov functionals. We also established existence-uniqueness results for global forward solutions of GSEs.

1 Introduction

Generalized ODEs are based on the non-absolute integration theory due to Jaroslav Kurzweil and Ralph Henstock

and are known to cover many types of equations, as for instance, measure functional differential equations, dynamic

equations on time scales and integral equations. By considering belated partial divisions in the classic Kurzweil

integral, the authors of [1] introduced a new integral which contains the Itô-Henstock integral for functions taking

values in spaces of Hilbert-Schmidt operators. Furthermore, they defined a new class of equations, called generalized

stochastic equations (GSEs), in such a way that classic stochastic differential equations fall into special cases of

GSEs.

It is well-known that stability conditions for solutions of differential equations can be obtained using an

appropriate Lyapunov functional. Moreover, the construction of different Lyapunov functionals allows obtaining

different stability conditions and the reciprocal is true. Recently, it has been an increasing investigation into these

types of results for generalized ODEs. In the framework of stochastic differential equations we can mention the

works of V. Kolmanovskii and L. Shaikhet.

In the present paper, we are interested in establishing a stability theory for GSEs by means of Lyapunov

functionals. To this end, we discuss when the trivial solution of a GSE is p-stable, asymptotically p-stable,

exponentially p-stable and stochastically stable (or stable in probability). Our main goal is to prove Lyapunov-type

Theorems involving all these concepts.

2 Main Results

Definition 2.1. Let I ⊂ R be a non-degenerate interval, (Ω,F , {Ft}t∈I ,P) be a filtering probability space and

F : Lp(Ω, V )×J → F(Ω, V ) be an operator, where J ⊂ I is a subinterval. A {Ft}-adapted process X = {Xt : t ∈ J}
on (Ω,F , {Ft}t∈I ,P), with Xt ∈ Lp(Ω, V ), for all t ∈ J , is a solution of the GSE

Xt = Xs +

∫ t

s

F (Xr, τ), t, s ∈ J, (1)

on J , whenever Xt(ω) ∈ V for every t ∈ J and P-almost every ω ∈ Ω and the integral equation (1) holds, where

the integral is in the sense of the Kurzweil-belated integral with G(r, τ) = F (Xr, τ). When I is unbounded and

J = [s0,+∞) ⊂ I, we say that X is a global forward solution with initial condition Xs0 and, if Xt ≡ 0 for all t ∈ J ,

then X is called the trivial solution.

63



64

The next result deals with the existence and uniqueness of global forward solutions of the GSE (1).

Theorem 2.1. Let I = [t0,+∞), h : I → R be a nondecreasing continuous function and F : L × I → F(Ω, V ) be

an operator belonging to the class G(L × I, h), where L ⊂ Lp(Ω, V ). If X = {Xt : t ∈ [s0,+∞)} is a maximal

solution of the GSE (1), then, for every compact set K ⊂ L× I, there exists tK ∈ [s0, ν) such that (Xt, t) /∈ K, for

all t ∈ (tk, ν) and some ν ≤ +∞. In particular, for all s0 ≥ t0 and all X̃ ∈ Lp(Ω, V ), there exists a unique global

forward solution X = {Xt : t ∈ [s0,+∞)} of the GSE (1) with Xs0 = X̃, whenever L ⊂ F p(Ω, V ) is compact.

In what follows, we present results which show that certain stability conditions for a GSE can be stated in term

of Lyapunov functions.

Theorem 2.2. Let 1 ≤ p < ∞ and V : [t0,+∞) × Lp(Ω, V ) → R+ be a positive definite functional such that for

any solution X = {Xt : t ≥ s0} of the GSE (1), s0 ≥ t0, the following inequalities hold:

i there exists a constant c > 0 such that E[V (t,Xt)] ≥ cE[∥Xt∥pLp ], for all t ≥ s0;

ii there exists σ ∈ K such that E[V (s0, Xs0)] ≤ σ (∥Xs0∥
p
Lp) ;

iii there exists a constant d > 0 such that for all t > s ≥ s0, we have

E[V (t,Xt)− V (s,Xs)] ≤ −d
∫ t

s

E[V (τ,Xτ )]dτ.

Then, the trivial solution of the GSE (1) is asymptotically p-stable.

Theorem 2.3. Let 1 ≤ p < ∞ and V : [t0,+∞) × Lp(Ω, V ) → R+ be a positive definite functional such that, for

any solution X = {Xt : t ≥ s0} of the GSE (1), with s0 ≥ t0, we have

i there exists α > 0 for which

E[V (t,Xt)− V (s,Xs)] ≤ −α
∫ t

s

E[V (τ,Xτ )]dτ,

for all t, s ≥ s0 with s < t;

ii there exists a constant c > 0 such that E[V (t,Xt)] ≥ cE[∥Xt∥pLp ], for all t ≥ s0;

iii there exists σ ∈ K such that E[V (s0, Xs0)] ≤ σ (∥Xs0∥
p
Lp) .

Then, the trivial solution of the GSE (1) is exponentially p-stable.
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Abstract

We present some results on the null controllability of the Burgers equation. We analyze the hierarchic control

through Stackelberg–Nash strategy, where we consider one leader and two followers. To each leader we associate

a Nash equilibria corresponding to a bi-objective optimal control problem; then we look for a leader that solves

the null controllability problem. We prove linear case and we use a fixed point method to solve the semilinear

problem.

1 Introduction

Let us consider T > 0, the set Q := (0, 1)× (0, T ) and the nonempty open sets O, O1, O2 ⊂ (0, 1), with 0 ̸∈ O. We

introduce the Burgers’ system:
yt − yxx + y yx = f1O + v11O1 + v21O2 , (x, t) ∈ Q,

y(0, t) = y(1, t) = 0, t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, 1),

(1)

where the controls are f, v1, v2, the state is y and with the notation 1A we denote the characteristic function of the

set A.

The objective this paper is, follwing the ideas in [4] [1],[2] and [3], analyze the null controllability of the system

(1) in the context of the hierarchic control applying the Stackelberg–Nash strategy with leader f and two followers

v1 and v2. In this sense, we consider the cost functionals for the followers:

Ji
(
f ; v1, v2

)
:=

αi
2

∫∫
Oi,d×(0, T )

|y − yi,d|2 dx dt+
µi
2

∫∫
Oi×(0, T )

|vi|2 dx dt, (2)

and main functional

J(f) :=
1

2

∫∫
O×(0, T )

|f |2 dx dt,

where Oi,d ⊂ (0, 1) is a open nonempty set, αi, µi > 0 are constants and yi,d = yi,d(x, t) are given functions in

L2(Oi,d × (0, T )).

For each leader control f choosing we look for an pair
(
v1, v2

)
that minimize, simultaneously, the functionals

Ji, that is,

J1
(
f ; v1, v2

)
= min

v̂1
J1
(
f ; v̂1, v2

)
and J2

(
f ; v1, v2

)
= min

v̂2
J2
(
f ; v1, v̂2

)
. (3)

An pair
(
v1, v2

)
=
(
v1(f), v2(f)

)
that satisfies (3) is called Nash equilibrium for the functionals Ji. Finally, we

prove that there exists f ∈ L2(O × (0, T )) such that

J(f) = min
f̂
J
(
f̂
)

(4)

and

y(·, T ) = 0 in (0, 1). (5)
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2 Main results

The local null controllability with the initial data in H1
0 (0, 1) given by the result:

Theorem 2.1. Suppose that Oi,d ∩ O ≠ ∅, i = 1, 2. Assume that one of the following conditions holds:

O1,d = O2,d := Od, (6)

or

O1,d ∩ O ≠ O2,d ∩ O. (7)

If the constants µi > 0 (i = 1, 2) are large enough, there exists a positive function ρ = ρ(t), which decay exponentialy

to 0 when t→ T−, with the following property:∫∫
Oi,d×(0, T )

ρ−2 |yi,d|2 dx dt ≤ r2, for some r > 0, i = 1, 2, (8)

then, for any y0 ∈ H1
0 (0, 1) with

∣∣∣∣y0∣∣∣∣
H1

0 (0,1)
≤ r there exist a control f ∈ L2(O × (0, T )) and a associated Nash

equilibrium
(
v1(f), v2(f)

)
such that has one (4) and the corresponding solution to (1) satisfies (5).

Theorem 2.2. Suppose µi and Oi,d as in Theorem 2.1 and T ≥ T (r). There exists a function ρ = ρ(t), which

decay exponentialy to 0 when t → T−, with the following property: if (7) holds, for any y0 ∈ L2(0, 1) with

||y0||L2(0,1) ≤ r, there exists a control f ∈ L2(O × (0, T )) and a associated Nash equilibrium
(
v1(f), v2(f)

)
such

that the corresponding solution to (1) satisfies (5).
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Abstract

Our goal is to investigate the existence of periodic solutions for measure functional differential equations of

the form

x(t) = x(0) +

∫ t

0

f(s, xs)ds+

∫ t

0

g(s, xs)du(s),

defined for every t ∈ R, under suitable assumptions on f, g and u, where the integrals on the right–hand side exist

in the Perron and Perron–Stieltjes sense, respectively. We make use of a topological transversality theorem to

obtain the main result. Some examples are presented to illustrate the developed theory. Moreover, we apply the

results obtained in the context of measure functional differential equations to establish the existence of periodic

solutions for a class of impulsive functional differential equations.

1 Introduction

This work concerns the study of periodic solutions for measure functional differential equations (measure FDEs) of

type:

x(t) = x(0) +

∫ t

0

f(s, xs)ds+

∫ t

0

g(s, xs)du(s), (1)

defined for every t ∈ R, where f, g : R × G−
T (R,Rn) → Rn are T–periodic functions with respect to the first

variable, T > 0, and G−
T (R,Rn) denotes the space of all T–periodic regulated left–continuous functions ϕ : R → Rn,

with the supremum norm ∥ϕ∥T = supθ∈[0,T ] |ϕ(θ)|. For a given function x ∈ G−
T (R,Rn), the Krasovsky notation

xt ∈ G−
T (R,Rn), t ∈ R, is used to denote the function xt(θ) = x(t+ θ), θ ∈ R.

The theory of measure differential equations was introduced in by W. Schmaedeke in the control theory. These

equations cope very well with the description of phenomena whose evolution is interrupted by abrupt changes of

state. In the literature, the Leray–Schauder degree theory is used very often to obtain results on the existence of

periodic solutions for different types of differential equations. In contrast to the theory of topological degree, which

requires sophisticated tools, we have the theory of topological transversality that requires nothing more than the

Urysohn Lemma in a metric space and some arguments of compactness. In this sense, we can say that the latter

allows us to study our problem in a simpler way. It is worth mentioning that the topological transversality theory

is a variant of the degree-theoretic method.

We establish in this work more general conditions to guarantee the existence of periodic solutions for equations

of type (1). We make use of the Granas topological transversality theorem and, through the theory of regulated

functions and the theory of Perron–Stieltjes (Perron) integration, we also consider functions that are not necessarily

continuous. Section 2 deals with the main results. Using a topological transversality theorem, we establish in

Theorem 2.1 sufficient conditions to obtain the existence of periodic solutions for measure FDEs of type (1). Finally,

we apply the results obtained in Section 2, to prove the existence of periodic solutions for a class of impulsive FDEs.
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2 Main Results

The aim of this section is to present sufficient conditions to obtain regulated periodic solutions for the measure

FDE(1). As mentioned in the sequel, we shall assume that u is a left–continuous regulated function on R. In this

way, for a given T > 0, we shall consider s0 ∈ [0, T ] as being a point of continuity of u. We shall assume the

following general conditions:

(H1) u : R → R is a left–continuous regulated function on R, continuous at s0 ∈ [0, T ], and there exists c ∈ R such

that u(t+ T ) = u(t) + c for all t ∈ R;

(H2) f, g : R × G−(R,Rn) → Rn are T–periodic functions with respect to the first variable such that, for each

x ∈ G−
T (R,Rn), the map t 7→ f(t, xt) is locally Perron integrable over R and the map t 7→ g(t, xt) is locally

Perron–Stieltjes integrable over R with respect to u;

(H3) there exists a function h ∈ G−(R,R) continuous at s0 such that, for any µ > 0, one can obtain Nµ > 0

satisfying

∥∥∥∥∫ t2

t1

f(s, xs)ds

∥∥∥∥ ≤ Nµ|h(t2) − h(t1)| and

∥∥∥∥∫ t2

t1

g(s, xs)du(s)

∥∥∥∥ ≤ Nµ|h(t2) − h(t1)|, whenever

t1, t2 ∈ [s0, s0 + T ] and x ∈ G−
T (R,Rn) with ∥x∥T ≤ µ;

(H4) given µ > 0, there exist a non–negative locally Perron integrable function Mµ : R → R and a non–negative

locally Perron–Stieltjes integrable function Lµ : R → R with respect to u such that, for all t1, t2 ∈ [s0, s0+T ],

t1 ≤ t2, ∥∥∥∥∫ t2

t1

[f(s, xs)− f(s, ys)]ds

∥∥∥∥ ≤
∫ t2

t1

Mµ(s)∥x− y∥T ds

and ∥∥∥∥∫ t2

t1

[g(s, xs)− g(s, ys)]du(s)

∥∥∥∥ ≤
∫ t2

t1

Lµ(s)∥x− y∥T du(s),

for all x, y ∈ G−
T (R,Rn) such that ∥x∥T ≤ µ and ∥y∥T ≤ µ.

We consider the following family of measure functional differential equations

x(t) = λx(s0) +

∫ t

s0

λf(s, xs)ds+

∫ t

s0

λg(s, xs)du(s), λ ∈ (0, 1], (1)

defined for every t ∈ R.

Theorem 2.1. Assume that conditions (H1)–(H4) hold. If there exists a constant β > 0 such that ∥x(t)∥ < β for

all t ∈ R whenever x(t) is a T–periodic solution of (1), with λ ∈ (0, 1], then the measure FDE (1) has at least one

T–periodic solution.
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Abstract

In this work, we study the existence and stability of the equilibrium points of an SVIR model with delay.

Analysing the characteristic equation of the linearized problem around the endemic equilibrium point, we prove

the occurrence of Hopf-bifurcation.

1 Introduction

In [1], the authors study the following system with delay:

S′(t) =Λ + (1− p)A− βSI

N
− µS + ψS(t− τ) + θV

V ′(t) =ψS(t− τ)− σβV I

N
− (µ+ θ)V

I ′(t) =pA+
βSI

N
+
σβV I

N
− (µS + α)I

R′(t) =αI − µR,

where S(t), V (t), I(t) and R(t) represent to the susceptible, vaccination, infected and recovery respectively. They

assume the existence of a constant flow, A > 0, of new members arriving into the population in unit time with

the fraction p of A arriving infected (0 ⩽ p < 1). The equilibrium points of the model are obtained and the

stability analysis is performed based on the results of [2]. Furthermore, a result is presented about the occurrence

of Hopf-bifurcation, when the delay τ > 0 is considered as a parameter.

In this work, we modify this model and study the delayed effect of taking the vaccination against a COVID-19

model pandemic. We introduce the V (t − τ) and we also consider that recoveries may become susceptible again.

So, we consider the system SVIR (τ), given by

S′(t) =Λ + (1− p)A− βSI

N
− µS + δR− ψS(t− τ) + ϵV

V ′(t) =ψS(t− τ)− σβV (t− τ)I

N
− (µ+ ϵ)V

I ′(t) =pA+
βSI

N
+
σβV (t− τ)I

N
− (µ+ γ)I

R′(t) =γI − (µ+ δ)R.

The goal is study the equilibrium points of this system and to stablish a result about stability and occurrence

of Hopf-bifurcation.
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2 Main Results

For p = 0, we prove that E0 = (S̄, V̄ , 0, 0), where S̄ =
(Λ +A)(ϵ+ µ)

ϵµ+ µ2 + µψ
> 0 and V̄ =

(Λ +A)ψ

ϵµ+ µ2 + µψ
> 0, is a endemic

equilibrium point.

We make the change variables ξ(t) = S(t) − S̄, η(t) = V (t) − V̄ and we consider the linear system around the

E0,

X ′ +AX +BX(t− τ) = 0, where X(t) =


ξ(t)

η(t)

I(t)

R(t)

 .

Therefore, the characteristic equation is given by

∆(λ, τ) = det(λI +A+ e−τλB).

If τ = 0, E0 = (S̄, V̄ , 0, 0) is an unstable point if K1 = − β
N (S̄ − σV̄ ) + (µ+ γ) > 1 and E0 is stable if K1 < 1.

The occurrence of Hopf-bifurcation near the endemic equilibrium point is studied. Note that ∆(0, τ) ̸= 0. We

can show that there exists a pair (iw0, τ0), τ0 > 0 such that ∆(w0i, τ0) = 0. In fact, we have a sequence (τj)

τj =
1

w
tan−1 w

−ψ(ϵ+ µ)
+
jπ

w
, j = 0, 1, 2, 3...

satisfying ∆(wi, τj) = 0, with w = ±w0. Finally, we prove that[
Re(λ(τ))

dτ

]
τ=τ0

̸= 0.

Remark 2.1. The system SVIR(τ) has other equilibrium points, whose coordinates are all positive. We intend to

study the stability of such points and also, if possible, verify the occurrence of Hopf-bifurcation. We also intend to

do some numerical simulations.
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Abstract

This work studies the incompressible Navier-Stokes equations with Caputo time-fractional derivative. We

discuss the existence, uniqueness, and regularity of solutions to the equations. We then introduce the limit

problem, which is the problem of studying the convergence of the solutions of the fractional Navier-Stokes

equations to the solutions of the classical Navier-Stokes equations as the order of the fractional derivative

approaches 1.

1 Introduction

Consider the incompressible Navier-Stokes equations with fractional time derivative

cDα
t u− ν∆u+ (u · ∇)u+∇p = f in RN , t > 0,

∇ · u = 0 in RN , t > 0,

u(x, 0) = u0 in RN .
(1)

Above we have that cDα
t is the Caputo fractional derivative of order α ∈ (0, 1), u = (u1(x, t), . . . , uN (x, t)) represents

the fluid velocity vector, ν > 0 the viscosity coefficient, p = p(x, t) the associated pressure, u0 = u0(x) the initial

velocity vector and f = (f1(x, t), . . . , fN (x, t)) a given external force.

We rewrite (1) in its abstract form to obtain

cDα
t u = −Aru+ F (u) + Pf, t > 0,

u(0) = u0 ∈ Lrσ,
(2)

where P : Lr → Lrσ is the Helmholtz-Leray projection, Ar : D(Ar) ⊂ Lrσ → Lrσ is the Stokes operator, and

F (u) = F (u, u), with F (u, v) = −P (u · ∇)v. We also assume, in order to simplify the ideas presented, that f = 0.

In view of the above considerations, we are able to discuss the existence, uniqueness, and regularity of solutions

to (2), which are summarized in the following theorems:

Theorem 1.1. For α ∈ (0, 1) e u0 ∈ LNσ , there exists λ > 0 such that if ∥u0∥LN ≤ λ, then (2) has a unique global

mild solution u : [0,∞) → LNσ . Moreover,

tα[1−(N/q)]/2u ∈ Cb([0,∞);Lqσ), for 2 ≤ N ≤ q ≤ ∞,

tα[1−(N/2q)]∇u ∈ Cb([0,∞);Lqσ), for 2 ≤ N ≤ q <∞,

both of which are zero at t = 0 except when q = N in the first sentence, in which case u(0) = u0.

Theorem 1.2. For α ∈ (0, 1) and u0 ∈ LNσ , there exists λ > 0 such that if ∥u0∥LN ≤ λ, it holds that:

i) For 2 ≤ N ≤ 2/α, problem (2) has a unique global mild solution that belongs to Lr(0,∞;Lqσ), with

1

r
= α

(
1− N

q

)
/2 and N < q <∞;
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ii) For N > 2/α, problem (2) has a unique global mild solution that belongs to Lr(0,∞;Lqσ), with

1

r
= α

(
1− N

q

)
/2 and N < q <

αN2

αN − 2
.

With the aim of studying the Navier-Stokes equations, here we introduce an initial answer to the following

question: if α ∈ (0, 1], X is a Banach space and we consider the abstract differential equation

cDα
t u = Au+ f(t, u), t > 0,

u(0) = u0 ∈ X,
(Pα)

with cDα
t representing the Caputo fractional derivative of order when α ∈ (0, 1) and cD1

t representing the classical

derivative, A is a (at least) closed and densely defined operator, and f is a suitable function, is it possible to prove

the convergence of the solution of (Pα) to the solution of (P1), when α→ 1−?

In summary, we can consider the following as a first interesting result that answers this question:

Theorem 1.3. Consider the Cauchy problem (Pα) with α ∈ (0, 1] and assume that the function f : [0,∞)×X → X

is continuous, locally Lipschitz in the second variable, uniformly with respect to the first variable, and bounded. Then,

if ϕα(t) is a mild local (or global) solution of (Pα) defined on its maximal domain of existence [0, ωα) (or [0,∞)),

there exists t∗ > 0 (independent of α) such that

lim
α→1−

∥ϕα(t)− ϕ1(t)∥ = 0,

for every t ∈ [0, t∗]. The uniform convergence also occurs in compact subsets of (0, t∗].
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Abstract

In this paper we study geometric aspects of dynamics generated by Young differential equations (YDE)

driven by α-Hölder trajectories with α ∈ (1/2, 1). We present a number of properties and geometrical

constructions in this context: Young Itô geometrical formula, horizontal lift in principal fibre bundles, parallel

transport, covariant derivative, development and anti-development, among others. Our main application

here is a geometrical decomposition of flows generated by YDEs according to diffeomorphisms generated by

complementary distributions (integrable or not). The proof of existence of this decomposition is based on an

Itô-Wentzel type formula for Young integration along α-Hölder paths proved by Castrequini and Catuogno

(Chaos Solitons Fractals, 2022).

1 Introduction

In this paper we study geometric aspects of dynamics generated by Young differential equations (YDE) driven

by α-Hölder trajectories with α ∈ (1/2, 1]. More precisely, given a smooth manifold M , we focus on geometrical

properties of equations of the type:

dxt = X(xt) dZt, (1)

with initial condition x0 ∈ M at t = 0, where x → X(x) ∈ L(Rd, TxM) is a smooth assignment of d vector fields

on M and Z ∈ Cα([0, T ],Rd) is an α-Hölder continuous trajectory in Rd. Similar to the theory of semimartingales

on manifolds, we say that a path x : [0, T ] →M is a solution of equation (1) if for all test function f ∈ C∞(M ;R)
we have that

f(xt) = f(x0) +

∫ t

0

Xf(xs) dZs, (2)

where Xf is a short term for
∑
Df(x)X(x)ei, with ei’s the elements of the canonical basis of Rd. The last term of

equation (2) is an integral in the Young sense, see e.g. the classical [7], or more recent Hairer and Friz [3], Gubinelli

et al. [4], Castrequini and Catuogno [1], Cong [2], Ruzmaikina [6], among many others.

Here, in a scenario of low regularity of trajectories, the Itô type formula in the context of Young integration,

Theorem 2.1 opens the possibility for many basic geometric constructions on this dynamics. These topics are

exploited in the next section, where we prove the existence of horizontal lifts in principal fiber bundles with an

affine connection. In particular, considering a Riemannian manifold and its orthonormal bundle, parallel transport

and covariant derivatives can be established along α-Hölder trajectories. Development and anti-development can

also be constructed.

2 Main Results

Theorem 2.1 (Itô formula). Let M and N be Riemannian manifolds. Consider x ∈ Cα([0, T ],M) and a smooth

function F :M → N . Then

dF (xt) = DF (xs) dxs. (1)
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Mind that formula (1) above means that if β is a 1-form in N then∫ t

0

β dF (xs) =

∫ t

0

(dF (xs))
∗β dxs. (2)

In particular, if N is an Euclidean space:

F (xt) = F (x0) +

∫ t

0

DF (xs)dxs. (3)

Let {P,M,G, π} be a principal fibre bundle with base M , structure group G and total space P .

Theorem 2.2 (Horizontal lifts). Given an α-Hölder continuous path x : [0, T ] →M and an element u in the fibre

π−1(x0), there exists (up to an explosion time) a unique horizontal lift x̃ : [0, T ] → P with x̃0 = u.

Proof See the full version of the paper.

From this result, development and anti-development can be obtained along α-Hölder trajectories on Riemannian

manifolds. For these and other results on decomposition of flows generated by YDE on manifolds, please see the

full version of the paper to appear in Mediterranean Journal of Mathematics.
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Abstract

We present a global bifurcation result for a first order system of delay differential equations depending on

a real parameter. The system represent a chemostat model. The approach is topological and is based of a

topological degree theory for nonlinear Fredholm maps between Banach spaces.

1 Introduction

In the paper we prove a global bifurcation result for periodic solutions to the following delayed first order system,

depending on a real parameter λ ≥ 0,
s′(t) = Ds0(t)−Ds(t)− λ

γ
µ(s(t))x(t) t ≥ 0

x′(t) = x(t)
[
λµ(s(t− τ))−D

]
t ≥ 0

s(θ) = ϕ(θ) and x(0) = x0 if θ ∈ [−τ, 0],

(1)

in which the following conditions hold:

(a) s0 : R → R is continuous, positive and ω-periodic, where ω > 0 is given,

(b) µ : [0,+∞) → [0,+∞) is C1 and verifies µ(0) = 0 and µ′(s) > 0, for any s ∈ [0,+∞),

(c) D, γ and the delay τ are positive constants,

(d) ϕ : [−τ, 0] → R is continuous.

For a given λ, a solution of (1) is defined as a pair (s, x) of maps s : [−τ,+∞) → R and x : [0,+∞) → R, such
that s is continuous, its restriction to [0,+∞) is C1, x is C1 and both satisfy the equations in (1) as well as the

boundary conditions.

System (1) has been studied in [1] and it represents a chemostat model, with a delay. The chemostat is a

continuous bioreactor with a constant volume, in which one or more microbial species are cultivated in a liquid

medium containing a set of resources with, in particular, a specific nutrient. The maps s(t) and x(t) are, respectively,

the densities of the nutrient and of the microbial species at time t. The device receives continuously an input of liquid

volume, described by s0(t), containing a variable concentration of the specific nutrient. It expulses continuously

towards the exterior an output of liquid volume containing a mixing of microbial biomass and nutrient. The model

described by the system (1) assumes that the consumption of the nutrient has no immediate effects on the microbial

growth, but we have a time interval [t− τ, t] in which the microbial species metabolize(s) the nutrient.

If (s, x) is any solution of (1) such that x vanishes at some t0, then x turns out to be identically zero. Thus, the

first equation in system (1) becomes linear and appears in the form

v′(t) = Ds0(t)−Dv(t). (2)
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Among the infinite solutions of (2), one and only one is ω-periodic, it is positive and can be written as

v∗(t) =

∫ t

−∞
e−D(t−r)Ds0(r) dr

For a sake of simplicity, assume that
1

ω

∫ ω

0

µ(v∗(t)) dt = D.

In general, the relation between the average of λ(µ ◦ v∗) and D is crucial. In [1], the authors prove that

(a) if λ < 1 (resp. λ > 1) and (s, x) is an ω-periodic solution, different from (v∗, 0), then, x(t) < 0 (resp. x(t) > 0)

for all t ∈ R;

(b) if λ = 1, no ω-periodic solution is different from (v∗, 0).

Solutions with x(t) < 0 are not interesting form a biological point of view, as x is the densitiy of the microbial

species at time t. Observing items (a) and (b) above, it is quite natural to ask if (v∗, 0) is a bifurcation point for

ω-periodic solutions of (1) with x positive, as well as it is important to investigate the global behaviour of the

connected components of such solutions whose closures (in a suitable topology) contain (v∗, 0), analogously to the

classical bifurcation results of Rabinowitz in [3].

2 Main Results

We need some notation. If (s, x) is an ω-periodic solution of (1) for a given λ, the triple (λ, s, x) will be called

ω-triple. An ω-triple (λ, s, x) such that λ ̸= 1 and (s, x) ̸= (v∗, 0) will be called nontrivial. We consider an ω-triple

as an element of E := R× C1
ω × C1

ω, where

C1
ω = {u ∈ C1([0, ω],R) : u(0) = u(ω) and u′(0) = u′(ω)},

is a Banach space with the usual norm. Our main result is the following global bifurcation theorem.

Theorem 2.1. There exist in E exactly two connected components C+ and C− of nontrivial ω-triples, which are

unbounded, contain (1, v∗, 0) in their closure and are such that every (λ, s, x) ∈ C+ verifies λ > 1, 0 < s < v∗ and

x > 0, while every (λ, s, x) ∈ C− verifies λ < 1, s > v∗ and x < 0.

The proof is given by a topological approach based on a concept of degree introduced in [2] for Fredholm maps

of index zero between Banach spaces or smooth Banach manifolds. This degree is based on a notion of topological

orientation for nonlinear Fredholm maps of index zero. The degree coincides with the Brouwer degree for C1 maps

between finite dimensional oriented manifolds of Euclidean spaces; in the infinite dimensional case and for C1

compact vector fields, it coincides with the Leray–Schauder degree.
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Matemática Campus Arraias, UFT, TO, Brazil1, Instituto de Matemática e Estatistica, UFG, GO, Brazil2

thiago.cavalcante@mail.uft.edu.br† edcarlos@ufg.br‡

Abstract

In this we establish existence of solutions for nonlocal elliptic problems driven by the fractional (p, q)−
Laplacian.. More specifically, we shall consider the following nonlocal elliptic problem :{

(−∆)s1p u− µ(−∆)s2q = λ|u|r−2u in Ω

u = 0 in RN \ Ω,

whereN > s1p , N > s2q , s1 > s2 and r > p > q. The main feature is to find sharp parameters λ > 0 and µ > 0

where the Nehari method can be applied finding the largest positive number µ∗ > 0 such that our main problem

admits at least two distinct solutions for each µ ∈ (0, µ∗).

1 Introduction

In the present work we shall consider nonlocal elliptic problems driven by the fractional (p, q)− Laplacian defined

in bounded domanin. Namely, we shall consider the following nonlocal elliptic problem{
(−∆)s1p u− µ(−∆)s2q = λ|u|r−2u in Ω

u = 0 in RN \ Ω,
(Pµ)

where Ω ⊂ RN is a smooth bounded domain, N > s1p , N > s2q , s1 > s2 and r > p > q.

In order to do that we employ the nonlinear Rayleigh quotient together a fine analysis on the fibering maps

associated to the energy functional. It is important to mention also that for each parameters λ > 0 and µ > 0 there

exist degenerate points in the Nehari set which give serious difficulties.

2 Main Results

The working space is defined by X = {u ∈ W s,p(RN ); u = 0 inRN \ Ω} and the energy functional J : X → R
associated to Problem (Pµ) is given by

Jλ,µ(u) =
1

p
[u]pp −

µ

q
[u]qq −

λ

r
∥u∥rr,

where

[u]pp := [u]ps,p =

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|N+sp
dxdy, u ∈ X.

In this work, we study the fibers maps of two functionals based on the parameter µ. The first defined for the

case where J ′
λ,µ(u) = 0 and the second, considering µ, for which J(u) = 0. In short, we consider the functionals

Rn, Re : X \ {0} → R associated with the parameter µ > 0 in the following form

Rn(u) =
[u]pp − λ∥u∥rr

[u]qq
and Re(u) =

q
p [u]

p
p − λ qr∥u∥

r
r

[u]qq
, u ∈ X \ {0},
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the nonlinear Rayleigh quotients. In association with these, based on work [3], we define the following coefficients

µ∗ := inf
u∈X\{0}

inf
t>0

Rn(tu) and µ∗∗ := inf
u∈X\{0}

inf
t>0

Re(tu). (1)

The subset of X, in which the Jλ,µ function will be minimized, well known and studied in recent years for Nehari

is

Nλ,µ = {u ∈ X, u ̸= 0 :
〈
J ′
λ,µ(u), u

〉
= 0}.

Under these conditions, by using the same ideas considered in [2], we shall split the Nehari manifold Nλ,µ into three

disjoint subsets in the following way:

N+
λ,µ = {u ∈ Nλ,µ : J ′′

λ,µ(u)(u, u) > 0},

N−
λ,µ = {u ∈ Nλ,µ : J ′′

λ,µ(u)(u, u) < 0},

N 0
λ,µ = {u ∈ Nλ,µ : J ′′

λ,µ(u)(u, u) = 0}.

We shall state our first main result as follows:

Theorem 2.1. Suppose µ ∈ (0, µ∗), where µ∗ follows from (1). Then there are two solutions u1, u2 ∈ X \ {0} that

satisfy the following statements:

i) J ′′
λ,µ(u1, u1) < 0, that is, u1 ∈ N−

λ,µ;

ii) J ′′
λ,µ(u2, u2) > 0, that is, u2 ∈ N+

λ,µ;

iii) Jλ,µ(u2) < 0, for all µ ∈ (0, µ∗).

Moreover, the weak solution u2 ∈ X satisfies the following assertions:

a) For each 0 < µ < µ∗∗, we obtain Jλ,µ(u2) > 0;

b) For µ = µ∗∗ it follows that Jλ,µ(u2) = 0

c) For each µ∗∗ < µ < µ∗ we obtain also that Jλ,µ(u2) < 0
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Abstract

We study, in this work, for a positive strictly parameter, the existence of at least one radially symmetric

solution for the Hénon-type system involving the p-Laplacian operator and, for the sufficiently large parameter,

we show the existence of symmetry breaking by presence of non-radial solutions.

1 Introduction

In [4], Hénon proposed the model

−∆u = |x|θ|u|q−2u in Ω ⊂ RN, (1)

where θ > 0, q > 2 and N > 2, to statistically examine the stability of roughly spherical clusters of stars known as

spherical steady in astrophysics. Since that time, a number of scholars have investigated various generalizations of

this equation. Motivated by [1, 2, 3], we investigated the existence and the breakdown of the radial solution for the

following system of the Hénon-type


−div(|∇w|p−2∇w) = |x|θ|w|α−2w|z|β in B

−div(|∇z|p−2∇z) = |x|θ|w|α|z|β−2z in B

w > 0, z > 0 in B

w = 0, z = 0 on ∂B,

(2)

where B ⊂ RN is the unit ball, N ≥ 3, θ > 0 and p < α+β < p∗θ :=
p(N+θ)
N−p . Since (1) is not variational, we consider

the following auxiliary problem


−div(|∇u|p−2∇u) = α|x|θ|u|α−2u|v|β in B

−div(|∇v|p−2∇v) = β|x|θ|u|α|v|β−2v in B

u > 0, v > 0 in B,

u = 0, v = 0 on ∂B.

(3)

2 Main Results

Theorem 2.1. Suppose that N ≥ 3, θ > 0 and p < α+ β < p∗θ. Then there exists a nontrivial radially symmetric

solution of (1).
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In the second part of the work, we address the question of extending the results of [2] for (1). More specifically,

we study symmetry breaking for (1). For this, we define

p∗(N) :=


(N + 2)p

N − 2p+ 2
if N is even;([

N
2

]
+ 2
)
p[

N
2

]
− p+ 2

if N is odd,

where [a] denotes the integer part of a ∈ R and p ≥ 1.

Theorem 2.2. Suppose that N ≥ 4 and p < α + β < p∗(N). Then there exists θ0 > 0 such that (1) has a

non-negative and non-radial solution, for θ > θ0.
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Abstract

In this work we study the existence of positive solution for a class of elliptic problems with two critical

exponents, Neumann boundary condition and discontinuous nonlinearities involving the p(x)−Laplace operator.

1 Introduction

Let us consider the following problem
−∆p(x)u+ |u|p(x)−2u = f(u) + |u|r(x)−2u

[∫
Ω

1

r(x)
|u|r(x)dx

]α
in Ω,

|∇u|p(x)−2 ∂u

∂ν
= g(u) + |u|q(x)−2u

[∫
∂Ω

1

q(x)
|u|q(x)dΓ

]β
on ∂Ω,

(1)

where Ω ⊂ RN is a bounded domain, N ≥ 2, p, r ∈ C(Ω), q ∈ C(∂Ω), α and β are positive parameters, f, g : R → R

has an uncountable set of discontinuity points,
∂u

∂ν
is the outer unit normal derivative, dΓ denotes the boundary

measure and ∆p(x) is the p(x)-Laplace operator, that is,

∆p(x)u =

N∑
i=1

∂

∂xi

(
|∇u|p(x)−2 ∂u

∂xi

)
, 1 < p(x) < N.

We will consider the sets

A1 := {x ∈ ∂Ω; q(x) = p∗(x)} and A2 := {x ∈ Ω; r(x) = p∗(x)},

disjoint and not empty. Furthermore, we assume

p+ < min

{
(α+ 1)(r−)α+1

(r+)α
,
(β + 1)(q−)β+1

(q+)β
, p∗, p∗

}
. (2)

We assume the following hypotheses for f : R → R :

(f1) For all t ∈ R, there exist C1 > 0 and s1 ∈ C(Ω) with p(x) < s1(x) < p∗(x) such that

|f(t)| ≤ C1(1 + |t|s1(x)−1).

(f2) For all t ∈ R, there exists θ1 ∈ (p+, p∗) such that

0 ≤ θ1F (t) = θ1

∫ t

0

f(σ)dσ ≤ tf(t),

where

f(t) := lim
ϵ→0+

ess inf
|t−σ|<ϵ

f(σ) and f(t) := lim
ϵ→0+

ess sup
|t−σ|<ϵ

f(σ)

are N -measurable.
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(f3) There exists a1 > 0, which will be defined later by checking

H(t− a1) ≤ f(t), ∀t ∈ R,

where H is the function of Heaviside, that is,

H(t) =

{
0, if t ≤ 0,

1, if t > 0.

(f4) lim sup
t→0+

f(t)

ts1(x)−1
= 0 and f(t) = 0 if t ≤ 0.

The hypotheses for the g : R → R; (g1), (g2), (g3) and (g4), are of the types of the f .

2 Main Result

Theorem 2.1. Assume that (f1)− (f4) and (g1)− (g4) hold. Then, the problem (1) has a positive solution. Also,

if u ∈W 1,p(x)(Ω) is a solution to the problem (1), then |{x ∈ Ω;u(x) > a1} ∪ {x ∈ ∂Ω;u(x) > a2}| > 0.
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Abstract

In this paper we prove the existence and regularity of weak solutions for the following system
−div(M(x)∇u) + h(x, u, v) = f in Ω

−div(M(x)∇v) = g(x, u, v) in Ω

u = v = 0 on ∂Ω

where Ω is an open bounded subset of RN (N ⩾ 3), f ∈ Lm(Ω) with m ⩾ (r + θ + 1)′ and h, g be two

Carathèodory functions. We will show that under certain conditions imposed on the functions f and g, the

system gives rise to a regularizing effect producing the existence of finite solutions for some suffeciently small

positive θ and r > 1.

1 Introduction

In the present paper, we are interested to investigate the regularity properties for the positive solutions to the

system 
−div(M(x)∇u) + h(x, u, v) = f in Ω

−div(M(x)∇v) = g(x, u, v) in Ω

u = v = 0 on ∂Ω

(1)

Where unless otherwise Ω ⊂ RN is open and bounded, with N ⩾ 3, f ∈ Lm(Ω) with m ⩾ 1, r > 1, 0 < θ < 4
N−2

and h, g : Ω× R× R → R be two Carathéodory functions with following properties:

(a) there exists c1, c2 > 0 such that c2|t|r−1|s|θ+1 ⩽ |h(x, t, s)| ⩽ c1|t|r−1|s|θ+1;

(b) h(x, t, s)t ⩾ 0 ∀ (t, s) ∈ R× R, a.e. x in Ω;

(c) there exists d1, d2 > 0 such that d2|t|r|s|θ ⩽ |g(x, t, s)| ⩽ d1|t|r|s|θ;

(d) g(x, t, s)t ⩾ 0 ∀ (t, s) ∈ R× R, a.e. x in Ω.

(e) M(x) is a symmetric measurable matrix such that there exists α, β ∈ R+ satisfying

α|ξ|2 ⩽M(x)ξ · ξ , |M(x)| ⩽ β for every ξ ∈ RN .

Under appropriate conditions, encompasses the so-called Maxwell-Schrödinger system. The general idea regarding

these systems is that due to the strong coupling between both equations, solutions have zones where they are more

regular than expected from standard regularity theory. This phenomenon was discovered in [2] by L. Boccardo and

since then has been addressed by D. Arcoya, L. Orsina, and R. Durastani, among others, where we refer the reader

to [1, 3, 4, 5, 6] and the references therein.
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2 Main Results

To emphasize the regularity gains obtained in the solutions u and v of our problem, we will patent a definition that

will establish conditions necessary for us to gain regularity better than that stressed by the classical Stamppachia

theory.

Definition 2.1. Let F ∈ Lm(Ω) where 1 ⩽ m < N
2 . Consider w a distributional solution of

−div(M(x)∇w) = F (x). (1)

(i) If w ∈ Ls(Ω) where s > m∗∗ we say u is Lebesgue regularized.

(ii) If w ∈W 1,t
0 (Ω) where t > m∗ we say that w is Sobolev regularized.

Theorem 2.1. Let f ⩾ 0 be a function in Lm(Ω) with m ⩾ (r+ θ+1)′, r > 1, and 0 < θ < 4
N−2 . Then there exists

a weak solution (u, v) of system (1), with u ∈ W 1,2
0 (Ω) ∩ Lr+θ+1(Ω), u ⩾ 0 a.e. in Ω and v ∈ W 1,2

0 (Ω), v ⩾ 0 a.e

in Ω.

In the next results, for the sake of clarity, by using Definition 2.1 we detail the gain of regularity in Lebesgue

spaces or Sobolev spaces, for the solutions of our system given by Theorem 2.1.

Corollary 2.1. Let (u, v) be the weak solution of (1), given by Theorem 2.1.

(A) If r + θ + 1 > 2∗ and (r + θ + 1)′ ⩽ m < (2∗)′, then u is Lebesgue and Sobolev regularized.

(B) If r + θ + 1 > 2∗ and (2∗)′ ⩽ m < N(r+θ+1)
N+2(r+θ+1) then u is Lebesgue regularized.

(C) If r + θ + 1 <
(

2∗

θ+1

)′
then v is Sobolev regularized.
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UFAL - Universidade Federal de Alagoas
XVI ENAMA - Novembro 2023 85–86

SOME ASYMMETRIC SEMILINEAR ELLIPTIC INTERFACE PROBLEMS
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Abstract

Neste trabalho, estudaremos dois problemas eĺıpticos semilineares de interface que surgem da dinâmica

populacional. Em ambos os problemas, cada população vive em um subdomı́nio e eles interagem em uma

fronteira comum, que age como uma barreira geográfica. Analisamos a existência e unicidade de soluções

positivas. Para isto, precisamos estudar os problemas de autovalores associados aos problemas.

1 Introdução

Neste trabalho, esatremos interessados em estudar os seguintes problemas de interface:
−∆ui = λmi(x)ui(1− ui) em Ωi,

∂νui = γi(u2 − u1) sobre Σ,

∂νu2 = 0 sobre Γ,

(1)

e 
−∆ui + ci(x)ui = λmi(x)ui − upii em Ωi,

∂νui = γi(u2 − u1) sobre Σ,

∂νu2 = 0 sobre Γ,

(2)

onde Ω é um domı́nio limitado de RN de forma que

Ω = Ω1 ∪ Ω2 ∪ Σ,

com Ωi sendo subdomı́nios, com interface interna Σ = ∂Ω1, e Γ = ∂Ω2 \ Σ. Também, denotamos por νi o vetor

normal exterior Ã Ωi, e definiremos ν := ν1 = −ν2 (veja Figura 1 onde temos um exemplo ilustrado de Ω).

Nos problemas (1) e (2) as funções ci,mi são limitadas em Ωi, λ ∈ R, gi > 0, pi > 1 e ∂νui = ∇ui · ν.
O problema (1) surge da genética de populações, onde ui e 1−ui são as frequências de A e a, respectivamente, os

dois alelos dos genes considerados (veja por ex. [2], [4] e suas referênicas para uma explicação biológica do modelo).

Figure 1: Uma configuração posśıvel do domı́nio Ω = Ω1 ∪ Ω2 ∪ Σ.
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Por outro lado, o problema (2) é um modelo geral de dinâmica populacional, onde cada espécie ui vive em um

domı́nio Ωi seguindo a lei loǵıstica, e ambas espécies interagem em uma fronteira comum Σ. Em ambos os modelos,

a condição de interface é chamada de Kedem-Katchaslky.

Para estudar existência e unicidade de soluções positivas para (1) e (2) é necessário um estudo detalhado dos

seguintes problemas de autovalor 
−∆ui + ci(x)ui = λui em Ωi,

∂νui = γi(u2 − u1) sobre Σ,

∂νu2 = 0 sobre Γ,

(3)

e 
−∆ui + ci(x)ui = λmi(x)ui em Ωi,

∂νui = γi(u2 − u1) sobre Σ,

∂νu2 = 0 sobre Γ.

(4)

Estes problemas foram analisados em [4] (ver também [3]) no caso particular γ1 = γ2, que torna nossa problema

autoadjunto. Assim, segue da mythria espectral a existência de uma sequência autovalores reais (Λn) de (3) com

Λn → ∞.

Em nosso trabalho consideraremos o caso assimétrico, isto é, γ1 ̸= γ2, o que implica que os problemas (1.3) e

(1.4) não são autoadjuntos. Para contornar essa dificuldade,usamos o mythrema de Krein-Rutmann para provar a

existência de autovalor para (1.3), denotado por Λ1(c1; c2).

Denotaremos os autovalores de (1.4) são os zeros da aplicação

F (λ) := Λ1(c1 − λm1, c2 − λm2).

Estudamos essa aplicação no qual o comportamento depende fortemente de ci e do sinal de mi, e podemos concluir

que, sob condições em ci, existe dois autovalores principais em (4).

Uma vez estudado os problemas de autovalores, é posśıvel provar a existência de soluções de (1) e (2) usando

o método de sub-supersoluções. A unicidade é provada usando mythrema de ponto fixo em (1) e o resultado de

Brezis-Oswald [1] em (2).

2 Principais resultados

Theorem 2.1. Assuma que pi > 1. (2) possui ao menos uma solução positiva se e só se F (λ) < 0. Além disso, se

tal solução positiva exista, ela é única.

Theorem 2.2. Assuma que F (λ) < 0 e F (−λ) < 0, então o problema (1) possui uma única solução positiva

(u1, u2) tal que 0 < u1, u2 < 1.
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Abstract

In this paper we are interested to show global existence of solutions [u, θ] for Boussinesq system coupled

by bilinear energy dissipation Φ(u) = 2µ E(u) · E(u) on smooth bounded domain Ω ⊆ Rn or whole space Rn,

n ≥ 3, when the initial data [u0, θ0] ∈ X0 = W
1,n/2
σ (Ω) × Ln/2(Ω) is sufficiently small and the external force

F (θ) = ϱfθen has low regularity in the sense t1/2−b/2nf ∈ L∞ ((0, T ) : Lb(Ω)
)
or f ∈ Ls((0, T ) : Lb(Ω)), where

2
s
= 1− n

b
and b ∈ [n,∞).

1 Introduction

There is a vast literature on the studies of local and global existence of weak and strong solutions for viscous heat-

conductive Navier-Stokes equations when the fluid is incompressible [3] or compressible [2]. We refer [3] for global

existence of strong solutions and for a good review about this model. In the case when external forces dependent

of temperature, F = F (θ), the viscous heat-conductive Navier-stokes equations can be described by Boussinesq

approximation system with viscous dissipation of energy, namely,
ut − div(µ∇u) + (u · ∇)u+∇p = F (θ) in Ω× (0, T )

θt + u · ∇θ − div(κ∇θ) = Φ(u), in Ω× (0, T )

divu = 0, in Ω× (0, T )

(1)

and u(x, 0) = u0 div u0 = 0 and θ(x, 0) = θ0 on Ω× {t = 0}

u|∂Ω = 0 and θ|∂Ω = 0 on ∂Ω× (0, T ).
(2)

where Ω ⊂ Rn, n ≥ 3, is a smooth bounded domain or Ω = Rn itself, and p(x, t) ∈ R denotes the pressure derived

from stress tensor Tij acting on unknown viscous fluid u = (u1, u2, · · · , un). The gains and losses of energy of

u = u(x, t) is described by (1)2, where κ > 0 denotes the coefficient of heat conductivity and

Φ(u) = 2µ E(u) · E(u) and Eij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j ∈ {1, 2, · · · , n}

denotes the dissipation of energy derived from viscosity µ > 0, here we assume µ and κ constant. The Boussinesq

approximation, designed to simplify classical heat-conductive Navier-Stokes equations, essentially says there are

flows where the fluctuations of density ρ can be ignored except the external forces F (θ) = ϱfθen (buoyancy term)

which is assumed proportional to temperature, θ = θ(x, t) of the fluid. Here, ϱ is the coefficient of volume expansion

(considered sufficiently small) and f denotes the acceleration of gravity.
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2 Main Results

Definition 2.1 (mild solution). Let Yj ↪→ D′Ω), j = 1, 2, be Banach spaces and T > 0. The function

[u, θ] ∈ Ls1((0, T ) : Y1)× Ls2((0, T ) : Y2) is called a mild solution to (1), if it satisfies the integral equation[
u(t)

θ(t)

]
= e−tL

[
u0
θ0

]
−
∫ t

0

e−(t−s)L
[
P(u · ∇)u

u · ∇θ

]
(s)ds+

∫ t

0

e−(t−s)L
[
P(ϱθf)
Φ(u)

]
(s)ds, (3)

for all t ∈ (0, T ) and [u(t), θ(t)] ⇀ [u0, θ0] in sense of distributions as t → 0+. Here, if s1 = s2 = ∞ then

tγ/2f ∈ L∞ ((0, T ) : Lb(Ω)) is taken such that

∥f∥X̂γ
b,T

= sup
0<t<T

t
γ
2 ∥f(·, t)∥Lb(Ω) <∞ with γ = 1− n

b
and b ∈ [n,∞) (4)

and for 1 < s1, s2 <∞ we consider f ∈ Ls((0, T ) : Lb(Ω)) with 2
s = 1− n

b and b ∈ (n,∞).

Theorem 2.1. Let Ω ⊂ Rn be smooth bounded domain or whole space Rn itself, n ≥ 3. For T > 0 denote by Xα,β
q,r,T

the space of distributions [u(t), θ(t)] ∈ X0 = Ẇ
1,n/2
σ (Ω)× Ln/2(Ω) such that

∥[u, θ]∥X̂α,β
q,r,T

:= sup
0<t<T

t
α
2 ∥u(·, t)∥Ẇ 1,q

σ (Ω) + sup
0<t<T

t
β
2 ∥θ(·, t)∥Lr(Ω) <∞, (5)

where α = 2−n/q and β = 2−n/r. Assume max{2, n/2} < q < r < n and n ≤ b <∞ be such that 1/b+1/r > 1/q.

(A) (Local existence and uniqueness) For any f ∈ X̂γ
b,T and [u0, θ0] ∈ X0, there is T > 0 and a mild solution

[u, θ] to the problem (1)-(2) in the class [u(t), θ(t)] ∈ X0 such that

∥∇u(·, t)∥Lq(Ω) ≲ t−
α
2 and ∥θ(·, t)∥Lr(Ω) ≲ t−

β
2 for all t ∈ (0, T ). (6)

The previous solution [u, θ] is unique in the closed ball B̄(0, 2ε
1−ζ ) ⊂ Xα,β

q,r,T , for some ε > 0 and ζ ∈ (0, 1).

Moreover, the mild solution [u, θ] is stable with respect to [u0, θ0] ∈ X0 in the following sense: There are

constants c1 > 0 and c2 > 0 such that∥∥∥∥[uθ
]
−
[
ũ

θ̃

]∥∥∥∥
Xα,β

q,r,T

≤
(
1− ζ − 4ε(c1 + c2)

1− ζ

)−1 ∥∥∥∥[u0θ0
]
−
[
ũ0
θ̃0

]∥∥∥∥
X0

, (7)

whenever [ũ, θ̃] is another solution of the integral equation (3) with initial data [ũ0, θ̃0] ∈ X0.

(B) The previous mild solution [u, θ] of (1)-(2) satisfies

t
α
2 u(t) ∈ BC([0, T ) : Ẇ 1,q

σ (Ω)) and t
β
2 θ(t) ∈ BC([0, T ) : Lr(Ω)). (8)

Moreover, [t
α
2 u(t), t

β
2 θ(t)] → 0 in Ẇ 1,q

σ (Ω)× Lr(Ω) and [u(t), θ(t)] → [u0, θ0] in X0 as t→ 0+.
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Abstract

We study existence and asymptotic behavior of entire positive bounded solutions for the following class of

semilinear elliptic problem {
L(u) = ϱ(x)f(x, u) in RN , N ≥ 3,

u > 0, in RN ,

where 0 ≤ ϱ ∈ Lp
loc(R

N ), for some N < p ≤ ∞. Here L is a local uniform elliptic operator and f(x, s) is a

nonlinearity with sublinear behavior at zero and at +∞. This type of result has already been studied in the

celebrated work by H. Brezis and S. Kamin for the case when L = −∆ and ϱ ∈ L∞
loc(RN ). Our approach allows

us to include for instance −div ((1 + |x|µ)ν∇u) = uq(|x|α + |x|β)−1 with suitable α, β > 0, µ, ν ∈ R and

0 < q < 1. Here we include two local uniform elliptic situations: µ > 0 with ν = 1 or ν = −1.

1 Introduction

We study existence and behavior of entire positive bounded solutions of the following problem{
L(u) = ϱ(x)f(x, u) in RN , N ≥ 3.

u > 0, in RN ,
(P )

where L(u) is a local elliptic operator in divergence form, that is, for any compact set Ω ⊂ RN , there are λΩ, ΛΩ > 0

such that

L(u) =−
N∑

i,j=1

Dj(aij(x)Di(u)), aij = aji ∈ C0,1
loc (R

N ),

λΩ|ξ|2 ≤
N∑

i,j=1

aij(x)ξiξj ≤ ΛΩ|ξ|2, ∀x ∈ Ω, 0 < λΩ ≤ ΛΩ <∞.

and C0,1
loc (RN ) denotes the space of locally Lipschitz functions. The study of Problem (PΦ) was motivated by the

following well known problem {
−∆u = ϱ(x)uq in RN , N ≥ 3.

u > 0, in RN ,
(BK)

where 0 < q < 1 and ϱ is a nonnegative locally bounded weight. The celebrated work of H. Brezis and S. Kamin

[1], proved the existence and asymptotically behavior for classical solutions of (BK). Their argument to prove the

existence of bounded positive solutions of (BK) was strongly based on the linear problem

−∆u = ϱ(x), (LBK)

more precisely, they proved that:
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Theorem 1.1. [1, Theorem 1] Problem (BK) has a bounded solution if and only if, the linear problem (LBK) has

a bounded solution. Moreover, there is a minimal positive solution of (BK).

It is important to observe that it is always assumed that ϱ is a locally bounded function. At this point a natural

question arises: Is it possible to prove a Brezis-Kamin type result in the sense of Theorem 1.1 considering a more

general weight ϱ ∈ Lploc(RN ), 1 ≤ p <∞, that is not necessarily locally bounded? Our main objective in our work

is to give a positive answer to this question, where we approach Problem (PΦ) by means of a Brezis-Kamin type

result.

2 Main Results

Theorem 2.1. Assume

(ϱ1) ϱ(x) ≥ 0 a.e. (i.e. almost everywhere) in RN and there exists a bounded set O, with positive measure, such

that ϱ > 0 in O.

(ϱ2) ϱ ∈ Lploc(RN ), for some p > N.

(f1) lim
t→0+

f(x, t)

t
= +∞,

(f2) either one of the following conditions hold:

1. given [0, a] there exists Ma > 0 such that f(x,Mt) ≤M, for all M > Ma, t ∈ [0, a], and

lim
t→+∞

f(x, t)

t
= 0. (1)

2. there exists a continuous nondecreasing function f0 : [0,∞) → [0,∞) satisfying (1) and f(x, s) ≤ f0(s)

for each s ∈ [0,∞) (a.e. x ∈ RN ).

(f3) the function t 7→ f(x, t)

t
is decreasing on (0,∞),

(f4) for each [0, l], there is a constant K > 0 such that t 7→ f(x, t) +Kt is nondecreasing, for a.e. x ∈ RN .

and that the equation L(U) = ϱ(x) in RN , has a solution U ∈ Ep(RN ). Then Problem (PΦ) has a positive solution

u ∈ Ep(RN ), such that u ≤ CU in RN , for some C > 0, where Ep(RN ) = L∞(RN ) ∩W 2,p
loc (RN ).

Corollary 2.1. Suppose (ϱ1) and (ϱ2). Also that, ϱ(x) = ϱ(|x|), with

lim
r→0

r2ϱ(r) ∈ R and

∫ ∞

0

rϱ(r)dr < +∞.

Then {
−∆u = ϱ(x)uq in RN , N ≥ 3, 0 < q < 1,

u > 0, in RN ,
(BK)

has a positive solution u ∈ Ep(RN ).
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Abstract

In this talk we establish existence and multiplicity of solution for the following class of quasilinear elliptic

problems {
−∆Φu = λa(x)|u|q−2u+ |u|p−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω ⊂ RN , N ≥ 2, is a smooth bounded domain, 1 < q < ℓ ≤ m < p < ℓ∗ and Φ : R → R is suitable N-

function. The main feature here is to determinate whether the Nehari method can be applied finding the largest

positive number λ∗ > 0 such that our main problem admits at least two distinct solutions for each λ ∈ (0, λ∗).

1 Introduction

This talk is devoted to establish existence and multiplicity of solutions to the following class of quasilinear elliptic

problem {
−∆Φu = λa(x)|u|q−2u+ |u|p−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(Pλ)

where Ω ⊂ RN , N ≥ 2 is a smooth bounded domain, 1 < q < ℓ ≤ m < p < ℓ∗, ℓ∗ = Nℓ/(N − ℓ), N ≥ 2. Recall that

∆Φu := div(ϕ(|∇u|)∇u) is the Φ-Laplacian operator. Throughout this work we shall consider Φ : R → R an even

function defined by

Φ(t) =

∫ |t|

0

sϕ(s) ds, t ∈ R. (1)

2 Main Results

In this work we shall assume the following hypotheses: ϕ : (0,+∞) → (0,+∞) is a C1-function satisfying the

following assumptions:

(ϕ1) tϕ(t) 7→ 0, as t 7→ 0 and tϕ(t) 7→ ∞, as t 7→ ∞;

(ϕ2) tϕ(t) is strictly increasing in (0,∞);

(ϕ3)

∫ 1

0

Φ−1(τ)

τ
N+1
N

dτ <∞ and

∫ +∞

1

Φ−1(τ)

τ
N+1
N

dτ = ∞;

(ϕ4) There holds

−1 < ℓ− 2 := inf
t>0

ϕ′(t)t

ϕ(t)
≤ sup

t>0

ϕ′(t)t

ϕ(t)
:= m− 2 <∞.

Furthermore, we assume also that

(H1) 1 < q < ℓ ≤ m < p < ℓ∗, ℓ∗ = Nℓ/(N − ℓ);
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(H2 The function a : Ω → R belongs to Lℓ/(ℓ−q)(Ω) and a(x) ≥ a0 > 0 for each x ∈ Ω;

(H3) The function

t 7→ (2− q)ϕ(t) + ϕ′(t)t

tp−2

is strictly decreasing for each t > 0.

Throughout this work we shall consider the Nehari set as follows

Nλ =
{
u ∈W 1,Φ

0 (Ω) \ {0} : J ′
λ(u)u = 0

}
, λ > 0.

The Nehari set can be separated in the following form:

N+
λ = {u ∈ Nλ : J ′′

λ (u)(u, u) > 0},

N−
λ = {u ∈ Nλ : J ′′

λ (u)(u, u) < 0},

N 0
λ = {u ∈ Nλ : J ′′

λ (u)(u, u) = 0}.

The main feature in the present work is to ensure that the minimization problems

cN+ := inf{Jλ(u) : u ∈ N+}, cN− := inf{Jλ(u) : u ∈ N−} (2)

are attained by some specific functions.

These functionals give us sharp conditions taking into account the Nehari method for existence of solutions

u ∈ X for our main problem for each λ ∈ (0, λ∗). Namely, we consider the nonlinear Rayleigh quotient:

λ∗ := inf
u∈W 1,Φ

0 (Ω)\{0}
Λe(u), λ

∗ := inf
u∈W 1,Φ

0 (Ω)\{0}
Λn(u). (3)

Theorem 2.1. Suppose that assumptions (ϕ1) − (ϕ4) and (H1) − (H3) are satisfied. Then 0 < λ∗ < λ∗ < ∞.

Furthermore, Problem (Pλ) admits at least one positive ground state solution u ∈ X for each λ ∈ (0, λ∗) satisfying

the following properties: There holds J ′′
λ (u)(u, u) > 0, Jλ(u) < 0.

Theorem 2.2. Suppose that assumptions (ϕ1) − (ϕ4) and (H1) − (H3) are satisfied. Then 0 < λ∗ < λ∗ < ∞.

Furthermore, Problem (Pλ) admits at least one positive solution v ∈ X for each λ ∈ (0, λ∗) satisfying the following

properties: There holds J ′′
λ (v)(v, v) < 0 and Jλ(v) > 0 for each λ ∈ (0, λ∗). Furthemore, we obtain Jλ(v) = 0 for

λ = λ∗ and Jλ(v) < 0 for each λ ∈ (λ∗, λ
∗).

Corollary 2.1. Suppose that assumptions (ϕ1) − (ϕ4) and (H1) − (H3) are satisfied. Then 0 < λ∗ < λ∗ < ∞.

Furthermore, Problem (Pλ) has at least two positive solution provided that λ ∈ (0, λ∗).
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Abstract

We prove existence of global in time strong solutions for the Navier-Stokes equations in the presence of mass

diffusion in 3-dimensional thin domains of the form Ω
def
= R2 × (0, ϵ) , where 0 < ϵ ≤ 1. Moreover, we show that,

when ϵ→ 0+, the velocity and the gradient of density tend to vanish away from the initial time.

1 Introduction

In [1] a model has been proposed to describe the motion of a two component fluid taking into consideration the

diffusion between its parts. Here, this model is studied in a thin domain Ωϵ with viscosity µ > λ/2 osc(ρ0), where λ

is the diffusion coefficient and ρ0 is the initial density taken strictly positive. The thin domain can be characterized

as follows: given a suitable domain Ω ⊂ Rn, a corresponding thin domain is a set of the form

Ωϵ = {(x, y) ∈ Rn+1; x ∈ Ω and 0 < y < g(x, ϵ)}

where ϵ ∈ (0, ϵ0]. Here ϵ0 is a parameter and g : Ω̄× [0, ϵ0] → R is a function of class C3 such that

g(x, 0) = 0,
∂g

∂ϵ
(x, 0) > 0, g(x, ϵ) > 0, ∀x ∈ Ω̄, ∀ϵ ∈ (0, ϵ0)

The simplest case is when g(x, ϵ) = ϵ and therefore Ωϵ = Ω× (0, ϵ). For simplicity, this will be the case that we

will consider throughout this work. Consider a set of the form Ωϵ × (0,∞) where Ωϵ = Ω× (0, ϵ) with Ω = R2 and

ϵ ∈ (0, 1). The equations governing the motion of a two-component fluid with diffusion obtained in [1] are
ρut + (ρu · ∇)u− µ∆u− λ(u · ∇)∇ρ− λ(∇ρ · ∇)u+∇P = 0

ρt + u · ∇ρ− λ∆ρ = 0

∇ · u = 0

(1)

with initial conditions 
ρ(·, 0) = ρ0(·), u(·, 0) = u0(·) in Ωϵ

u = 0 on Σϵ = Γϵ × (0,∞)
∂ρ

∂n
= 0 on Σϵ

(2)

where Γϵ
def
= {(x1, x2, x3); (x1, x2) ∈ R2, x3 = 0 or x3 = ϵ}. Existence and uniqueness results can be found in [1].

Let us introduce the following functional spaces

V = {u ∈ C∞
0 (Ωϵ); ∇ · u = 0 in Ωϵ}, Hk

N (Ωϵ) = {ρ ∈ Hk(Ωϵ); ∇ρ = 0 on Γϵ}, k = 2, 3,

and denote by H and V the closure of V in L2(Ωϵ) and H1
0(Ωϵ), respectively.
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2 Auxiliary results and complementary remarks

In this work we prove that the unique solution of the problem (1)-(2) exists globally in time, if the initial velocity

and density satisfies

ϵ
1
2 (∥∇u0∥2 + ∥∆ρ0∥2)

1
2 ≤ c0 (3)

with c0 > 0 a small enough constant. The next theorem is a compilation of Poincare’s type inequalities suitable for

this work.

Theorem 2.1. (Poincare’s inequalities)

i) If u ∈ H2(Ωϵ) ∩H1
0(Ωϵ) then ∥u∥ ≤ ϵ∥D3u∥ ≤ ϵ∥∇u∥ and ∥∇u∥ ≤ ϵ∥∆u∥.

ii) If ρ ∈ H3
N (Ωϵ) then ∥∇ρ∥ ≤ ϵ∥∂3∇ρ∥ ≤ ϵ∥∆ρ∥ and ∥∆ρ∥ ≤ ϵ∥∇∆ρ∥.

3 Main Results

Let

U(t) def= ∥(u,∇ρ)∥2L∞
t (L2(Ωϵ))

+ ∥(∇u,∆ρ)∥2
L2

t (L
2(Ωϵ))

,

V(t) def= ∥(∇u,∆ρ)∥2L∞
t (L2(Ωϵ))

+ ∥(ut,∇ρt,∆u,∇∆ρ)∥2
L2

t (L
2(Ωϵ))

,

W(t)
def
= ∥(ut,∇ρt,∆u,∇∆ρ,∇p)∥2L∞

t (L2(Ωϵ))
+ ∥(∇ut,∆ρt)∥2L2

t (L
2(Ωϵ))

and U0
def
= ∥u0∥2 + ∥∇ρ0∥2, V0

def
= ∥∇u0∥2 + ∥∆ρ0∥2, W0

def
= ∥∆u0∥2 + ∥∇∆ρ0∥2.

Theorem 3.1. Assume that the initial data ρ0 and u0 satisfies the conditions (3) and

0 < m ≤ ρ0(x) ≤M <∞, u0 ∈ V, ρ0 ∈ H2
N (Ωϵ).

Then there exists λ0 > depending on m and M such that if λ/µ < λ0, problem (1)-(2) has a unique global in time

strong solution (ρ,u, p) and ther exists positive constants C = C(m,M,µ, λ) and C̃ = C̃(m,M,µ, λ, c0) such that,

for all t ∈ (0,∞),

m ≤ ρ(x, t) ≤M, U(t) ≤ CU0, V(t) ≤ C̃V0,

∥(u,∇ρ)∥2L∞
t (L2(Ωϵ))

≤ CU0e
−min{µ/2M,λ}ϵ−2t,

∥(∇u,∆ρ)∥2L∞
t (L2(Ωϵ))

≤ C̃V0e
−min{mµ/16M2,λ/4}ϵ−2t.

Futhermore, if u0 ∈ V ∩H2(Ωϵ) and ρ0 ∈ H3
N (Ωϵ), then

W(t) ≤ C̃W0, ∥(∆u,∇∆ρ)∥2L∞
t (L2(Ωϵ))

≤ C̃W0e
−min{mµ/16M2,λ/4}ϵ−2t.

In particular, for all t∗ > 0, we have

lim
ϵ→0+

(u,∇ρ) = (0,0) uniformly in C([t∗,∞),H2(Ωϵ)).
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Abstract

In this work we consider approximations of a class of third order in time linear evolution ill-posed equations

governed by fractional powers. We explicitly calculate the fractional powers of matricial operators associated

with evolution equations of third order in time. We show for which values of the exponent we transform the

original problem into a well-posed one. The results presented here form part of my doctoral thesis and constitutes

an article entitled ‘Fractional powers approach of operators for abstract evolution equations of third order in time’

by myself and Flank D. M. Bezerra published by the Journal of Differential Equations.

1 Introduction

In this work we consider the following abstract linear evolution equation of third order in time

∂3t u+Au = 0 (1)

with initial conditions given by

u(0) = u0 ∈ X
2
3 , ∂tu(0) = u1 ∈ X

1
3 , ∂2t u(0) = u2 ∈ X, (2)

where X is a separable Hilbert space and A : D(A) ⊂ X → X is a linear, closed, densely defined, self-adjoint and

positive definite unbounded operator. We wish to study the fractional powers of Λ, the matricial operator obtained

by rewriting (1)-(2) as a first order abstract system as follows:

We will consider the phase space

Y = X
2
3 ×X

1
3 ×X

which is a Banach space equipped with the norm given by

∥ · ∥2Y = ∥ · ∥2
X

2
3
+ ∥ · ∥2

X
1
3
+ ∥ · ∥2X

and we write the problem (1)-(2) as a Cauchy problem on Y , letting v = ∂tu, w = ∂2t u and u =
[
u
v
w

]
and the initial

value problem 
du

dt
+ Λu = 0, t > 0

u(0) = u0,
(3)

where the unbounded linear operator Λ : D(Λ) ⊂ Y → Y is defined by

D(Λ) = D(A)×D(A
2
3 )×D(A

1
3 ), (4)

and

Λu =
[

0 −I 0
0 0 −I
A 0 0

] [
u
v
w

]
:=
[ −v
−w
Au

]
, ∀u =

[
u
v
w

]
∈ D(Λ). (5)
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2 Main Results

In this first result we prove that the operator Λ under study is of K-type positive, this means that we can consider

its fractional powers Λα for α ∈ (0, 1). Moreover, we explicitly calculate the matrix representing the fractional

power of this operator. Finally, we give information about some spectral characteristics of the operator Λα as

having the compact resolvent and the explicit calculation of its eigenvalues.

Theorem 2.1. If A and Λ are as mentioned above, then we have all the following.

i) Fractional powers Λα can be defined for α ∈ (0, 1) by the Balakrishnan formula

Λα =
sinαπ

π

∫ ∞

0

λα−1Λ(λI + Λ)−1dλ. (1)

ii) Given any α ∈ (0, 1) we have Λα : D(Λα) ⊂ Y → Y is given by

Λα =

 kα,0A
α
3 −kα,2A

α−1
3 kα,1A

α−2
3

−kα,1A
α+1
3 kα,0A

α
3 −kα,2A

α−1
3

kα,2A
α+2
3 −kα,1A

α+1
3 kα,0A

α
3

 (2)

where

D(Λα) = D(A
α+2
3 )×D(A

α+1
3 )×D(A

α
3 ),

and

kα,j =
1

3

(
2 cos 2π(α+j)

3 + 1
)
, for j ∈ {0, 1, 2}. (3)

iii) Let α ∈ (0, 1]. Then 0 ∈ ρ(Λα). If, in addition A has compact resolvent, then Λα has compact resolvent.

iv) For each α ∈ (0, 1] the spectrum of −Λα is such that the point spectrum consisting of eigenvalues{
(µn)

α
3 eiπ : n ∈ N

}
∪
{
(µn)

α
3 ei

π(3−2α)
3 : n ∈ N

}
∪
{
(µn)

α
3 ei

π(3+2α)
3 : n ∈ N

}
(4)

where {µn}n∈N denotes the ordered sequence of eigenvalues of A including their multiplicity.

The next myth is the main result of this paper. We prove that though the negative of Λ is not an infinitesimal

generator of a strongly continuous semigroup, i.e. the problem (1) is ill-posed, we can establish the maximum

subinterval of (0, 1) where α is taken such that the negative of Λα is a generator, namely −Λα generates a strongly

continuous semigroup on Y if and only if 0 < α ≤ 3
4 and it generates strongly continuous analytic semigroup on

the open interval 0 < α < 3
4 .

Theorem 2.2. The negative of the operator Λα in (2) is the generator of a strongly continuous semigroup on Y if

and only if α ∈
(
0, 34

]
. Moreover −Λα generates a strongly continuous analytic semigroup on Y for α ∈

(
0, 34

)
.
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Abstract

In this work, our goal is to study the a class of systems of Hénon type problems with a nonlineaty is assumed

to be in the critical level with subcritical perturbation. Under appropriate hypotheses, we prove the existence

of at least two radial solutions for this problem using variational methods.

1 Introduction

This work is based on paper [1]. Here we search for two non-trivial radially symmetric solutions of the Dirichlet

problem involving a Hénon-type system of the form
−∆u = a(x)u+ b(x)v + |x|αKu(u+, v+) + f1(x) in B1,

−∆v = b(x)u+ c(x)v + |x|αKv(u+, v+) + f2(x) in B1,

u = 0, v = 0 on ∂B1,

(1)

where α ≥ 0, B1 is a unity ball centered at the origin of RN (N ≥ 3) and K(s, t) = H(s, t) +G(s, t) with

H(s, t) = a1s
2∗α + ak+1t

2∗α +

k∑
i=2

ais
βitγi , (2)

where βi and γ1 are positive numbers such that βi + γi = 2∗α = 2(N + α)/(N − 2) with βi, γi > 1. We require that

ai ≥ 0, for 1 ≤ i ≤ k + 1 with ai ̸= 0 for some i and that G(s, t) is a C1 function in R+ × R+ which is assumed to

be in the subcritical growth range.

1.1 Hypotheses

We explore the interaction of eigenvalues of the matrix

A(x)=

(
a(x) b(x)

b(x) c(x)

)
∈ C(B1,M2×2(R))

with respect to the spectrum of (−∆, H1
0,rad(B1)). We rewrite (1) in its vectorial form and will be parametrized

considering these different assumptions on A(x). Here, we suppose that A is constant. For this, fix

F (x) =

(
f1(x)

f2(x)

)
∈ Lτ (B1)× Lτ (B1)

and define

FT (x) = P (x) + Te1(x), (3)

where e1 denotes the first positive and normalized eigenfunction associated to −∆ in H1
0,rad(B1),

P (x) =

(
p1(x)

p2(x)

)
∈ Lτ (B1)× Lτ (B1), and T =

(
s

t

)
. (4)
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Then, we consider the following problem:{
−∆U = A(x)U + |x|α∇

(
H(U+) +G(U+)

)
+ FT (x) in B1,

U = 0 on ∂B1,
(5)

and we will discuss conditions on the bidimensional parameter T to achieve multiplicity of solutions.

Let us establish the conditions on matrix A(x). Denote by µ1(x), µ2(x) the eigenvalues of A(x) for all x ∈ B1.

We assume two cases, more precisely,

(A1) A is constant and µ1 ≤ µ2 < λ1; or

(A2) A is constant and there exists k ≥ 1 such that λk < µ1 ≤ µ2 < λk+1;

Before stating our main results, we shall also introduce the following assumptions on the nonlinearity G:

(G1) G ∈ C1(R+ × R+) and G,Gu, Gv ≥ 0;

(G2) G(U) > 0 if |U+| > 0 and G is p−homogeneous. More precisely, for all λ > 0 we assume that

G(λu, λv) = λpG(u, v) with


2∗α − 2N − 8

3N − 8
< p < 2∗α for N ≥ 5;

(4 + α)− 2

5
< p < 4 + α = 2∗α for N = 4;

(6 + 2α)− 2

5
< p < 6 + 2α = 2∗α for N = 3,

(G3) Gu(0, 1) = Gv(1, 0) = 0.

2 Main Results

Our first theorem reads

Theorem 2.1. Suppose (G1). Then, for each N ≥ 3, we have

1. Assuming (A1) or (A2), there exist two lines α1, α2 dividing the plane R2 in four unbounded regions such

that if T = (s, t) lies in one of them, then Problem (5) admits a radial negative solution, denoted by ΦT .

Theorem 2.2. Assume the existence of a radial nonnegative solution Φ = (ϕ1, ϕ2) of (5), (G1)− (G3) and (A1).

Then, (5) possesses a second radial solution provided that F ∈ Lτ (B1) × Lτ (B1) with τ ≥ 12 if N = 3, τ ≥ 8 if

N = 4 and τ > N if N ≥ 5.

Theorem 2.3. Assume the existence of a radial nonnegative solution Φ = (ϕ1, ϕ2) of (5), (G1)− (G3), (A2) and

(G4) a1 and ak+1, given in (2), are strictly positive.

Then, (5) possesses a second radial solution provided that F ∈ Lµ(B1) × Lµ(B1) with µ ≥ 12 if N = 3, µ ≥ 8 if

N = 4 and µ > N if N ≥ 5.
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Abstract

This paper examines the existence of weak solutions for a nonlinear boundary value problem of p(x)-Kirchhoff

type involving the p(x)-Kirchhoff type triharmonic operator and perturbed external source terms. We establish

our results by using the Degree theory of (S+) type mappings in the framework of variable exponent Sobolev

spaces.

1 Introduction

The purpose of this work is to investigate the existence of weak solutions for the following nonlinear elliptic problem

involving the p(x)-Kirchhoff type triharmonic operator, with Navier boundary conditions

−M(L(u))∆3
p(x)u = fλ(x, u,∇u,∆u,∇∆u) en Ω,

u = ∆u = ∆2u = 0 en ∂Ω,
(1)

where Ω is a bounded domain in Rn with a smooth boundary ∂Ω, and N ≥ 3, p ∈ C(Ω) for any x ∈ Ω;

M : R+ → R+ is a continuous function, L(u) =
∫
Ω

1
p(x) |∇∆u|p(x) dx, ∆3

p(x)u := div
(
∆
(
|∇∆u|p(x)−2 ∇∆u

))
is the so-called p(x)-triharmonic operator, fλ = f1 + λf2, where f1, f2 are continuous functions, λ > 0,

p ∈ C+(Ω) = {h : h ∈ C(Ω), h(x) > 1 for any x ∈ Ω} and

1 < p− := min
Ω
p(x) ≤ p+ := max

Ω
p(x) < N for every p ∈ C+(Ω).

In recent years, Kirchhoff type equations involving variable exponent have attracted an increasing attention and

many results have been obtained (see for example [3, 6]); however, there are few contributions to the study of the

triharmonic problems with reaction term f(x, u,∇u,∆u,∇∆u). We can cite [1, 2, 5]. Recently, Mehraban et al. [4]

considered the existence and multiplicity of solutions for the problem (1), with M(t) = 1, f(x, u,∇u,∆u,∇∆u) :=

λf(x, u) + µg(x, u). Due to the presence of ∇u,△u and ∇△u in f the most usual variational techniques can not

used to study it; so we adapt a topological tool: the degree theory for (S+) type mappings. It is worth noting

that, in this work, f does not satisfies typical growth conditions.

2 Assumptions and Main Result

Throughout this paper, let

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k}

with the norm

∥u∥k,p(x) ≡ ∥u∥Wk,p(x)(Ω) =
∑
|α|≤k

|Dαu|Lp(x)(Ω).

99



100

The space W
1,p(x)
0 (Ω) is the closure of C∞

0 (Ω) in W 1,p(x)(Ω). We denote by

X =W
1,p(x)
0 (Ω) ∩W 3,p(x)(Ω)

and define a norm ∥.∥X by

∥u∥X = ∥u∥1,p(x) + ∥u∥2,p(x) + ∥u∥3,p(x).

Suppose that M and f satisfy the following hypotheses:

(M0) M : [0,+∞[→ [m0,+∞[ is a continuous and nondecreasing function with m0 > 0.

(F1) fi ∈ C (Ω× R× Rn × R× Rn;R), i = 1, 2 and there exists a positive constants c1 such that

|fi(x, s, ξ, t, ζ)| ≤ c1(σi(x) + |s|ηi(x) + |ξ|δi(x) + |t|δi(x) + |ζ|δi(x)), ∀x ∈ Ω,

∀s, t ∈ R, ζ, ξ ∈ Rn, where ηi, δi ∈ C(Ω), q ∈ C+(Ω),
1

p(x)
+

1

p′(x)
= 1,

σi ∈ Lp
′(x)(Ω), 0 ≤ η1(x) < p(x)− 1, 0 ≤ δi(x) <

p(x)− 1

p′(x)
, i = 1, 2; p− + 1 ≤ η2(x) < p+ + 1 for x ∈ Ω.

Theorem 2.1. Assume that hypotheses (M0) and (F1) hold. If λ > 0 is small enough, then (1) has a weak solution

in X.

Proof. First, we solve the problem for λ = 0, via the Degree theory of (S+) type mappings. Then we use the

continuity and boundedness and the Nemytskii operator to get our result.

Remark 2.1. With additional hypotheses on the function f we can get uniqueness of solutions.
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Abstract

Let Ω be a bounded, smooth domain of RN , N ≥ 2. For 1 < p < N and 0 < q(p) < p∗ := Np
N−p

let

λp,q(p) := inf

{∫
Ω

|∇u|p : u ∈W 1,p
0 (Ω) and

∫
Ω

|u|q(p) dx = 1

}
.

We prove that if limp→1+ q(p) = 1, then limp→1+ λp,q(p) = h(Ω), where h(Ω) denotes the Cheeger constant of

Ω. Moreover, we study the behavior of the minimizers up,q(p) corresponding to λp,q(p), as p → 1+. Our results

extend those by Kawohl and Fridman (2003), where q(p) = p.

1 Introduction

Let Ω be a smooth, bounded domain of RN , N ≥ 2. For 1 < p < N and 0 < q ≤ p∗ := Np
N−p let

λp,q := inf
{
∥∇u∥pp : u ∈W 1,p

0 (Ω) and ∥u∥q = 1
}
, (1)

where

∥u∥r :=
(∫

Ω

|u|r dx
) 1

r

, r > 0.

We recall that ∥·∥r is the standard norm of the Lebesgue space Lr(Ω) if r ≥ 1, but it is not a norm if 0 < r < 1.

Kawohl and Fridman proved in [2] that

lim
p→1+

λp,p = h(Ω) (2)

where h(Ω) is the Cheeger constant of Ω.

We recall that

h(Ω) := inf

{
P (E)

|E|
: E ⊂ Ω and |E| > 0

}
,

where P (E) stands for the perimeter of E in RN and |E| stands for the N -dimensional Lebesgue volume of E.

The Cheeger problem consists of finding a subset E ⊂ Ω such that h(Ω) = P (E)
|E| . Such a subset E is called

Cheeger set of Ω.

In this paper we suppose that q varies with p along a more general path, q = q(p) for p ∈ (1, p∗), and study the

behavior of λp,q(p) when p→ 1+ and q(p) → 1.

2 Main Results

Our main results are stated as follows.

Theorem 2.1. If 0 < q(p) < p∗ and lim
p→1+

q(p) = 1, then

lim
p→1+

λp,q(p) = h(Ω)
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and

lim
p→1+

∥∥up,q(p)∥∥1 = 1 = lim
p→1+

∥∥up,q(p)∥∥q(p)−p∞ .

Moreover, any sequence
(
upn,q(pn)

)
, with pn → 1+, admits a subsequence that converges in L1(Ω) to a nonnegative

function u ∈ L1(Ω) ∩ L∞(Ω) such that:

(a) ∥u∥1 = 1,

(b)
1

|Ω|
≤ ∥u∥∞ ≤ h(Ω)N

|Ω|h(Ω⋆)N
, where Ω⋆ denotes the ball centered at the origin and such that |Ω⋆| = |Ω|, and

(c) for almost every t ≥ 0, the t-superlevel set Et := {x ∈ Ω : u(x) > t} is a Cheeger set.

Theorem 2.2. Let wp,q(p) ∈W 1,p
0 (Ω) be a positive weak solution to the Lane-Emden type problem{

−div
(
|∇v|p−2 ∇v

)
= |v|q−2

v in Ω

v = 0 on ∂Ω,
(1)

with p < q(p) < p∗. Then, either

lim sup
p→1+

∥∥wp,q(p)∥∥q(p)−pq(p)
= +∞

or

lim
p→1+

∥∥wp,q(p)∥∥q(p)−pq(p)
= h(Ω) = lim

p→1+

∥∥wp,q(p)∥∥q(p)−p∞ . (2)

Remark 2.1. It is well known that (1) has a unique positive weak solution when 0 < q(p) < p. As this solution

is given by λ
1

q(p)−p

p,q(p) up,q(p) the limits in (2.2) follow directly from Theorem 2.1. In the particular case q(p) ≡ 1 they

had already been obtained in [1] by Bueno and Ercole, without using (2).
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Abstract

In this talk we discuss about some weighted Sobolev embedding involving functions that vanishing only in

a direction. In this setting we prove a weighted Trudinger-Moser type inequality and as an application, we

addressed the existence of solutions to a class of nonlinear equation elliptic of the form divergence, where the

nonlinearity f has exponential critical growth in sense of Trudinger-Moser.

1 Introduction

In this talk, we are concerned with divergence elliptic equations of the form

−div(a(x)∇u) + V (x)u = K(x)f(u) in R2, (P)

where the potential V and the weight functions a,K satisfy some growth conditions and the nonlinearity f(s) is a

continuous function with exponential critical growth in sense of Trudinger-Moser. Before describe our main results,

we need first to introduce some functional space. For γ, σ ∈ R, we denote by E1,γ,σ the weighted Sobolev space

defined as the completion of C∞
0 (R2) with respect to the norm

∥u∥E1,γ,σ :=

(∫
R2

[(
1 + x22

)γ |∇u|2 + u2

(1 + x22)
σ

]
dx

)1/2

.

2 Main Results

In order to deal with equation (PΦ) we shall need new embeddings from E1,γ,σ into weighted Lebesgue spaces.

Precisely, we shall state the following embedding result:

Theorem 2.1 (Sobolev). Let σ, γ ∈ R be such that 2σ ≤ 1 ≤ γ. Then, for any 2 ≤ p <∞ and 2β ≥ 1 there exists

a constant C = C(p, σ) > 0 such that, for all u ∈ E1,γ,σ, we have∫
R2

|u|p

(1 + x22)
β
dx ≤ C

(∫
R2

[
(1 + x22)

γ |∇u|2 + u2

(1 + x22)
σ

]
dx

)p/2
. (1)

By using an argument free of symmetry we are able to state the weighted Trudinger-Moser type inequality:

Theorem 2.2 (Trudinger-Moser). Let σ, γ ∈ R be such that 2σ ≤ 1 ≤ γ. Then, for any 2β ≥ 1, α > 0 and

u ∈ E1,γ,σ, we have that (1 + x22)
−β
(
eαu

2 − 1
)
∈ L1(R2) and there exists α∗ > 0 such that

L(γ, σ, β, α) := sup
{u∈E1,γ,σ:∥u∥E1,γ,σ≤1}

∫
R2

1

(1 + x22)
β

(
eαu

2

− 1
)
dx <∞,

whenever 0 < α < α∗. Furthermore, there exists α∗∗ > α∗ such that L(γ, σ, β, α) = ∞, for all α > α∗∗.
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Now, we shall assume the following basic assumptions on the potential V and the weight functions a,K:

(H1) V : R2 → R is a measurable function and there are V0 > 0 , 2σ ≤ 1 such that V0/
(
1 + x22

)σ ≤ V (x) for a.e. x ∈
R2;

(H2) a : R2 → R is measurable and there are a0 > 0, γ ≥ 1 such that a0
(
1 + x22

)γ ≤ a(x) for a.e. x ∈ R2;

(H3) K : R2 → R is measurable and there areK0 > 0, 2β ≥ 1 such that 0 < K(x) ≤ K0/
(
1 + x22

)β
for a.e.x ∈ R2.

We consider (PΦ) when the nonlinearity is a continuous function f : R+ → R+ with exponential critical growth in

the sense of Trudinger-Moser, that is, there exists α0 > 0 such that

lim
|s|→+∞

|f(s)|
eαs2

=

{
0, if α > α0,

∞, if α < α0.
(2)

We also require that the function f(s) satisfies the following structural conditions:

(f1) f(s) = o(s) as s→ 0+;

(f2) there exist λ > 0 and q > 2 such that F (s) ≥ λ|s|q, for all s ∈ R;

(f3) the function s→ f(s)/s3 is increasing for s ∈ (0,∞).

Our main existence result for equation (PΦ) is state as follows.

Theorem 2.3. Assume that (H1) − (H3), (2) and (f1) − (f3) hold. In addition, suppose that the weight function

K satisfies ∫
R2

K2(x)
(
1 + x22

)β
dx <∞. (3)

Then, there exists λ̃ > 0 such that if, (f2) holds, for λ ≥ λ̃, then the equation (PΦ) has a nonnegative ground state

solution.

Based on a Moser’s iterative we obtain the asymptotic behavior for nonnegative weak solutions of (PΦ).

Theorem 2.4. Let w be a nonnegative weak solution of (PΦ). Then, w is bounded in strips, that is, there exists

C > 0 such that

w(x1, x2) ≤ C
(
1 + x22

)β
,

for any x = (x1, x2) ∈ R2. Moreover, suppose that there exists θ > 0 such that

8θ2a(x) ≤ V (x), K(x) ≤ 1

(1 + x22)
2θ+β

, for a.e. x ∈ R2, (4)

and ∫
R2

K2(x)
(
1 + x22

)4θ+β
dx <∞. (5)

Then, w ∈ L∞(R2).
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Abstract

This article establishes the existence of solutions for a for a quasilinear third-order boundary value problem.

The main tools in the proof are the general Lax Milgram Lemma and the Schauder’s fixed point theorem.

1 Introduction

This work deals with the existence of solutions for the quasilinear boundary value problem

− d

dx

(
a(u)

d2u

dx2

)
= f, in [0, 1]

u(0) = 0, u′(0) = 0 = u′(1)

(1)

where

(A1) a : R −→ R is a continuous and 0 < λ ≤ a(s) ≤ Λ,∀s, for some constants λ,Λ.

(A2) f : [0, 1] −→ R is the continuous continuous.

Third-order boundary value problems (BVPs) were discussed in many papers in recent years, for instance, see

[1, 2, 3, 4] and references therein. Investigation of the existence of solutions for this type of BVP is often related to

the construction of corresponding Green’s functions. Thus, Green’s functions play an important role in the theory

of boundary value problems. In our case it is difficult to implement explicit Green functions, so to obtain the

existence of solutions we use the general Lax Milgram Lemma and the Schauder’s fixed point theorem.

2 Main Results

We will use the space H = {u ∈ H2
0 (0, 1) : u(0) = 0u′(0) = 0 = u′(1)}. It is known that H is a Hilbert space.

Theorem 2.1. Assume conditions (A1) and (A2) are fulfilled. Then boundary value problem (1) has at least one

solution u ∈ H.

Proof The proof is based on the general Lax Milgram Lemma and the Schauder’s fixed point theorem, combined

with variational arguments. □
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Abstract

In this work we study the existence of solutions for the following class of quasilinear elliptic equations

−div
(
A(|x|)|∇u|N−2∇u

)
= Q(|x|)f(u), in RN ,

where N ≥ 2 and f has critical exponential growth. We establish conditions on the non-homogeneous weights

A and Q to introduce a suitable function space where we are able to apply Variational Methods to obtain

weak solutions. The main key is a Hardy type inequality for radial functions. Our approach is based on a new

Trudinger-Moser type inequality, a version of the Symmetric Criticality Principle and Mountain Pass Theorem.

1 Introduction

In the last decades, many researchers have worked in the following class of problems

−div
(
A(x)|∇u|p−2∇u

)
+B(x)|u|p−2u = f(x, u), in RN , (1)

where N ≥ 2 and 1 < p ≤ N . For the case B ̸≡ 0 and A ≡ 1, that is, when the differential operator is the

p-laplacian, we refer the readers to the seminal works [3, 14, 2, 19, 1, 1]. The case in which the potential A is not

trivial, i.e. A ̸≡ 1, together with the condition B ̸≡ 0, has been considered in [11, 6, 4]. The case B ≡ 0 is known

in the literature as the zero-mass case and such condition on B presents more difficulty, since W 1,p(RN ) is not the

natural space to look for solutions. The main purpose of this work is establishing conditions to study a zero-mass

problem in the borderline case, that is, when p = N , precisely

−div
(
A(|x|)|∇u|N−2∇u

)
= Q(|x|)f(u), in RN , (P)

where N ≥ 2 and f has critical exponential growth. Our main difficulties rely on the fact that in the borderline

case, p = N , the space D1,N (RN ) is not “well defined” and in generally, the Hardy inequality is false, see for

example [12]. For this reason, we establish conditions to introduce a new space where we are able to study Problem

(PΦ) variationally.

2 Main Results

Theorem 2.1. (Hardy type inequality) Let N ≥ 2, l > 0 and a = l −N . There exists C = C(N, l) > 0 such that∫
RN

|x|a|u|N dx ≤ C

∫
RN

|x|l|∇u|N dx, for all u ∈ C1
0,rad(RN ), (1)

where C1
0,rad(RN ) denotes the space of radial functions that belong to C1(RN ) with compact support. Furthermore,

the exponent a is optimal, in the sense that if a ̸= l −N , then (1) is false.

Theorem 2.2. Considering some hypotheses the Problem (PΦ) admits a nonzero weak solution.
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Abstract

It is established the existence of positive least energy solution for the following class of planar elliptic systems

in the zero mass case {
−∆u−∆qu+ ϕ|u|r−2u = λ|u|p−2u, in R2,

∆ϕ = 2π|u|r, in R2,

where λ ≥ 0, 1 < q < 2, q∗ := 2q/(2− q) < r < ∞ and p ≥ 2r. Due to the nature of the problem, we deal with

the logarithmic integral kernel. Furthermore, we study the asymptotic behavior of the solutions whenever the

parameter λ goes to zero or infinity. Finally, we study regularity of the solutions.

1 Introduction

In this work we study the existence, asymptotic behavior and regularity of solutions for the following class of

problems {
−∆u−∆qu+ ϕ|u|r−2u = λ|u|p−2u, in R2,

∆ϕ = 2π|u|r, in R2.
(Sλ)

System (Sλ) is reduced into the following equivalent integro-differential equation

−∆u−∆qu+ ϕu|u|r−2u = λ|u|p−2u, in R2, (Pλ)

where

ϕu = ϕ2,u,r(x) := (Γ2 ∗ |u|r) (x) =
∫
R2

Γ2(x− y)|u(y)|r dy and Γ2(x) =
1

2π
log |x|.

The first difficulty in studying (PΦ) (zero mass case) variationally is finding a suitable function space to look for

weak solutions, once H1(R2) and W 1,q(R2) are not suitable. We consider Eq defined as the completion of C∞
0 (R2)

with respect to the norm

∥u∥Eq :=

(∫
R2

|∇u|2 dx+

(∫
R2

|∇u|q dx
)2/q

)1/2

.

Due to the presence of the sign-changing and unbounded logarithmic integral kernel, inspired by [3, 5], we introduce

the space W defined as the completion of C∞
0 (R2) with respect to the norm

∥u∥W :=

(
∥u∥2Eq +

(∫
R2

log(1 + |x|)|u|r dx
)2/r

)1/2

.

We also consider the radial space Eqrad := {u ∈ Eq : u is radial}. The following embedding result will be crucial in

the course of this work, whose proof can be found in [4, Theorem 2.1] and [2, Proposition 2.1].

Theorem 1.1. The embedding Eq ↪→ Lr(R2) is continuous, for any q∗ ≤ r < ∞. Furthermore, the embedding

Eqrad ↪→ Lr(R2) is compact, for any q∗ < r <∞.
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We say that u ∈W is a weak solution for Problem (PΦ) if satisfies∫
R2

(
∇u∇φ+ |∇u|q−2∇u∇φ

)
dx+

∫
R2

ϕu|u|r−2uφdx = λ

∫
R2

|u|p−2uφdx, for all φ ∈W.

The energy functional associated to (PΦ) is given by

Iλ(u) =
1

2

∫
R2

|∇u|2 dx+
1

q

∫
R2

|∇u|q dx+
1

2r

∫
R2

ϕu|u|r dx− λ

p

∫
R2

|u|p dx.

Thus, if u ∈W is a critical point of Iλ, then u is a weak solution of (PΦ). We say that a nontrivial solution u ∈W

of (PΦ) is a least energy solution if Iλ(u) ≤ Iλ(v), for any other nontrivial solution v ∈W of (PΦ). In order to look

for solutions in Wrad, inspired by [1], we prove a version of the Principle of Symmetric Criticality due to Palais.

2 Main Results

Theorem 2.1. (Existence) Suppose that 1 < q < 2, q∗ := 2q/(2 − q) < r < ∞ and p ≥ 2r. Then,

for any λ ≥ 0, (PΦ) possesses a nonnegative least energy solution uλ ∈ Wrad \ {0}. Furthermore, the pair

(uλ, ϕuλ
) ∈Wrad ×W 2,s

loc (R2), for any s > 1, is a weak solution of (Sλ).

Theorem 2.2. (Asymptotic Behavior) Assume the conditions of Theorem 2.1 and let uλ be the solution of

(PΦ). Then:

(i) the following convergences are satisfied: limλ→+∞ ∥uλ∥Eq = 0 and limλ→+∞ ∥uλ∥W = 0;

(ii) uλ ⇀ v in Wrad, as λ→ 0+, where v is a least energy solution of (PΦ), with λ = 0.

Theorem 2.3. (Regularity) Assume the conditions of Theorem 2.1 and let uλ be the solution of (PΦ). There

exists r̃ = r̃(q, p) > 0 such that, if r ≥ r̃, then uλ is positive and belongs to C1,α
loc (R2)∩L∞(R2), for some α ∈ (0, 1).

Furthermore, ϕuλ
∈ C2(R2).

Remark 2.1. Although we are inspired by [3], our approach is significantly different that, in the sense that we do

not use either the periodicity of the energy functional or Lions’ vanishing-nonvanishing arguments. For this reason,

our approach could be adapted to deal with some variations of (PΦ) when the associated energy functional is not

invariant under translations with respect to Z2.
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Abstract

We give sufficient conditions to obtain the existence and asymptotic behaviors of global solutions of a

fractional reaction–diffusion equation with power-type and gradient nonlinearities. In particular, we obtain

results of the fractional viscous Hamilton-Jacobi equation.

1 Introduction and the main result

We give sufficient conditions to obtain global solutions of

ut(t, x) =∂t

∫ t

0

gα(s)∆u(t− s, x)ds+ c1|u(t, x)|ρ−1u(t, x) + c2|∇u(t, x)|q, in (0,∞)× RN (1)

u(0, x) =u0(x), in RN , (2)

with initial data in the critical Lebesgue space Lp(RN ), with p = αN
2 (ρ− 1), as well as we study time decays of the

solutions. Here, gα(t) =
tα−1

Γ(α) , for t > 0 and 0 < α < 1, c1, c2 ∈ R, ρ > 1, and q = 2ρ
2+α(ρ−1) .

We observe that, for α = 1, global existence, was studied by Snoussi, Tayachi and Weissler [3]. The recent work

by Tayachi and Zaag [5] brings together the state of the art of (1)–(2), with α = 1, as well as they prove nice

blow-up results for that problem, when q = 2ρ
ρ+1 . Such critical exponent is consistent with q = 2ρ

2+α(ρ−1) , which is

given by the scaling computation in (1). In [4], one can find a presentation of (1) as a model to describe population

dynamics of biological species living on a territory represented by a domain Ω ⊂ RN , where deaths depend on the

predator’s density given by |∇u|q−1. On the other hand, when α = 1 and c1 = 0, (1) becomes the equation known

as the viscous Hamilton-Jacobi equation. Then, we call (1) with α ∈ (0, 1) and c1 = 0 by the fractional viscous

Hamilton-Jacobi equation. We refer the reader to [1] for a local theory in Lebesgue spaces.

An important feature brought by the combination of the power and gradient nonlinearities in (1)–(2) is that,

even for α = 1 (see [3]), the existence of solutions cannot be obtained exactly as in the case c2 = 0 on account of the

constraints produced by the linear estimates would form an empty set. Thus, we shall use the Gagliardo-Nirenberg

inequality to overcome this.

Now, define the Banach space Xβ of all Bochner integrable functions u : (0,∞) →W 1,r(RN ) such that tβu and

tβ+
α
2 ∇u are bounded continuous functions in Lr(RN ), for t > 0, whose norm is given by

∥u∥Xβ
= max

{
sup
t>0

∥tβu(t, ·)∥Lr , sup
t>0

∥tβ+α
2 ∇u(t, ·)∥Lr

}
, (3)

where 1 < p < r <∞ and β = αN
2

(
1
p −

1
r

)
.

By formally integrating and applying the Laplace and Fourier transforms in (1)-(2), we obtain

u(t, x) = Sα(t)u0(x) +

∫ t

0

Sα(t− s)c1|u(t, x)|ρ−1u(s, x)ds+

∫ t

0

Sα(t− s)c2|∇u(s, x)|qds, (4)
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where Sα(t)φ is the unique solution for

ut(t, x) =∂t

∫ t

0

gα(s)∆u(t− s, x)ds

u(0, x) =φ(x).

We can see that

Sα(t)φ =

∫ ∞

0

Φα(s)e
stα∆φds, (5)

for every distribution φ, where (et∆)t≥0 stands for the heat semigroup associated to the Laplacian. Here Φα denotes

the Mainardi function. It is known that (Sα(t))t≥0 is not a semigroup and this brings some new difficulties in the

analysis, comparing with [3].

The representation (4) motivates the following definition.

Definition 1.1. A continuous function u : (0,∞) → W 1,r(RN ) that satisfies (4) is called a mild solution of the

problem (1)–(2).

The parameters α,N, ρ, q, r,m, with m, r > 1, are assumed to satisfy

ρ > 1 + 2
1− α

α
, (H1)

1 < p < αr < αqp, (H2)

max

{
r,

ρNr

N + r
, ρ

}
< m < ρp. (H3)

Theorem 1.1 ([2]). Assume that (H1)–(H3) hold. If R > 0 satisfies C1R
ρ−1 + C2R

q−1 < 1, where C1 and C2

are positive constants, then it is possible to choose µ > 0 such that if ∥u0∥Lp ≤ µ, then there exists a unique global

solution u ∈ BXβ
(R) of the problem (1)-(2), which depends continuously on the initial data. In particular,

tβ+
α
2 ∥∇u(t, ·)∥Lr + tβ∥u(t, ·)∥Lr → 0, as t→ ∞. (6)
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Abstract

In this work, we extended the study of spectrum started in [4] for elliptic homogeneous differential operatators

with constant coefficients to the n dimensional case in the real scale of localized Sobolev Spaces. This is quite

different from what we find in the literature, where all the relevant results are concerned with spectrum on

Banach spaces.

Our aim is to understand the behavior of the spectrum using the closure of the operator. In particular we

show that there is no complex number in the resolvent set of such operators, which suggest a new way to define

spectrum if we want to reproduce the classical theorems of the Spectral Theory in Fréchet spaces.

1 Introduction

In this work we present a study of the closure of elliptic differential operator on an open set Ω ⊂ Rn given by

a(D) : Hs+m
0 (Ω) ⊂ Hs

loc(Ω) −→ Hs
loc(Ω), s ∈ R.

Here, the Sobolev space Hs
loc(Ω) is endowed with the topology generated by a family of seminorms

(
p
(s)
j

)
j∈N

given by p
(s)
j (f)

.
= ∥φjf∥Hs , for each f ∈ Hs

loc(Ω), where Ωj is sequence of open sets such that Ωj ⊂ Ωj+1, with

Ω =
⋃
j∈N Ωj , and φj ∈ C∞

c (Ωj+1) satisfies φj = 1 in Ωj . We denote Hs+m
0 (Ω) as the closure of C∞

c (Ω) in Hs+m(Ω)

with the induced topology from Hs+m
loc (Ω).

2 Main Results

2.1 Closure of a Differential Operator on a Fréchet Space

Here we determine the closure of an elliptic differential operator with constant coefficients a(D) of order m ≥ 1 on

Hs
loc(I). That will allow us to obtain an analysis of the spectrum.

Let Ω ⊂ Rn be an open set and s ∈ R. Given a function u ∈ Hs
loc(Ω), consider the natural extension

ue(x) =

{
u(x), ifx ∈ Ω

0, ifx ∈ Rn \ Ω.

Now let (Ωj)j∈N a sequence of open bounded sets with Ω =
⋃
j∈N Ωj , Ωj ⊂ Ωj+1 and d(Ωj ,Rn\Ω) ≥ 2/j. Consider

gj(x) = χΩj (x) ·ue(x), where χΩj is the characteristic function of Ωj , and uj = ϕj ⋆gj , where ϕj(x) = jnϕ(jx) with

ϕ ∈ C∞
c (B1(0)), ϕ ≥ 0 and

∫
Rn ϕ(x)dx = 1. Clearly gj ∈ Hs(Rn) and uj ∈ C∞

c (Ω).

Theorem 2.1. Let s ∈ R and u ∈ Hs
loc(Ω). For each j ∈ N the sequence uj

.
= ϕj ⋆ (χΩj

ue) ∈ C∞
c (Ω) converges to

u in Hs
loc(Ω).

Using the result above it’s possible to calculate the closure of an elliptic differential operator with constant

coefficients as follows.
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Theorem 2.2. Let a(D) : Hs+m
0 (Ω) ⊂ Hs

loc(Ω) → Hs
loc(Ω) be an elliptic differential operator with s ∈ R and

m ∈ N. Then its closure is given by

a(D) : Hs+m
loc (Ω) ⊂ Hs

loc(Ω) −→ Hs
loc(Ω)

with a(D) = a(D).

The main result in this paper is the following:

Theorem 2.3. Given s ∈ R and m ∈ N, consider a(D) : Hs+m
0 (Ω) ⊂ Hs

loc(Ω) → Hs
loc(Ω) an elliptic differential

operator with constant coefficients. Then we have

σ(a(D)) = σ
(
a(D)

)
= σp

(
a(D)

)
= C

and the spectrum does not depend of s.

2.2 Spectrum of the Laplace operator on a Fréchet Space

In this section we apply the results obtained in the previous section to the Laplacian operator.

Corollary 2.1. The Laplace operator, for each s ∈ R, seen as a pseudodiferencial operator ∆ : Hs+2
0 (Ω) ⊂

Hs
loc(Ω) −→ Hs

loc(Ω) and its closure ∆ : Hs+2
loc (Ω) ⊂ Hs

loc(Ω) −→ Hs
loc(Ω), both have resolvent set empty and their

spectra are the whole plane: σ(∆) = σ
(
∆
)
= σp

(
∆
)
= C.
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Abstract

1 Introduction

In this work we consider the initial value problem (IVP) for the inhomogeneous nonlinear Schrödinger (INLS)

equation i∂tu+∆u+ |x|−b|u|2σu = 0, x ∈ RN , t > 0,

u(0) = u0,
(1)

for N ≥ 3 and some b, σ > 0. This model is a generalization of the classical nonlinear Schrödinger (NLS) equation

and also has applications in laser beam propagation upon a nonlinear optical medium [4] and [6].

Over the last few years, the INLS equation has been the subject of a great deal of mathematical research. This

is part of a recently growing interest in the global dynamics of NLS type equations lacking the usual symmetries. In

the present case, the translation invariance is not present and there is a space-dependent singular coefficient in the

nonlinearity. Several results concerning well-posedness theory, existence and concentration of blow-up solutions,

stability of solitary waves and asymptotic behavior of global solutions have been recently obtained for the INLS.

We are mainly interested in the intercritical regime. To understand this terminology, we recall that if u(x, t)

solves (1) so does uλ(x, t) = λ
2−b
2σ u(λx, λ2t) and also ∥uλ(0)∥Ḣsc = ∥u0∥Ḣsc where sc = N

2 − 2−b
2σ . The mass-

supercritical and energy-subcritical regime is such that 0 < sc < 1 and we can reformulate this condition as

2− b

N
< σ <

2− b

N − 2
. (2)

Finite time solutions in H1 also enjoy other important properties. For instance, from the H1 local Cauchy

theory obtained by [5], if T ∗ <∞, then

∥∇u(t)∥L2 → ∞, as t→ T ∗. (3)

Moreover, the recent work by [1] proved that these solutions obey the lower bound

∥∇u(t)∥L2 ≥ c

(T ∗ − t)
1−sc

2

.

2 Main Results

In [2] and [3], we investigate the existence of solutions with a finite maximal time of existence, as well as the behavior

of the critical norm when the time nears the maximal time of existence. For the intercritical INLS equation, we

have obtained the following results.
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Theorem 2.1. Let N ≥ 3, 0 < b < min{N2 , 2} and 2−b
N < σ < min

{
2−b
N−2 ,

2
N

}
. Let u0 ∈ H1 and assume that

the maximal time of existence T ∗ > 0 for the corresponding solution u ∈ C([0, T ∗) : H1) of (1) is finite. Define

β = 2−σN
b , then there exists a universal constant C = C(u0, σ, b,N) > 0 such that the following space-time upper

bound holds ∫ T∗

t

(T ∗ − τ)∥∇u(τ)∥2L2 dτ ≤ C(T ∗ − t)
2β

1+β , (4)

for t close enough to T ∗.

Theorem 2.2. Let σc = 2Nσ
2−b such that Ḣsc ⊂ Lσc . Assume N ≥ 3, 0 < b < min{N2 , 2} and 2−b

N < σ <

min
{

2−b
N−2 ,

2
N

}
. Given u0 ∈ H1 so that the maximal time of existence T ∗ > 0 for the corresponding solution

u ∈ C([0, T ∗) : H1) of (1) is finite. Then there exist positive constants c0 and c1 depending only on N, σ and b

such that

lim inf
t→T∗

∫
|x|≤cu0

∥∇u(t)∥
− 2−σN

b
L2

|u(x, t)|σc dx ≥ c0, (5)

where cu0
= c1 max

{
∥u0∥L2 , ∥u0∥

2σ+2−σN
b

L2

}
.

Theorem 2.3. Let N ≥ 3, 0 < b < min{N2 , 2} and 2−b
N < σ < min

{
2−b
N−2 ,

2
N

}
. If u0 ∈ Ḣsc ∩ Ḣ1 and E(u0) ≤ 0,

then the maximal time of existence T ∗ > 0 of the corresponding solution u(t) to (1) is finite.

Theorem 2.4. Let σc = 2Nσ
2−b such that Ḣsc ⊂ Lσc . Assume N ≥ 3, 0 < b < min{N2 , 2} and 2−b

N < σ <

min
{

2−b
N−2 ,

2
N

}
. Given u0 ∈ Ḣsc ∩ Ḣ1 so that the maximal time of existence T ∗ > 0 of the corresponding solution

u to (1) is finite and satisfies

∥∇u(t)∥L2 ≥ c

(T ∗ − t)
1−sc

2

, (6)

for some constant c = c(N, σ) and t close enough to T ∗. Then there exists γ = γ(N, σ, b) > 0 such that

c∥u(t)∥Ḣsc ≥ ∥u(t)∥Lσc ≥ | log(T ∗ − t)|γ , as t→ T ∗. (7)
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Abstract

We introduce a new model of the logarithmic type of wave like plate equation with a non-local logarithmic

damping mechanism. We consider the Cauchy problem for this new model in Rn, and study the asymptotic

profile and optimal decay rates of solutions as t→ ∞ in L2-sense.

1 Introduction

We consider in this work a new model of evolution equations based on an operator Lθ, that combines the composition

of logarithm function with the Laplace operator as follows,

∂2t u+ (−∆)δ∂2t u+ (−∆)αu+ Lθ∂tu = 0, (t, x) ∈ ]0, ∞[ × Rn, (1)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn, (2)

where the linear operator

Lθ : D(Lθ) ⊊ L2(Rn) → L2(Rn), θ > 0,

is defined by

D(Lθ) :=

{
f ∈ L2(Rn) :

∫
Rn

(
log
(
1 + |ξ|2θ

))2 ∣∣f̂(ξ)∣∣2dξ < +∞
}
,

and for f ∈ D(Lθ),

Lθ f := F−1
ξ→x

[
log
(
1 +

∣∣ξ∣∣2θ) f̂(ξ)] iff F [Lθf ](ξ) = log
(
1 + |ξ|2θ

)
f̂(ξ).

Here, one has just denoted the Fourier transform Fx→ξ[f ](ξ) of f(x) as usual with i :=
√
−1, and F−1

ξ→x expresses

its inverse Fourier transform.

As for the existence of the unique solution to problem (1)–(2) we discuss, by employing the standard Lumer-

Phillips Theorem, similarly in the paper of Gómez & Charão (2021) [4].

We study the equation (1) only from the purely mathematical point of view. The model equation itself is

strongly inspired from the related paper due to Dharmawardane et. al. (2012) [2].

In order to introduce our main results we should define function spaces with respect to the logarithmic Laplace

operator L such that for δ ≥ 0

Y δ =

{
f ∈ L2(Rn) :

∫
Rn

ξ

(
1 + log

(
1 + |ξ|2

))δ |f̂(ξ)|2 dξ <∞

}
with its natural norm

∥f∥Y δ :=

( ∫
Rn

ξ

(
1 + log

(
1 + |ξ|2

))δ ∣∣f̂(ξ)∣∣2 dξ)1/2

for all f ∈ Y δ, (3)

and its corresponding inner product.
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Remark 1.1. Due to the fact that log
(
1 + |ξ|2

)
≤ |ξ|2 for all ξ ∈ Rn, one notices

Hδ(Rn) ⊊ Y δ ⊊ L2(Rn) for δ ≥ 0.

Furthermore, we set

I0, l :=
√
∥u0∥21, 1 + ∥u1∥21, 1 + ∥u0∥2Y l+1 + ∥u1∥2Y l , l ≥ 0 and Pj :=

∫
Rn

uj(x) dx, j = 0, 1.

2 Main Results

Theorem 2.1. Let n ≥ 4 and l = n
2 − 1. If (u0, u1) ∈

(
L1, 1(Rn) ∩ Y l+1

)
×
(
L1, 1(Rn) ∩ Y l

)
, then there exists a

constant C > 0, which is independent of t, u0, u1 such that the weak solution u(t, x) to problem (1)–(2) satisfies∥∥∥u(t, ·)−F−1
ξ→x[φ(t, ξ)] (·)

∥∥∥
2
≤ C I20, l t

−n+2
4

for t≫ 1, where

φ(t, ξ) := φ1(t, ξ) + φ2(t, ξ).

Remark 2.1. In Theorems above one has assumed l ≥ 1 because in this case the problem (1)–(2) has a unique

weak solution in the class

u ∈ C
(
[0, +∞[ ; Y 2

)
∩ C1

(
[0,+∞[ ; Y 1

)
∩ C2

(
[0, +∞[ ; L2(Rn)

)
.

Remark 2.2. The value l∗(n) defined by l∗(n) := n
2 −1 expresses a kind of critical number on the regularity l ≥ 1,

which divides the property of the solution u(t, x) into three types: one is diffusive-like, the other is wave-like and

the remaining is both of them (Theorem 2.1).
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UFAL - Universidade Federal de Alagoas
XVI ENAMA - Novembro 2023 119–120

STRONG SINGULAR PROBLEM IN NONREFLEXIVE FRACTIONAL ORLICZ-SOBOLEV SPACE

MARCOS L. M. CARVALHO1, LUANA DE C. MACIEL1, CARLOS A. P. SANTOS2 & MAXWELL L. SILVA1
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Abstract

In this work, we deal with existence and uniqueness of positive solution u for the strongly singular quasilinear

problem (−∆Φ)
su = u−γ in the nonreflexive fractional Orlicz-Sobolev W s

locL
Φ(Ω) for 0 < s < 1 < γ. The main

difficulties encountered were the lack of homogeneity of the fractional Φ-Laplacian operator, the lack of reflexivity

of the natural workspaces and the presence of the strongly singular term. To overcome these difficulties we applied

Galerkin’s method to a truncated problem and we proved a new comparison principle even for the p-Laplacian

operator.

1 Introduction

In this work, let us prove existence and uniqueness of weak solutions for the following class of strongly singular

problems (γ > 1)

(−∆Φ)
su = u−γ , in Ω, u > 0, in Ω, u = 0 in RN \ Ω, (1)

where Ω ⊂ RN is a bounded domain with Lipschitz boundary, N ≥ 1, h ∈ L1(Ω) is a non-negative function, γ > 1.

Moreover,

(−∆Φ)
su(x) = (1− s) lim

ε→0

∫
RN\Bε(0)

ϕ

(
|u(x)− u(y)|

|x− y|s

)
u(x)− u(y)

|x− y|s
dy

|x− y|N
,

with ϕ : (0,∞) −→ (0,∞) is of class C1 and satisfies:

(ϕ1) (i) tϕ(t) −→ 0, when t→ 0 and (ii) tϕ(t) −→ +∞ when t→ +∞;

(ϕ2) tϕ(t) is strictly increasing in (0,∞);

(ϕ3) there exist ℓ, m ∈ [1,∞) such that 1 ≤ ℓ := inf
t≥0

t2ϕ(t)

Φ(t)
≤ sup

t≥0

t2ϕ(t)

Φ(t)
=: m <∞.

2 Main Results

In our main result, we shall use the auxiliary convex function

Γ(t) =

∫ t

0

Φ−1(τγ−1)dτ, t ≥ 0.

Definition 2.1. A positive function u ∈ W s
locL

Φ(Ω) is a weak solution for Problem (1) if Γ(u) ∈ W s
0L

Φ(Ω),

h(x)u−γ ∈ L1
loc(Ω) and ∫∫

RN×RN

ϕ(|Dsu|)DsuDsvdµ =

∫
Ω

h(x)u−γdx, ∀v ∈ C∞
c (Ω).
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Definition 2.2. Let u be such that u = 0 in RN\Ω. We say that u ≤ 0 in ∂Ω if for all ϵ > 0 we have

(u− ϵ)+ ∈W s
0L

Φ(Ω). We say that u = 0 in ∂Ω if u is non-negative and u ≤ 0 in ∂Ω.

Definition 2.3. We say that u has zero Dirichlet boundary if u = 0 in the sense of Definition 2.2.

Theorem 2.1. Assume that (ϕ1) − (ϕ3), h ∈ L1(Ω), h ≥ 0 and γ > 1 hold. Then, there is a unique solution

u ∈W s
locL

Φ(Ω) of the Problem (1), that is,∫∫
RN×RN

ϕ(|Dsu|)DsuDsvdµ =

∫
Ω

h(x)u−γvdx, ∀v ∈ C∞
c (Ω).

Moreover, u ≥ Cd a.e. in Ω for some C > 0 and u satisfies the zero Dirichlet boundary condition.
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Abstract

We obtain a Boundary Point Hopf Lemma and a Boundary Weak Harnack Inequality for a nonnegative

supersolution of a general uniform elliptic equation in divergence form under the weakest assumptions on the

leading coefficients and on the boundary of the domain. Our main tool is the use of suitable barrier functions,

which are solutions of auxiliaries problems. Furthermore, we provide an application showing how to use these

results in order to deduce a priori upper bounds and multiplicity of solutions for a class of quasilinear elliptic

problems.

1 Introduction

We prove the extension of the interior weak Harnack inequality up to the boundary for a general divergence-

type elliptic equation under strongly weakened assumptions. More specifically, we consider nonnegative weak

supersolutions of the problem

Lu = f(x), x ∈ Ω, (1)

for operator L given by

Lu := −div(A(x)Du) + b(x) ·Du+ c(x)u, x ∈ Ω, (2)

where Ω ⊂ Rn, for n ≥ 2, is a bounded domain satisfying the interior C1,D-paraboloid condition. Moreover,

operator L is uniformly elliptic and A(x) = (ai,j(x)) a symmetric matrix, satisfying

ai,j ∈ C0,D(Ω) for all i, j = 1, ..., n and ϑIn ≤ A(x) ≤ ϑ−1In in Ω, (3)

for some ϑ > 0, where In : Rn → Rn is the identity operator. In addition, for the low order coefficients we require

|b| ∈ Lq(Ω), c ∈ Lq(Ω) and c ≥ 0 in Ω, (4)

and assume also f ∈ Lq(Ω) for some q > n.

Inspired by [3, 4], we seek to show that the well known interior weak Harnack inequality has a boundary

extension, in terms of the distance to the boundary d, called Boundary Weak Harnack Inequality, given by

inf
Ω

u

d
≥ C

(∫
Ω

(u
d

)ε) 1
ε

− C||f ||Lq(Ω), for some ε > 0. (5)

Such result is an important tool for the regularity theory, it is applied, for instance, to establish uniform a priori

bounds, as well to obtain multiplicity of solution, as we exemplify in the last section of this work.

Our main interest is to extend the interior weak Harnack inequality, introduced by de Giorgi, up to the boundary

for divergence-type equations with low regularity on the coefficients and on the domain. However, this estimate is

deeply related to the Boundary Point Hopf Lemma, hence, it is also necessary to keep this result in mind and make
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a parallel between them. In fact, the Boundary Weak Harnack Inequality (5) is a quantification of the Boundary

Point Hopf Lemma, since for the homogeneous equation, the Boundary Weak Harnack Inequality is given by

inf
Ω

u

d
≥ C

(∫
Ω

(u
d

)ε) 1
ε

, (6)

which, passing to the limit, clearly implies the result of the Boundary Point Hopf Lemma. Furthermore, the

expression (5) quantify how the loss of superharmonicity, by a non null function f , preserves the integrability of

u/d, but rectifies the boundary point Hopf estimate with a Lq-norm of f .

2 Main Results

We prove a Hopf Lemma based on [1, 2]. We consider the full operator L as in [2], however we are under more

general assumptions on the leading coefficients. Hence, we apply similar arguments to [1], although we need to

perform one step more. Indeed, we apply a fixed point theorem to ensure the existence of a solution ṽ to the

homogeneous problem with the full operator L, namely, when c ̸≡ 0 and subsequently we estimate Du making a

comparison between it and such a solution Dṽ. We highlight our particular interest in proving this Boundary Hopf

Point Lemma, since it allows to generalize several other results to our setting.

Lemma 2.1 (Boundary Point Hopf Lemma). Let u ∈ C1(Ω) be a weak supersolution of (PΦ), where Ω ⊂ Rn is a

bounded domain with the boundary ∂Ω satisfying the interior C1,D-paraboloid condition, L be a uniformly elliptic

operator given by (2) satisfying (3)-(4), for some q > n and also f ≡ 0. Suppose that u attends its minimum at

a point x0 ∈ ∂Ω with u(x0) ≤ 0, if under a C1,D-regular change of variables there exists a ball B ⊂ Ω such that

x0 ∈ ∂B and u(x) > u(x0) for all x ∈ B, then
∂u

∂η
(x0) < 0, where η is the outward normal on ∂Ω.

In what follows, we enunciate our main result, the global version of the weak Harnack inequality. Namely, the

statement for an arbitrary Ω ⊂ RN , whose proof follows as a consequence of the C1,D-regularity required on the

domain and version for cubes.

Theorem 2.1 (Boundary Weak Harnack Inequality). Let Ω ⊂ Rn, for n ≥ 2, be a bounded domain. Assume that

u is a nonnegative weak supersolution of problem (PΦ) in Ω, where Ω and L are under the hypotheses of Lemma

2.1 and f ∈ Lq(Ω) is non-positive in Ω. Then for any x0 ∈ ∂Ω there exist constants R > 0, ε > 0 and C > 0 such

that for all R ∈ (0, R],

inf
BR(x0)∩Ω

u(x)

d(x)
≥ C

(∫
BR(x0)∩Ω

(
u(x)

d(x)

)ε
dx

) 1
ε

− C||f ||Lq(Ω).
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Abstract

In this work we will be concerned with the problem

−∆u− 1

2
∆(a(x)u2)u+ V (x)u = f(u), x ∈ R2,

where V is a potential continuous and f : R → R is a superlinear continuous function with exponential subcritical

or exponential critical growth. We use as a main tool the Nehari manifold method in order to show existence

of nonnegative solutions and existence of nodal solutions. Our results complement the classical results due to

Jia-quan Liu, Ya-qi Wang and Zhi-Qiang Wang in [2].

1 Introduction

In this work we prove existence of nonnegative and nodal solutions for the following class of quasilinear problems with

nonlinearities involving a superlinear continuous function with exponential growth and V is a potential continuous.

More precisely, we consider

−∆u− 1

2
∆(a(x)u2)u+ V (x)u = f(u), x ∈ R2. (1)

Under the following nonlinearities hypotheses on the functions a, V and f are the following:

(a0) a ∈ C(R2,R) and there exist 0 < a0, a1 such that a0 < a(x) < a1, for all x ∈ R2;

(V0) V ∈ C(R2,R);

(V1) 0 < V0 ≤ inf
x∈R2

V (x);

(V2) for all M > 0, there holds measure({x ∈ R2 : V (x) ≤M}) <∞;

(f1) consider f : R → R is of class C0 and there exists α0 ≥ 0 such that the function f(t) satisfies

lim
|t|→∞

f(t)

exp(α|t|2)
= 0 for α > α0 and lim

|t|→∞

f(t)

exp(α|t|2)
= ∞ for α < α0;

(f2) the following limit holds: lim
|t|→0

f(t)

t3
= 0;

(f3) the function t→ f(t)

|t|3
is increasing in R \ {0};
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(f4) there are r > 4 and τ > τ∗ such that sgn(t)f(t) ≥ τ |t|r−1, for all t ≥ 0, where

τ > τ∗ := max

{
1,

(
4α0

π
cr
r − 2

r − 4

)(r−2)/2
}
,

where cr will be defined throughout the proof of results.

The class of problems (1) has been extensively studied during the last years via variational methods. The

main technique used is change of variable. For example, the authors in [3] used a dual approach to reduce the

quasilinear equation to a semilinear one and used an Orlicz space framework. The same method was used in

[1], where the normal Sobolev space was used as the working space. Since in our problem there is a function

a(x), the change of variable used in [1] or [3] cannot be considered here. Then, it is necessary to work directly

on the associate functional in spite of its lack of smoothness. To the best of our knowledge, the first existence

result involving variational methods was obtained in [4]. In that paper the authors apply variational techniques to

prove the existence of standing wave solutions for quasilinear Schrödinger equations containing strongly singular

nonlinearities which include derivatives of the second order. Another pioneering work in sense is [2], in this paper

the authors consider the existence of both one sign and nodal ground states of soliton type solutions for problem

(1). Under certain conditions on the potential function V (x), the authors show that the problem has at least one

weak positive solution as well as one sign-changing solution with exactly two nodal domains, respectively. The

problem was treated, for both the positive solution and the sign-changing solution, by a more unified approach,

that is the Nehari method.

2 Main Results

Theorem 2.1. Assume that a satisfies (a0), V satisfies (V0) − (V2), f satisfies (f1) with α0 = 0 and (f2) − (f3)

and f(t) = 0, for t ≤ 0 hold. Then, problem (1) has a nonnegative solution with minimal energy.

Theorem 2.2. Suppose that a satisfies (a0), V satisfies (V0)− (V2), f satisfies (f1) with α0 = 0 and (f2)− (f3).

Then problem (1) possesses a least energy nodal solution, which has precisely two nodal domains.
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Abstract

In this work we study the following class of linearly coupled systems in the plane:−∆u+ u = f1(u) + λv, in R2,

−∆v + v = f2(v) + λu, in R2,
(1)

where f1, f2 are continuous functions with critical exponential growth in the sense of Trudinger-Moser inequality

and 0 < λ < 1 is a parameter. For any λ ∈ (0, 1), by using minimization arguments and minimax estimates we

prove the existence of a positive ground state solution. This class of systems can model phenomena in nonlinear

optics and in plasma physics.

1 Introduction

Due to its broad field of applications in several physical situations such as in nonlinear optics, in double Bose–

Einstein condensates, in plasma physics, among others (see for instance [1] and reference therein), the class of

linearly coupled systems −∆u+ u = f1(u) + λv, in RN ,

−∆v + v = f2(v) + λu, in RN ,
(2)

(N ≥ 2) has been considered under many different assumptions. Our goal here is to extend the study of System

(2) to the critical case in the plane, that is, we are concerned with System (1), when the nonlinearities f1 and f2

have critical exponential growth in the sense of Trudinger–Moser inequality. Inspired by [2, 3, 4, 5], we study the

following minimization problem:

Aλ = inf
(u,v)∈E\{(0,0)}

{
1

2

∫
R2

(|∇u|2 + |∇v|2) dx ;

∫
R2

Gλ(u, v) dx = 0

}
, (3)

where

Gλ(u, v) = F1(u) + F2(v)−
u2

2
− v2

2
+ λuv, Fi(s) :=

∫ s

0

fi(τ) dτ, i = 1, 2, (4)

λ ∈ (0, 1) and the space E := H1
rad(R2)×H1

rad(R2) is endowed with the inner product

⟨(u, v), (w, z)⟩ =
∫
R2

(∇u∇w + uw +∇v∇z + vz) dx

and its correspondent norm ∥(u, v)∥ =
√

⟨(u, v), (u, v)⟩. The minimization problem (3) is related to the existence

of ground states for System (1). We suppose that f1, f2 belongs to C(R,R) and satisfy the following assumptions1:

1Hereafter, for the sake of simplicity, the index “i” is understood as i = 1, 2.
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(H1) lim
s→0+

fi(s)

s
= 0;

(H2) lim
s→+∞

fi(s)

eαs2
= 0, if α > 4π and lim

s→+∞

fi(s)

eαs2
= +∞, if α < 4π;

(H3) fi(s)s− 2Fi(s) ≥ 0, for all s ≥ 0;

(H4) There exists θ > 0 such that lim inf
s→+∞

F1(s)

sθe4πs2
=: β0 > 0.

2 Main Results

Associated to System (1), we have the energy functional Iλ : E → R defined by

Iλ(u, v) =
1

2
∥(u, v)∥2 −

∫
R2

[F1(u) + F2(v)] dx− λ

∫
R2

uv dx.

Under our conditions, we may check that Iλ is well defined. Moreover, one can see that Iλ ∈ C1(E,R). We say

that (u, v) ∈ E is a weak solution of System (1) if the equality

⟨(u, v), (w, z)⟩ =
∫
R2

[f1(u)w + f2(v)z] dx+ λ

∫
R2

(uz + vw) dx,

holds for all (w, z) ∈ C∞
0 (R2) × C∞

0 (R2). Thus, after applying the Palais Symmetric Criticality Principle, critical

points of Iλ are weak solutions of System (1). A pair (u, v) is said to be a nonnegative (positive) solution for (1)

when u(x), v(x) ≥ 0 (u(x), v(x) > 0) for all x ∈ R2. We recall that (u, v) ∈ E\{(0, 0)} is said to be a ground state

(least energy) solution for System (1), if (u, v) is a solution of (1) and its energy is the lowest among all nontrivial

solutions of (1), i.e. Iλ(u, v) ≤ Iλ(w, z) for any other nontrivial solution (w, z) ∈ E.

The main results of this work are stated as follows:

Proposition 2.1. If λ ∈ (0, 1) and (H1)− (H4) are satisfied, then the infimum Aλ is attained.

Theorem 2.1. If λ ∈ (0, 1) and (H1)− (H4) are satisfied, then System (1) has a positive ground state solution.

Although there are some papers concerned with the existence of ground states for linearly coupled systems in

the plane, not much has been done considering weaker conditions. Our work extends the results from [2, 3, 4] since

we are considering a system of equations that are coupled by a linear term. It is important to say the we are not

considering usual assumptions such as the well known Ambrosetti–Rabinowitz condition and the monotonicity of

f(s)/s.
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Abstract

In this research, we show the existence of solutions in a generalized sense for a competing (p(x), q(x))-

Kirchhoff type variational inequality. The deficit of ellipticity, monotonicity and variational structure prevents

the use of any known variational method. We obtain the existence of this solutions by means of the penalty

method and Galerkin’s approximation, working in the context of the variable exponent Lebesgue-Sobolev spaces.

1 Introduction

The purpose of this work is to investigate the existence of weak solutions for the following variational elliptic

inequality of Kirchhoff type

−M
(∫

Ω

1

p(x)
|∇u|p(x) dx

)
div(|∇u|p(x)−2∇u) +M

(∫
Ω

1

q(x)
|∇u|q(x) dx

)
div(|∇u|q(x)−2∇u) ≥ f(x, u,∇u) in Ω,

u = 0 on ∂Ω, (1)

where Ω is a bounded domain in RN with a smooth boundary ∂Ω, and N ≥ 1, p, q ∈ C+(Ω) = {h : h ∈ C(Ω), h(x) >

1 for any x ∈ Ω}; M,f are given fucntions and

1 < p− := min
Ω
p(x) ≤ p+ := max

Ω
p(x) < N for every p ∈ C+(Ω).

In recent years, many results have been obtained on problems related with (1). In [3], with M(t) = 1, p(x) =

p, q(x) = q, 1 < q < p < +∞, the author investigated the existence of both a generalized solution and of a strong

generalized solution; similar approach is presented in [4]. Variational inequalities as the development and extension

of classic variational problems, are a very useful tool to research PDEs, optimal control, physics, mechanics,

engineering and elliptic inequalities. In [5, 1, 2], the authors studied variational inequalities of Kirchhoff type

but without convection term and just one operator. We can not apply directly variational methods for problem

(1), so to overcome this difficulty, we will employ the penalty method and Galerkin’s approximation.

2 Assumptions and Main Result

We will work in the well-known generalized Lebesgue space Lp(x)(Ω) and the Sobolev space W
1,p(x)
0 (Ω).

We will assume

(A0) M : [0,+∞[→ [m0,+∞[ is a continuous and increasing function; m0 > 0.

(F0) f : Ω × R × RN → R satisfy the Carathéodory condition in the sense that f(., u, ξ) is measurable for all

(u, ξ) ∈ R× RN and f(x, ., .) is continuous for almost all x ∈ Ω.
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(F1) |f(x, u, ξ)| ≤ k(x) + |u|η(x) + |ξ|δ(x) a.e. x ∈ Ω, all (u, ξ) ∈ R× RN ,where
k : R → R+, k ∈ Lp

′(x)(Ω) and 0 ≤ η(x) < p(x)− 1, 0 ≤ δ(x) < (p(x)− 1)/p′(x).

(F2) There exist constant 0 < C0 < 1 and 1 < α(x) ≤ p− such that

f(x, s, ξ)s ≤ C0|ξ|p(x) + C1

(
|s|α(x) + 1

)
for a.e. x ∈ Ω, all s ∈ R, ξ ∈ RN .

Introducing previously the notion of generalized solution to problem (1), we present our main result.

Theorem 2.1. Suppose (A0), (F0) - (F2) hold. Then problem (1) has a generalized solution u ∈W
1,p(x)
0 (Ω).

Proof We use the penalty method combined with the Galerkin approximation procedure to get such a solution.

□
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Abstract

This paper is mainly concerned with the existence of extremals for the Adams inequality. We first establish an

upper bound for the classical Adams functional along of all concentrated sequences in the higher order Sobolev

space with homogeneous Navier boundary conditions W
m, n

m
N (Ω), which in particular includes the classical

Sobolev space W
m, n

m
0 (Ω), where Ω is a smooth bounded domain in Euclidean n-space. Secondly, based on

the Concentration-compactness alternative due to Do Ó and Macedo, we prove the existence of extremals for the

Adams inequality under Navier boundary conditions for second order derivatives at least for higher dimensions

when Ω is an Euclidean ball.

1 Introduction

Let Ω be a smooth domain in Rn, n ≥ 2, with n-measure |Ω| <∞, and W
m, nm
0 (Ω) be the completion of C∞

0 (Ω) in

Wm, nm (Ω), for positive integer m < n. Given u ∈ C∞
0 (Ω) we will denote

∇mu =

{
∆m/2u, if m is even

∇∆(m−1)/2u, if m is odd.

Adams in [1] proved that

sup

u∈W
m, n

m
0 (Ω),

∥∇mu∥ n
m

≤1

∫
Ω

eβ|u|
n

n−m
dx <∞, if and only if β ≤ β0, (1)

where

β0 = β0(m,n) =


n

ωn−1

[
π

n
2 2mΓ(m+1

2 )
Γ(n−m+1

2 )

]n/(n−m)

, if m is odd,

n
ωn−1

[
π

n
2 2mΓ(m

2 )
Γ(n−m

2 )

]n/(n−m)

, if m is even,

(2)

in which Γ(x) =
∫ 1

0
(− ln t)x−1 dt, x > 0 is the gamma Euler function and ωn−1 is the area of the surface of the unit

n-ball.

Tarsi [3] extends (1) to functions with homogeneous Navier boundary conditions. More precisely, it was proved

that

sup

u∈W
m, n

m
N (Ω),

∥∇mu∥ n
m

≤1

∫
Ω

eβ|u|
n

n−m
dx <∞, if and only if β ≤ β0, (3)

where

W
m, nm
N (Ω) := {u ∈Wm, nm (Ω) : u|∂Ω

= ∆ju|∂Ω
= 0 in the sense of trace, 1 ≤ j < m/2}.

We are interested in finding extremal function for the Adams Inequality. In this direction we provide the following

estimate for Adams functional along of all concentrated sequences:
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Theorem 1.1. Let m, n be positive integers, n ≥ 2 and n > m, and Ω be a smooth bounded domain in Rn. Let

(ui) ⊂W
m, nm
N (Ω), with ∥∇mui∥ n

m
= 1 be a sequence concentrating at x0 ∈ Ω, i.e.,

lim
i→∞

∫
Ω\Br(x0)

|∇mui|
n
m dx = 0, for any r > 0.

Then

lim sup
i

∫
Ω

eβ0|ui|
n

n−m
dx ≤ |Ω|

(
1 + eψ(

n
m )+γ

)
,

where γ = limn→∞

(∑n
j=1(1/j)− lnn

)
is the Euler-Mascheroni constant and ψ(x) = d

dx (ln Γ(x)) is the classical

Psi-function.

Since W
m, nm
0 (Ω) is a subspace of W

m, nm
N (Ω), as a direct consequence of the Theorem 2.1, we can highlight the

following:

Corollary 1.1. For γ and ψ as in Theorem 2.1, we have

lim sup
i

∫
Ω

eβ0|ui|
n

n−m
dx ≤ |Ω|

(
1 + eψ(

n
m )+γ

)
, (4)

for any (ui) ⊂W
m, nm
0 (Ω) under the same hypotheses of Theorem 2.1.

Although Corollary 1.1 is an easy consequence of Theorem 2.1 it is new and has merit itself. Indeed, from the

Concentration-Compactness alternative [2, Theorem 1], in order to ensure the existence of extremal functions for

the classical Adams inequality (1), it is now sufficient to show that there are test functions u ∈ W
m,n/m
0 (Ω) such

that

∥∇mu∥ n
m

= 1 and

∫
Ω

eβ0|u|
n

n−m
dx > |Ω|

(
1 + eψ(

n
m )+γ

)
.

With this approach, we state

Theorem 1.2. Let BR be the unit ball with radius R > 0 centered at 0 ∈ Rn. Then, there exists u0 ∈ W
2,n2
N (BR),

with ∥∆u0∥n
2
≤ 1 such that

Cβ0
(BR) = sup

u∈W
2, n

2
N (BR)

∥∆u∥n
2

≤1

∫
BR

eβ0|u|
n

n−2
dx =

∫
BR

eβ0|u0|
n

n−2
dx (5)

provided that n ≥ 2T0, where T0 is the smallest positive integer such that

T0 ≥ 1 +
1 + 36σ

17− 24γ
+

[
1 +

(
1 + 36σ

17− 24γ

)2

+
72σ

17− 24γ

] 1
2

≈ 51.9233

where σ = 1 + 2/
√
3 and γ is the Euler-Mascheroni constant.
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Abstract

We prove that the uniqueness results obtained in [1] for the Benjamin equation, cannot be extended for any

pair of non-vanishing solutions. On the other hand, we study uniqueness results of solutions of the Benjamin

equation. With this purpose, we showed that for any solutions u and v defined in R × [0, T ], if there exists an

open set I ⊂ R such that u(·, 0) and v(·, 0) agree in I, ∂tu(·, 0) and ∂tv(·, 0) agree in I, then u ≡ v. A better

version of this uniqueness result is also established. To finish, this type of uniqueness results were also proved

for the nonlocal perturbation of the Benjamin-Ono equation (npBO).

1 Introduction

In this work, we study the initial-value problem (IVP) concerning the Benjamin equationut +H∂2xu+ ∂3xu+ uux = 0, x, t ∈ R

u(x, 0) = ϕ(x),
(1)

where u = u(t, x) is a real-valued function and H stands for the Hilbert transform defined as

Hf(x) = 1

π
lim
ϵ↓0

∫
|y|≥ϵ

f(x− y)

y
dy

= −i(sgn(ξ)f̂(ξ))∨(x).

The integral-differential equation (1) is a mathematical model to describe a class of the intermediate waves in

the stratified fluid. It was deduced by Benjamin [2], to study gravity-capillary surface waves of solitary type on

deep water.

We also studied the IVP for a nonlocal perturbation of the Benjamin Ono equation (npBO)ut +Huxx + µ(Hux +Huxxx) + uux = 0, t > 0, x ∈ R,

u(x, 0) = ϕ(x),
(2)

where µ > 0. See [3].

Here, to obtain our results, we use techniques present in [4], [5], [6] and [7].

2 Main Results

Theorem 2.1. Let u and v solutions of the IVP (1) with initial data ϕ and φ, respectively. Suppose that ϕ, φ ∈ Z9,4

satisfies ϕ ̸= φ,

∥ϕ∥ = ∥φ∥, (3)∫
ϕ(x)dx =

∫
φ(x)dx (4)
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and ∫
xϕ(x)dx =

∫
xφ(x)dx. (5)

Then u ̸= v and for all T > 0

u− v ∈ L∞([−T, T ];Z9−,4). (6)

In the next result, we show a better version of the Theorem 2.1 for the more low regularity s ≥ 2r.

Theorem 2.2. Let θ ∈ (0, 1/2) and u, v solutions of the IVP (1) with initial data ϕ and φ, respectively. Suppose

that ϕ, φ ∈ Z8+2θ,4+θ satisfies ϕ ̸= φ, (3), (4) and (5), above.

Then u ̸= v and for all T > 0

u− v ∈ L∞([−T, T ];Z8+2θ,4+θ). (7)

Theorem 2.3. Let u and v be real solutions of the IVP (1) (or IVP (2)) such that

u, v ∈ C([0, T ];Hs(R)) ∩ C1((0, T );Hs−3(R)), s > 7/2. (8)

If there exist an open set I ⊂ R such that

u(x, 0) = v(x, 0) and ∂tu(x, 0) = ∂tv(x, 0), for all x ∈ I, (9)

then

u ≡ v. (10)

In particular, if u ≡ 0 in I × {0} and ∂tu(x, 0) = 0, ∀x ∈ I, then

u ≡ 0. (11)
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Instituto de Ciências Matemáticas e de Computação, USP - São Carlos, SP, Brazil2,

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, China3,
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Abstract

The aim of this talk is to find an upper bound for the fractal dimension of uniform attractors in Banach

spaces. The main technique is essentially based on a compact embedding of some auxiliary Banach space into the

phase space and a corresponding smoothing effect between these spaces. Our bounds on the fractal dimension

of uniform attractors are given in terms of the dimension of the symbol space and the Kolmogorov entropy

number of the embedding. A dynamical analysis on the symbol space is also given, showing that the finite-

dimensionality of the hull of a time-dependent function is fully determined by the tails of the function, which

allows us to consider more general non-autonomous terms than quasi-periodic functions. As application, we show

that the uniform attractor of a reaction-diffusion equation is finite-dimensional in L2 and in Lp, with p > 2.

1 Introduction

Let (Ξ, dΞ) be a complete metric space and let {θs}s∈R be a group of continuous operators acting on Ξ, i.e., θ0σ = σ

and θt(θsσ) = θt+sσ for all σ ∈ Ξ, t, s ∈ R, and for each s ∈ R, θs : Ξ → Ξ is a continuous map in Ξ. Let Σ ⊆ Ξ be

a compact subset of Ξ which is invariant under {θs}s∈R, that is, θsΣ = Σ for all s ∈ R.
Considering evolution processes {Uσ(t, s)}σ∈Σ (i.e., for each σ ∈ Σ the two-parameter family {Uσ(t, s) : t ≥ s}

in a Banach space X satisfies U(s, s) = IdX and U(t, τ)U(τ, s) = U(t, s) for all t, τ, s ∈ R with t ≥ τ ≥ s) it will be

called a system if the translation-identity is satisfied:

Uθhσ(t, s) = Uσ(t+ h, s+ h), ∀σ ∈ Σ, t ⩾ s, h ∈ R.

Definition 1.1. A compact set AΣ ⊂ X is the uniform (w.r.t. σ ∈ Σ) attractor of a system {Uσ(t, s)}σ∈Σ if

(i) AΣ is uniformly attracting, i.e., for any bounded set E ⊂ X it holds

lim
t→∞

[
sup
σ∈Σ

distX
(
Uσ(t, 0)E,AΣ

)]
= 0,

where for non-empty sets A,B ⊂ X we denote the Hausdorff semi-distance distX(A,B) := sup
a∈A

inf
b∈B

∥a− b∥X .

(ii) (Minimality) If A′
Σ ⊂ X is a closed uniformly attracting set, then AΣ ⊂ A′

Σ.

2 Main Results

In this section we give our main results on the dimensionality of uniform attractors. Let us start with the definition

of fractal dimension.
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Definition 2.1. Let A be a non-empty precompact subset of X. The fractal dimension of A in X is defined as

dimF (A;X) := lim sup
ε→0+

lnNX [A; ε]

− ln ε
,

where NX [A; ε] denotes the minimum number of open ε-balls in X that are necessary to cover A.

Now we give a criterion for the uniform attractor AΣ of {Uσ(t, s)}σ∈Σ to be finite-dimensional. The main idea

is an (X,Y )-smoothing property combined with assumptions on the dimension of the symbol space. Let B ⊂ X be

a closed bounded uniformly absorbing set of {Uσ(t, s)}σ∈Σ (it has necessarily to satisfy AΣ ⊆ B) and suppose that:

(H1) The symbol space Σ has finite fractal dimension in space Ξ, i.e., dimF (Σ; Ξ) <∞.

(H2) {Uσ(t, s)}σ∈Σ is uniformly (X,Y )-smoothing on the absorbing set B, i.e., there is an auxiliary Banach space

Y compactly embedded in the Banach space X and for any t > 0 there exists a κ(t) > 0 such that

sup
σ∈Σ

∥Uσ(t, 0)u− Uσ(t, 0)v∥Y ⩽ κ(t)∥u− v∥X , ∀u, v ∈ B.

(H3) {Uσ(t, s)}σ∈Σ is (Σ×X,X)-continuous. Moreover, {Uσ(t, s)}σ∈Σ is (Σ, X)-Lipschitz within B, i.e.,

∥Uσ1
(t, 0)u− Uσ2

(t, 0)u∥X ⩽ L(t)dΞ(σ1, σ2), ∀t ≥ 1, σ1, σ2 ∈ Σ, u ∈ B,

where 1 ≤ L(t) ≤ c1e
βt for some positive constants c1, β > 0 for t ≥ 1.

Theorem 2.1. Let {Uσ(t, s)}σ∈Σ be a system in X with uniform attractor AΣ. If conditions (H1) - (H3) hold,

then the uniform attractor AΣ has finite fractal dimension in X with

dimF

(
AΣ;X

)
⩽ lnNX

[
BY (0, 1); 1/(2eκ)

]
+ (β + 1) dimF

(
Σ;Ξ

)
,

for some κ = κ(TB) depending on B with TB ≥ 1 an absorption time after which B uniformly absorbs itself.

About the symbol space we also provide the following result in order to construct finite-dimensional examples.

Theorem 2.2. Let M be a complete metric space and g+, g− ∈ Ξ = C(R;M) with finite-dimensional hulls H(g+)

and H(g−) in Ξ, respectively, where H(ξ) = {ξ(·+ s) : s ∈ R}
Ξ
for ξ ∈ Ξ. Suppose that g ∈ Ξ is Lipschitz continuous

from R to M and that g converges forwards to g+ and backwards to g− eventually exponentially. Then the hull

H(g) of g is compact and finite-dimensional in Ξ with

dimF

(
H(g); Ξ

)
≤ max

{
1, dimF

(
H(g+); Ξ

)
, dimF

(
H(g−); Ξ

)}
.

As an application of our theoretical results we investigate the reaction-diffusion equationvt + λv −∆v = f(v) + σ(x, t),

v(x, t)|t=τ = vτ (x), v(x, t)|∂O = 0, x ∈ O, t ≥ τ,
(1)

where O ⊂ RN , N ∈ N, is a bounded smooth domain and λ > 0. The nonlinearity f(·) ∈ C1(R;R) satisfies

f(s)s ≤ −α1|s|p + β1 , |f(s)| ≤ α2|s|p−1 + α2 , |f ′(s)| ≤ κ2|s|p−2 + l2 and f ′(s) ≤ −κ1|s|p−2 + l1,

where p ≥ 2 and all the coefficients are positive. The non-autonomous symbol σ is in a symbol space Σ constructed

as the hull H(g) of a given non-autonomous function g ∈ Ξ := C
(
R;L2(O)

)
, i.e., for θrg(·) := g(·+ r) we have

Σ = H(g) := {θrg : r ∈ R}.

If dimF

(
Σ;Ξ) <∞ we prove that the uniform attractor has finite fractal dimension in L2 and in Lp, with p > 2.
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Abstract

We consider the singular nonlinear equation ut −∆u = |·|−γ f(u) in RN × (0, T ) with γ > 0 and f ∈ C(R)
non-decreasing. This equation is known in the literature as a Hardy parabolic equation. We establish local

existence result for u0 ∈ Lr
ul(RN ), 1 ≤ r < ∞. In particular, we obtain necessary and sufficient conditions for

the existence in the case that f ∈ C([0,∞)), u0 ≥ 0, improving results given in the context of Lebesgue spaces.

1 Introduction

Let f ∈ C(R) be a non-decreasing function, T > 0 and γ > 0. We consider the parabolic problem with singular

potential {
ut −∆u = |·|−γ f(u) in RN × (0, T ),

u (0) = u0 in RN .
(1)

The first equation of (1) is also known in the literature as Hardy’s parabolic equation and it has been considered

by many authors for specific functions f and initial data in different spaces.

For γ > 0 and f(u) = |u|p−1u the well-posedness of problem (1) was studied by Slimene et al. [2] for continuous

and in the Lebesgue spaces initial data. The case with f ∈ C([0,∞)) and u0 ∈ Lr(RN ), u0 ≥ 0 was analyzed in [4],

and it is shown that there exists a critical value

p∗γ = 1 +
(2− γ)r

N
(2)

but the results obtained by them do not provide a complete characterization on the local existence in the sense of

[1]; also, they did not treat the case γ = N/r.

Our objective is to improve the results given in [4]. To do this, we consider the uniformly local Lebesgue space

Lrul,ρ(RN ) which is defined as follows. For 1 ≤ r ≤ ∞,

Lrul,ρ(RN ) =
{
u ∈ L1

loc(RN ); ∥u∥Lr
ul,ρ(RN ) <∞

}
, where

∥u∥Lr
ul,ρ(RN ) :=

supy∈RN

(∫
Bρ(y)

|u(x)|r dx
)1/r

if 1 ≤ r <∞,

esssupy∈RN ∥u∥L∞(Bρ(y))
if r = ∞,

and Bρ (y) ⊂ RN denotes the open ball centered at y with radius ρ > 0. It is clear that L∞
ul,ρ(RN ) = L∞(RN ).

We denote by Lrul,ρ(RN ) the closure of the space of bounded uniformly continuous functions BUC(RN ) in the

space Lrul,ρ(RN ), that is, Lrul,ρ(RN ) := BUC(RN )
∥·∥Lr

ul,ρ
(RN ) .

To reduce notation, we write Lrul(RN ) and Lrul(RN ) if ρ = 1.
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2 First Result

The notion of solution used in the work is the following.

Definition 2.1. Let γ > 0, u0 ∈ Lrul
(
RN
)
, 1 ≤ r < ∞ and f ∈ C(R). We say that u ∈ L∞ ((0, T ) , Lrul (RN)) ∩

L∞
loc

(
(0, T ) , L∞ (RN)), for some T > 0, is a solution of the problem (1) if it verifies

u (t) := S (t)u0 +

∫ t

0

S (t− σ) |·|−γ f (u (σ)) dσ

a.e. in RN × (0, T ), where {S (t)}t≥0 denotes the heat semigroup.

Theorem 2.1. Suppose that f ∈ C(R) is a nondecreasing function, 0 < γ < min {2, N}, p∗γ defined by (2), and

one of the following conditions hold:

1. u0 ∈ L1
ul(RN ) and ∫ ∞

1

σ−(1+(2−γ)/N)F̃ (σ)dσ <∞, where F̃ (t) := sup
1≤|σ|≤t

f(σ)

σ
. (3)

2. r > 1 and

lim sup
|t|→∞

|t|−p
∗
γ |f (t) | <∞, if u0 ∈ Lrul(RN ), (4)

lim
|t|→∞

|t|−p
∗
γ |f (t) | = 0, if u0 ∈ Lrul(RN ). (5)

Then, problem (1) has a solution u defined on some interval (0, T ). Moreover, tN/2r∥u(t)∥L∞(RN ) ≤ C for some

C > 0 and all t ∈ (0, T ).

3 Main Result

When we consider non-negative initial data we have the following.

Theorem 3.1. Let f : [0,∞) → [0,∞) be a continuous and non-decreasing function, and let 0 < γ < min {2, N}.
Problem (1) has a local non-negative solution for every u0 ∈ Lrul(RN ), u0 ≥ 0, r ≥ 1 if and only if{ ∫∞

1
σ−[1+(2−γ)/N ]F (σ)dσ <∞ if r = 1,

lim supt→∞ t−p
∗
γf (t) <∞ if r > 1,

(6)

where F (t) = sup1≤σ≤t f(σ)/σ, t > 0.

References

[1] R. Laister, J.C. Robinson, M. Sierżȩga and A. Vidal-Lòpez - A complete characterization of local
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Abstract

In this talk, we discuss the dynamic of the energy critical inhomogeneous nonlinear Hartree equation in 3D

i∂tu+∆u+ |x|−b(Iα ∗ | · |−b|u|p)|u|p−2u = 0, x ∈ R3,

where p = 3 + α − 2b. We study the global well-posedness and scattering below the ground state threshold

with general initial data in Ḣ1. To this end, we exploit the decay of the nonlinearity, which together with the

Kenig–Merle roadmap, allows us to treat the non-radial case as the radial case. The inhomogeneous model

presents some new challenges arising from the broken translation symmetry. Here, we overcome that and also

discuss some open problems.

1 Introduction

We consider the initial value problem (IVP), for the focusing inhomogeneous generalized Hartree equation (which

also call inhomogeneous Choquard equation) i∂tu+∆u+ |x|−b(Iα ∗ | · |−b|u|p)|u|p−2u = 0, t ∈ R, x ∈ R3,

u(0, x) = u0(x) ∈ Ḣ1(R3)
(1)

where u : R × R3 → C, p = 3 + α − 2b. The inhomogeneous term is | · |−b for some b > 0. The Riesz-potential is

defined on R3 by

Iα :=
Γ( 3−α2 )

Γ(α2 )π
3
2 2α| · |3−α

:=
K

| · |3−α
, 0 < α < 3.

The nonlinearity in (1) makes the equation a focusing, energy-critical model. In fact, the Ḣ1(R3) norm is

invariant under the standard scaling

uλ(t, x) = λ
1
2u(λ2t, λx),

and uλ(t, x) is also the solution of the equation (1). Moreover, equation (1) conserves the energy, defined as the

sum of the kinetic and potential energies:

E(u) :=

∫
R3

|∇u|2 − 1

p
(Iα ∗ | · |−b|u|p)|x|−b|u(x)|pdx.

In this work, we study the energy-critical case, that is, the critical index Sobolev sc = 1. We establish the global

well-posedness and scattering for (1.1) assuming general initial data.
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2 Main Result

Theorem 2.1. Let 0 < b ≤ min{ 1+α
3 , α2 }. Suppose u0 ∈ Ḣ1(R3) satisfies

E(u0) < E(W ) and ∥u0∥Ḣ1 < ∥W∥Ḣ1 . (1)

Then the solution u to (1) is global in time and scatters in Ḣ1(R3). Here, W denotes the ground state, i.e., the

solution to the elliptic equation

∆W + (Iα ∗ | · |−b|W |p)|x|−b|W |p−2W = 0.

Some consequences1

Corollary 2.1. Let b = 0 and u0 ∈ Ḣ1(R3) radial such that

E(u0) < E(W ) and ∥u0∥Ḣ1 < ∥W∥Ḣ1 . (2)

Then the solution u is global and scatters both in time.

Corollary 2.2. Let 0 < b ≤ min{ 1+α
3 , α2 }. For any u0 ∈ Ḣ1(R3), there exists a unique global solution to

i∂tu+∆u− |x|−b(Iα ∗ | · |−b|u|p)|u|p−2u = 0,

with initial data u0. Furthermore, this global solution scatters both in time.
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Abstract

This manuscript introduces a suspension bridge system where laminated beams model the deck. The action

of frictional damp- ing is considered. Well-posedness is proved using the Lumer-Phillips theorem, and the

exponential stability is obtained by applying the Gearhart-Huang-PrÃ¼ss theorem

1 Introduction

We introduce a model of suspension bridge given as mechanical structure that carries vertical loads through

the main cables modeled by an elastic string u = u(x, t), which is coupled to the deck employing suspension cables,

where x denotes the distance along the center line of the deck in its equilibrium configuration and t the time

variable. Considering that the deck has negligible transversal section dimensions compared to the length (span of

the bridge), it is modeled in Timoshenko’s theory [5] as a laminated beam system of length L, proposed by Hansen

and Spies [1, 2] for two-layered beams in which a slip can occur at the interface of contact.

��
��
��

��

L

Denoting by φ = φ(x, t) the displacement of the cross-section on the point x ∈ (0, L), by ψ = ψ(x, t) the rotation

angle of the cross-section, and by s = s(x, t) the slip along the interface of contact (in red at figure above), we have

the following coupled system

utt − αuxx − λ(φ− u) = 0, (1)

ρφtt +G(ψ − φx)x + λ(φ− u) = 0, (2)

Iρ(3Stt − ψtt)−D(3Sxx − ψxx)−G(ψ − φx) = 0, (3)

Iρ3Stt −D3Sxx + 3G(ψ − φx) + 4γ0S + 4δ0St = 0, (4)

The positive parameters ρ, Iρ, G,D, and γ0, are the density, mass moment of inertia, shear stiffness, flexural

rigidity, and adhesive stiffness, respectively. The non-negative parameter δ0 is called the adhesive damping, and st

is a structural damping of the system.

In [7] was proved that the structural damping St created by the interfacial slip alone is not enough to stabilize

this system of laminated beam exponentially to its equilibrium state. Naturally, the question arises of studying the

action of additional stabilizing mechanisms for the model (1)-(4). We consider the action frictional dampings on

each component, as in [5], and prove the well-posedness and exponential stability by Semigroup Theory [2, 2].
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2 Main Results

We introduce the vector function

U = (u,w, φ, ϕ, ψ, η, S, z)T ,

where w = ut, ϕ = φt, η = ψt and z = St.

The system (1)-(4) can be written as {
Ut −AU = 0,

U(x, 0) = U0(x),
(1)

where the linear operator

A : D(A) ⊂ H → H

is defined on energy space H = [H1
0 (0, L) × L2(0, L)]4 and D(A) = [H1

0 (0, L) ∩ H2(0, L) × H1
0 (0, L)]

4. The well-

posedness is ensured by the following theorem.

Theorem 2.1. For U0 ∈ H, there exists a unique weak solution U of (1) satisfying

U ∈ C0((0,∞);H). (2)

Moreover, if U0 ∈ D(A), then

U ∈ C0((0,∞);D(A)) ∩ C1((0,∞);H). (3)

Our main result is:

Theorem 2.2. The semigroup S(t) = eAt, t ≥ 0, generated by A is exponentially stable.
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Abstract

In this work, it will be mainly discussed the existence and stability of equilibrium solutions of a nonlinear

heat equation where the unknown takes values in a commutative Banach algebra and the nonlinearity is of

logarithmic type.

1 Introduction

The general reaction diffusion equation,

ut = uxx + f(u), (1)

where u is a function from R× R+ to a commutative Banach algebra X and f denotes a function defined from an

open set of X to X has received considerable attention from the scientific community in the last decades. For a

wide discussion about applications and mathematical problems associated to the equation (1) when X = R, see for

instance [1] and the references therein. An equilibrium solution of the equation (1) is a solution of the equation

that is independent of the variable t ∈ R+. Thus, u(x, t) = ϕ(x) ∈ X is an equilibrium solution of the equation (1)

on the open interval J , if ϕ satisfies the following second order ordinary differential equation

ϕ′′(x) + f(ϕ(x)) = 0 ∈ X, for all x ∈ J. (2)

Let Y be Banach space where the Cauchy problem{
ut = uxx + f(u),

u(0) = u0 ∈ Y
(3)

is well posed. An equilibrium solution ϕ ∈ Y is said to be stable in Y = (Y, || · ||Y ), if for all ϵ > 0, there exists

δ > 0 such that

If ||u0 − ϕ||Y < δ, then ||u(t)− ϕ||Y < ϵ, for all t > 0.

Here, u denotes the solution of the Cauchy problem in (6) with u(0) = u0 ∈ Y . Otherwise, the equilibrium solution

ϕ is said to be unstable. A classical method to study the stability/instability of an equilibrium solution ϕ is based

on the analysis of the spectral properties of the following linear operator

Lϕ =
d2

dx2
+ f ′(ϕ) (4)

which is defined on a certain Banach space. Roughly speaking, if the spectrum of the operator Lϕ intercepts the

set {z ∈ C : 0 < Re(z)}, then the equilibrium solution is unstable. On the other hand, if the spectrum of the

operator Lϕ is contained in the set {z ∈ C : Re(z) ≤ b} for some b < 0, then the equilibrium solution is stable.

See theorems 5.1.1 and 5.1.3 in [1] for details. In this work, it is studied the problem of existence and stability

of equilibrium solutions of the equation (1) when X is a commutative Banach algebra with identity e ∈ X and
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f(u) = wu+ Log(u2)u with w ∈ X and Log denotes the logarithmic function defined on the open ball B(e, 1) ⊂ X
by the following power series

Log(p) = −
∞∑
k=1

(e− p)k

k
= −(e− p)− (e− p)2

2
− (e− p)3

3
− · · · (5)

That is to say, the logarithmic heat equation

ut = uxx + wu+ Log(u2)u. (6)

2 Main Results

In this section, it will be described the principal results about the stability theory of equilibrium solutions associated

to the equation (6). Our findings were based on the results discussed in [2], where the problem of existence and

stability of equilibrium solution to the equation (6) was treated in the case that X = R.

Theorem 2.1 (Existence of equilibriums). Let X be a commutative Banach algebra with identity e and w ∈ X
satisfying ||e− w|| < log(2). For each r ∈ R, the function ϕr : R → X given by

ϕr(x) = Exp

(
e− w

2

)
exp

(
−(x+ r)2

2

)
(1)

is an equilibrium solution of the logarithmic heat equation (6) on J = R. That is, ϕr satisfies the second order

differential equation ϕ′′(x) + wϕ(x) + Log(ϕ2(x))ϕ(x) = 0 ∈ X for all x ∈ R.

When f(u) = wu + Log(u2)u and ϕ = ϕr is given by the formula in (1) then the linear operator Lϕ takes the

explicit form

Lr(g) =
d2

dx2
g + 3g − (x+ r)2g, g ∈ D(Lr) ⊂ Cb(R,X), (2)

where Cb(R,X) denotes the Banach algebra of bounded functions from R to X and D(Lr) denotes the domain of

the liner operator Lr. About the spectrum of the linear operator Lr, it is obtained the following result:

Theorem 2.2 (Spectral properties of Lr). The point spectrum of the linear operator Lr is given by the sequence

of eigenvalues λn = −2(n− 1), n = 0, 1, 2, ..., that is

{2, 0,−2,−4, . . . ,−2(n− 1), . . . } = σp(Lr) ⊂ σ(R). (3)

Furthermore, the eigenspace associated to each one of the eigenvalues λn is generated by just one eigenfunction.

Since, λ0 = 2 is a positive eigenvalue of Lr, it is deduced that the equilibrium solution ϕ given in (1) is unstable.

Actually, it is possible to prove an stronger result, namely

Theorem 2.3 (Nonlinear instability). Any nontrivial equilibrium solution ϕ of (6) is unstable. More exactly, exists

ϵ > 0, a sequence of functions gn and a sequence of times tn > 0 such that

gn → ϕ, and ||un(·, tn)− ϕ(·)|| > ϵ.

Here, un denotes a sequence of solutions of the LHE such that un(·, 0) = gn(·).
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[2] hernàndez melo, c. a. & demetrio, l. f. - Stability of equilibrium solutions of a nonlinear reaction-diffusion
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Abstract

1 Introduction

In this work we are interested in studying the initial value problem for the fractional equations
∂αt u+ ν(−∆)βu+Ωe3 × u+ (u · ∇)u+∇p = gωe3, (t, x) R× R3,

∂αt θ + µ(−∆)βθ + (u · ∇)θ = −N 2u3, (t, x) R+ × R3,

∇ · u = 0,

u(0, x) = u0(x), x ∈ R3,

(1)

where ∂αt is the Caputo’s fractional derivative of order α ∈ (0, 1] and 1
2 ≤ β < 5

2 . When α = 1, these equations

represent the 3D fractional Boussinesq-Coriolis equations with stratification. In this context µ is the viscosity,

p = p(x, t) is the pressure of the fluid and θ is a scalar function that represents the buoyancy density in the fluid (in

the case of the ocean this function depends temperature and salinity, and in the case of the atmosphere it depends

on temperature). The initial data u0 = u0(x) = (u10(x), u
2
0(x), u

3
0(x)) denotes the initial velocity field satisfying

the compatibility condition ∇ · u = 0. The constants ν, µ and g are related to viscosity, diffusivity and gravity,

respectively. The constant Ω ̸= 0 represents the speed of rotation around the vertical unit vector e3 = (0, 0, 1)

and is called the Coriolis parameter. The stratification parameter N is a non-negative constant that represents

the frequency of the Brunt-Väisälä wave. The proportion P = µ
ν is known as the Prandtl number and B = Ω

N is

essentially the Burger number of geophysics.

Considering N = N√
g, v =

(
v1, v2, v3, v4

)
=
(
u1, u2, u3,

√
gθ/N

)
, v0 =

(
v10 , v

2
0 , v

3
0 , v

4
0

)
=
(
u10, u

2
0, u

3
0,
√
gθ0/N

)
,

and ∇̃ = (∂1, ∂2, ∂3, 0), we can convert the above system as
∂αt v +Av + Bv + ∇̃p = −(v · ∇̃)v, in R3 × (0,∞)

∇̃ · v = 0, in R3 × (0,∞)

v(x, 0) = v0(x), in R3

where

A =


ν(−∆)β 0 0 0

0 ν(−∆)β 0 0

0 0 ν(−∆)β 0

0 0 0 k(−∆)β

 and B =


0 −Ω 0 0

Ω 0 0 0

0 0 0 −N
0 0 N 0

 .

A mild solution of this problem is a function that verifies the integral equation

v(t) = Eα(t)v0 −
∫ t

0

(t− s)α−1Eα,α(t− s)P(v · ∇̃)vds, t ≥ 0, (2)
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where P is the Leray Projector. The main objectives of this work are to guarantee the existence of the Mittag-

Leffler families {Eα(t)}t≥0 and {Eα,α(t)}t≥0 for equation (1.1), establish their behavior on the scale of Fourier-

Besov-Morrey spaces and obtain asymptotic estimates for such families.

2 Main Results

Fourier-Besov-Morrey spaces are constructed by mean of a kind of localization procedure in Fourier variables on

the well-known Morrey spaces, see [3]. Consider the ring C =
{
ξ ∈ Rn : 3

4 ≤ |ξ| ≤ 8
3

}
and φ a smooth function

supported in C satisfying 0 ≤ φ ≤ 1 and∑
j∈Z

φj(ξ) = 1, for all ξ ̸= 0, where φj(ξ) = φ
(
2−jξ

)
.

Let 1 ≤ q < ∞, 0 ≤ µ < n, 1 ≤ r < ∞ and s ∈ R. The Fourier-Besov-Morrey space FN s
q,µ,r is the set of all

distributions f ∈ S ′/P, where P is the set of all polynomials in Rn, such that φj f̂ belongs to the Morrey space

Mq,µ, for all j ∈ Z, and

∥f∥FN s
q,µ,r

=


(∑

j∈Z

(
2js
∥∥∥φj f̂∥∥∥

q,µ

)r)1/r

<∞, 1 ≤ r <∞

supj∈Z 2
js
∥∥∥φj f̂∥∥∥

q,µ
<∞, r = ∞.

The pair
(
FN s

q,µ,r, ∥ · ∥FN s
q,µ,r

)
is a Banach space. Our main result establishes the smoothing effect of the Mittag-

Leffler families {Eα(t)}t≥0 and {Eα,α(t)}t≥0 in Fourier-Besov-Morrey spaces.

Theorem 2.1. Let α ∈ (0, 1], I = (0,+∞), 1 ≤ q1 < q2 ≤ ∞, max
{
0, 3− q1q2

q1−q2

}
< µ < 3, 1 ≤ r ≤ ∞ and s ∈ R.

For each par (Ω,N ) ∈ (R − {0})2, consider L = max
{
2, |Ω|

N√
g ,

N√
g

|Ω|

}
. Then, there exists a constant C > 0 such

that

∥Eα(t)v0∥FN s
q2,µ,r

≤ CL(νt)
− α

2β

(
3−µ
q2

− 3−µ
q1

)
∥v0∥FN s

q1,µ,r
,

and

∥Eα,α(t)v0∥FN s
q2,µ,r

≤ KLα(νt)
− α

2β

(
3−µ
q2

− 3−µ
q1

)
∥v0∥FN s

q1,µ,r
,

for all v0 ∈ FN s
q1,µ,r and t ∈ I.
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Abstract

In this paper we investigate the unilateral problem of Navier-Stokes-Voigt operator L in cylindrical case,

where Lu = ut −α2∆ut − ν∆u+ (u · ∇)u− f +∇p. Using an appropriate penalization, we obtain a variational

inequality for the Navier-Stokes-Voigt perturbed system.

1 Introduction

Regularized fluid equations in hydrodynamics are fundamental in understanding turbulent phenomena in science.

One such regularized model was introduced by Oskolkov [1] as a model for the motion of a linear viscoelastic

incompressible fluid:

ut − α∆ut − ν∆u+ (u · ∇)(u− α∆u) +∇p = f in Q (1)

∇ · u = 0 in Q, u = 0 on Σ, u(0) = u0 in Ω.

In [2] the author studies the equation below that describe the motion of non-Newtonian fluid to which a small

quantity of polymers is added:

ut − α2∆ut − ν∆u+ (u · ∇)u+∇p = f in Q (2)

∇ · u = 0 in Q, u = 0 on Σ, u(0) = u0 in Ω.

where Ω denotes the bounded domain of flow in Rn, n = 2, 3, with boundary ∂Ω; the vector function u represents

the velocity field, p denotes the pressure; ν > 0 is the viscosity coefficient; α is a length scale parameter such that

α2/ν is the relaxation time of the viscoelastic fluid; f is the external forces field; and u0 is the initial velocity. Using

the Faedo-Galerkin method with a special basis of eigenfunctions of the Stokes operator, he construct a global-in-

time strong solution, which is unique in both two-dimensional and three-dimensional domains. Type (1) and (1)

systems are known in the literature as Navier-Stokes-Voigt (NSV), are often called the Kelvin-Voigt equations or

Oskolkov’s equations. The NSV model and related models of viscoelastic fluid flows have been studied extensively

by different mathematicians over the past several decades starting from the pioneering papers by Oskolkov [1].

A nonlinear perturbation of problem (1) is given by

ut − α2∆ut − ν∆u+ (u · ∇)u+∇p− f ≥ 0 (3)

In the present work we investigated the unilateral problem associated with this perturbation, that is, a variational

inequality given for (3) (see [3]). Making use of the penalty method, and Galerkin’s approximations, we establish

existence and uniqueness of solutions.This inequality is satisfied in a certain sense, that is, we formulate the problem

as follows. Let K a closed and convex subset of V ∩V2, the variational problem is to find a solution u(x, t) satisfying∫
Q

(ut − α2∆ut − ν∆u+ (u · ∇)u− f)(v − u) ≥ 0,∀v ∈ K, (4)
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with u(x, t) ∈ K a. e. on [0, T ] and talking the initial and boundary data u = 0 on Σ, u(., 0) = in Ω. In general,

dynamic contact problems are characterized by nonlinear hyperbolic variational inequalities, so it is interesting to

study unilateral problem.

2 Main Results

Theorem 2.1. Suppose n = 2 and f, ft ∈ L2(0, T ;V ′), u0 ∈ K. Then there exists a function u such that

u ∈ L∞(0, T ;V ) ∩ L2(0, T ;V2) , ut ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), u(t) ∈ K, ∀t ∈ [0, T ], satisfying . (1)

∫
Q

(ut − α2∆ut − ν∆u+ (u · ∇)u− f)(v − u)dxdt ∀v ∈ K, a.e. in t, , u(0) = u0. (2)

The penalized problem associated with the variational inequalitiy (2) consists in, given 0 < ϵ < 1, find uϵ

solution in Q of the mixed problem

uϵt − α2∆uϵt − ν∆uϵ +

n∑
i=1

uϵi
∂uϵ

∂xi
+

1

ϵ
βuϵ = f −∇p in Q

div uϵ = 0 in Q, uϵ = 0 on Σ, uϵ(x, 0) = uϵ0(x) in Ω.

(3)

The solution of this problem is given by the following theorem:

Theorem 2.2. Assume that n = 2, 3 and f, ft ∈ L2(0, T ;V ′). Then for each 0 < ϵ < 1 and uϵ0 ∈ V , there exists a

function uϵ with uϵ ∈ L∞(0, T ;V ), uϵt ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) satisfying (3) in the sense of L2(0, T ;V ′).

Proof - First estimate We consider wj = uϵm(t) in the approximate problem.

Second estimate -In both side in the approximate problem we take the derivatives with respect t and consider

wj = uϵmt (t). These estimates are sufficient to pass the limit in the approximate penalized problem with m → ∞
and consequently prove theorem 2.2. To prove theorem 2.1 we need one more estimate.

Third estimate We consider n = 2. Let (wν) be the ortonormal system of V ∩ V2 formed by the eigenfunctions

of the Laplace operator with uϵm(x, 0) → uϵ(x, 0) strongly in V ∩V2 and let’s take wj = −∆um in the approximate

problem. From the convergences obtained above and Banach-Steinhauss theorem, it follows that there exists a

subnet (uϵ)0<ϵ<1, such that it converges to u as ϵ→ 0, in the weak sense, that is,

uϵ −→ u weak star in L∞(0, T ;H), uϵ −→ u weak in L∞(0, T ;V ), βuϵ −→ βu weak in L2(0, T ;V ′). (4)

uϵt −→ ut weak in L2(0, T ;V ), uϵt −→ ut weak in L∞(0, T ;H), uϵ −→ u strong in L2(0, T ;H) and a.e. in Q.

uϵiu
ϵ
j −→ uiuj weak in L2(0, T ;L2(Ω)), uϵ −→ u weak in L∞(0, T ;V2)., u

ϵ −→ u strong in L2(0, T ;V ) and a.e. in Q.

The convergences above are sufficient to conclude that (2) is valid. To complete the proof of Theorem 2.1, it

remains to show that u(t) ∈ K a.e.it is, but this presents no difficulties.
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Abstract

We analyze the asymptotic behavior of parabolic problems with nonlinear Neumann boundary conditions

when the boundary of the domain varies very rapidly as a parameter ϵ goes to zero. For the case where we

have a Lipschitz deformation of the boundary with the Lipschitz constant uniformly bounded in ϵ, we show that

the solutions of these problems converge to the solution of a limit parabolic problem of the same type, where

the boundary condition has a factor that captures the oscillations of the boundary, and we prove the existence

and upper semicontinuity of attractors at ϵ = 0. For that it is necessary to consider a notion of convergence

in varying domains. Moreover, if every equilibrium of the limit problem is hyperbolic, then we also prove the

continuity of local unstable manifolds and the lower semicontinuity of attractors at ϵ = 0.

1 Introduction

We will analyze the asymptotic behavior, for small ϵ, of the family of solutions of a parabolic problem with nonlinear

Neumann boundary conditions of the type
∂uϵ
∂t

−∆uϵ + uϵ = f(x, uϵ), in Ωϵ × (0,∞)

∂uϵ
∂nϵ

= g(x, uϵ), on ∂Ωϵ × (0,∞)

uϵ(0) = u0ϵ(x), in Ωϵ

(1)

when the boundary of the domain presents a highly oscillatory behavior, as the parameter ϵ goes to zero. To

describe the problem, we will consider a family of uniformly bounded smooth domains Ωϵ ⊂ Rn, with n ≥ 2 and

0 ≤ ϵ ≤ ϵ0, for some ϵ0 > 0 fixed, and we will look at this problem from the perturbation of the domain point of

view and we will refer to Ω ≡ Ω0 as the unperturbed domain and Ωϵ as the perturbed domains. We will assume

that Ωϵ → Ω and ∂Ωϵ → ∂Ω, as ϵ → 0, in the sense of Hausdorff. We will also assume that the boundary ∂Ωϵ is

expressed in local charts as a Lipschitz deformation of ∂Ω with the Lipschitz constant uniformly bounded in ϵ.

It is reasonable to expect that the family of solutions {uϵ}ϵ∈(0,ϵ0] of (1) will converge to the solution of an equation

with a nonlinear boundary condition on ∂Ω that inherits the information about the behavior of the measure of the

deformation of ∂Ωϵ with respect to ∂Ω. More precisely, we will show that the solutions of (1) converge in H1(Ωϵ)

to the solution of the following parabolic problem with nonlinear Neumann boundary conditions
∂u0
∂t

−∆u0 + u0 = f(x, u0), in Ω× (0,∞)

∂u0
∂n

= γ(x)g(x, u0), on ∂Ω× (0,∞)

u0(0) = u00(x), in Ω

(2)
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where the function γ ∈ L∞(∂Ω) is related to the behavior of the measure (n− 1)-dimensional of the ∂Ωϵ . Indeed,

assuming that the nonlinearities f and g satisfy growth, sign and dissipative conditions, we will prove the existence

and continuity of the family of attractors of (1) and (2) at ϵ = 0 in H1(Ωϵ).

The behavior of the solutions of elliptic problems with nonlinear Neumann boundary conditions and rapidly

varying boundaries was studied in [2], for this case of uniformly Lipschitz deformation of the boundary. In particular,

if we regard these elliptic equations as stationary equations of the parabolic evolutionary equations (1) and (2),

then the continuity of the set of equilibria of (1) and (2) at ϵ = 0 in H1(Ωϵ) was proved. Thus, the goal of our work

[1] is to continue the analysis initiated in [2].

2 Main Results

Domain perturbation problems have been considered by several authors and one of the main difficulties when

treating these problems is that the solutions live in different spaces, so it is necessary a tool to compare functions

which are defined in different spaces. In [1] we use the concept of E-convergence and the extension operator

Eϵ : H
1(Ω) → H1(Ωϵ) defined in [2]. Since the problems (1) and (2) have nonlinear terms on boundary, then it

is necessary to use spaces with negative exponents. Thus, we present a definition of extension operators and the

concept of E∗-convergence in spaces with negative exponents, and we prove that the notion of E-convergence is the

same as the notion of convergence stablished in an abstract way in [3]. Consequently, we can use some results of

[3] in our problem.

The technique of extension operators in spaces with negative exponents was not considered in previous works.

Indeed, this definition can be used in other problems involving negative exponents, so allowing to work with

asymptotic behavior of problems with nonlinear boundary conditions. In this way, it is our main contribution

obtained in [1].

To obtain the E-continuity of the family of attractors of (1) and (2) at ϵ = 0 in H1(Ωϵ), initially we show result

on compact convergence of the resolvent operators and the E-convergence of linear semigroups. Later, we prove

the E∗-convergence of the nonlinearities, E-convergence of nonlinear semigroups and we concluded the E-upper

semicontinuity of attractors. Moreover, if every equilibrium of the limit problem (2) is hyperbolic, then we also

prove the E-continuity of local unstable manifolds and we concluded the E-lower semicontinuity of attractors.
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UFAL - Universidade Federal de Alagoas
XVI ENAMA - Novembro 2023 149–150

MULTI-OBJECTIVE CONTROL PROBLEMS FOR PARABOLIC SYSTEM AND KDV EQUATION.

ISLANITA CECILIA ALCANTARA DE ALBUQUERQUE1,† & MAURICIO CARDOSO SANTOS2,‡

Universidade de Pernambuco, Campus Mata Norte, UPE-CMN, PE, Brasil1, Departamento de Matematica, UFPB, PE,

Brasil2

islanita.albuquerque@upe.br† mcsantos@mat.ufpb.br‡

Abstract

This work is dedicated to the study of some multi-objective control problems for partial differential equations.

Usually, problems containing many objectives are not well-posed, since one objective may completely determine

the control, turning the others objectives impossible to reach. We apply the so called Stackelberg-Nash strategy,

we consider a hierarchy, in the sense that we have one control which we call the leader, and other controls which

we call the followers. Once the leader policy is fixed, the followers intend to be in equilibrium according to their

targets, after we determine the followers in such a way they accomplish their objectives in a optimal way, and

to do that a concept of equilibrium is applied. In this work, we apply the concept of Nash Equilibrium, which

correspond to a non-cooperative strategy. Two problems are solved, in the first chapter, we consider a linear

system of parabolic equations and prove that the Stackelberg-Nash strategy can be applied under some suitable

conditions for the coupling coefficients. In the second one, we consider the nonlinear Korteweg-de Vries (KdV)

equation, which has a very different nature of parabolic equations, and the same method is applied.

1 Introduction

The first presented problem consists of a system of parabolic equations, with zero-order couplings of the structure:
y1t −∆y1 =

∑2
p=1A1 py

p + F 1 in Q,

y2t −∆y2 =
∑2
p=1A2 py

p + F 2 in Q,

y1 = y2 = 0 in Σ,

y1(0) = y10 , y
2(0) = y20 in Ω,

(1)

where (y1, y2) represents the state, (F 1, F 2) are controls and {Ai,j}i,j=1,2 are uniformly bounded functions and

represent the coupling matrix of the system. Each F i control has three objectives for the state (y1, y2) that are to

be described below.

Through the Stackelberg Method, we write

F i = f i1O + vi 11Oi 1
+ vi 21Oi 2

, i = 1, 2, (2)

where the sets O, Oi 1 and Oi 2 are open and disjoint. The {f i}2i=1 controls will be the leaders, being responsible for

the objectives of the controllability type, while {vi j}2i,j=1 are called followers and are engaged in the minimization

of the cost functionals.

In the second problem, we have considered the nonlinear Korteweg-de Vries equation (KdV) and have also

applied the Stackelberg-Nash method combined with a zero control objective for the leader:
yt + (1 + y)yx + yxxx = f1O + v1XO1 + v2XO2 in Q,

y (0, ·) = y (L, ·) = yx (L, ·) = 0 in (0, T ) ,

y (x, ·) = y0 in (0, 1) ,

(3)
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where y = y(x, t) is the state and y0 is initial datum. In (3), the set O ⊂ (0, 1) is the leader control’s domain f while

O1,O2 ⊂ (0, 1) are the follower control’s domains v1 and v2 (all of which are very small and disjoint suppositions).

With 1O we denoted the characteristic function in O while XOi
are positive functions in C∞

0 (Oi), i = 1, 2.

2 Main Results

Theorem 2.1. Given (y10 , y
2
0) ∈ L2(Q)2 and {vj}2j=1 a Nash equilibrium for the functional cost, there exist a control

f1 ∈ L2(O× (0, T ))2 such that the solution of (1) with F 1 given by (2) and F 2 = 0 satisfies (y1(T ), y2(T )) = (0, 0).

Proof We use Carleman estimates and the Hilbert Uniqueness Method. See [1]; [2].

Theorem 2.2. For i = 1, 2, suppose that

Oi,d ∩ O ≠ ∅ (1)

and that µi are sufficiently large. Also, assume that one of the two conditions holds:

O1,d = O2,d (2)

or

O1,d ∩ O ≠ O2,d ∩ O. (3)

Then, there exist a positive function ρ̂ = ρ̂(t) blowing up at t = T and δ > 0 such that if

∥z0∥2H1
0 (0,1)

+

2∑
i=1

∫∫
Oi,d×(0,T )

ρ̂2|zi,d|2 dx dt < δ, (4)

there exist controls f ∈ L2(O× (0, T )) and associated Nash equilibria (v1, v2) such that the corresponding solutions

to optimality system (z = y − ȳ) satisfies y(·, T ) = ȳ(·, T ).

Proof See [3].
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Abstract

We consider the fractional chemotaxis Navier-Stokes equations which are the fractional Keller-Segel model

coupled with the Navier-Stokes fluid in the whole space, and prove the existence of global mild solutions with

the small critical initial data in Besov-Morrey spaces. Our results enable us to obtain the self-similar solutions

provided the initial data are homogeneous functions with small norms and considering the case of chemical

attractant without degradation rate.

1 Introduction

In this work, we deal with the double chemotaxis model of fractional order under the effect of the Navier-Stokes

fluid: 

cDα
t n+ u · ∇n = ∆n−∇ · (n∇c)−∇ · (n∇v), in RN × (0,∞),

cDα
t c+ u · ∇c = ∆c− nc, in RN × (0,∞),

cDα
t v + u · ∇v = ∆v − γv + n, in RN × (0,∞),

cDα
t u+ (u · ∇)u = ∆u−∇p− nf, in RN × (0,∞),

∇ · u = 0, in RN × (0,∞),

n(x, 0) = n0(x), c(x, 0) = c0(x), v(x, 0) = v0(x), u(x, 0) = u0(x), in RN ,

(1)

where N ≥ 2, γ ≥ 0, cDα
t is the Caputo fractional derivative of order α ∈ (0, 1). The unknown n(x, t), c(x, t),

v(x, t), u(x, t) and p(x, t) stand for the cell density, oxygen concentration, chemical-attractant concentration, fluid

velocity, and the pressure of the fluid, respectively. The time-independent field f denotes a force field acting on

the motion of the fluid that can be produced by different mechanisms, e.g., force due to the aggregation of bacteria

onto the fluid generating a bouyancy-like force. The parameter γ ≥ 0 denotes the degradation rate of attractant,

while n0 = n0(x), c0 = c0(x), v0 = v0(x) and u0 = u0(x) denote the initial data. The system (1) with α = 1 was

first proposed by Tuval et al. [1] to describe the dynamics of swimming aerobic bacteria living in an incompressible

viscous fluid, which swim toward a higher concentration of oxygen and chemical attractant.

Recently Ferreira and Postigo [2] treated the global well-posedness for (1) by considering α = 1, N ≥ 2 and

small initial data in critical Besov-Morrey spaces, more precisely, they consider n0 ∈ N
N
q −2
q,q1,∞(RN ), c0 ∈ L∞(RN ), with ∇c0 ∈ N

N
r −1
r,r1,∞(RN ),

v0 ∈ S ′/P with ∇v0 ∈ N
N
r −1
r,r1,∞(RN ), u0 ∈ N

N
p −1
p,p1,∞(RN ) with ∇ · u0 = 0,

(2)

and force f ∈ MN
N1

(RN ), where the exponents p, p1, q, q1, r, r1 and N1 satisfy suitable conditions of Kozono et al.

type (see [3]).

In this work we extend the results obtained recently in [2] (see also [3]) to the fractional chemotaxis-fluids

framework. The solutions for the problem (1) are obtained by means of a fixed point argument in a time-dependent
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critical space Xα defined as follows: Let us introduce the spaces

Xα
1 = {n : t

−αN
2q

+α
n ∈ B((0,∞);Mq

q1)}, Xα
2 = {c : c ∈ B((0,∞);L∞) with t−

αN
2r

+α
2 ∇c ∈ B((0,∞);Mr

r1)},

Xα
3 = {v : v(·, t) ∈ S′/P for t > 0 and t−

αN
2r

+α
2 ∇v ∈ B((0,∞);Mr

r1)}, Xα
4 = {u : t

−αN
2p

+α
2 u ∈ B((0,∞);Mp

p1)},

which are Banach spaces endowed with the respective norms

∥n∥Xα
1

= sup
t>0

t
−αN

2q
+α∥n(t)∥Mq

q1
, ∥c∥Xα

2
= sup

t>0
∥c(t)∥L∞ + sup

t>0
t−

αN
2r

+α
2 ∥∇c(t)∥Mr

r1
,

∥v∥Xα
3

= sup
t>0

t−
αN
2r

+α
2 ∥∇v(t)∥Mr

r1
, ∥u∥Xα

4
= sup

t>0
t
−αN

2p
+α

2 ∥u(t)∥Mp
p1
.

Next, let us introduce the space Xα and Iα as

Xα := {(n, c, v, u) : n ∈ Xα
1 , c ∈ Xα

2 , v ∈ Xα
3 , u ∈ Xα

4 }, Iα := {(n0, c0, v0, u0) : n0, c0, v0 and u0 are as in (2)},

which are Banach spaces with the norms

∥(n, c, v, u)∥Xα := ∥n∥Xα
1
+ ∥c∥Xα

2
+ ∥v∥Xα

3
+ ∥u∥Xα

4
,

∥(n0, c0, v0, u0)∥Iα := ∥n0∥
N

N
q

−2

q,q1,∞

+ ∥c0∥L∞ + ∥∇c0∥
N

N
r

−1
r,r1,∞

+ ∥∇v0∥
N

N
r

−1
r,r1,∞

+ ∥u0∥
N

N
p

−1

p,p1,∞

.

We got the following results for the problem (1):

2 Main Results

Theorem 2.1. Let N ≥ 2 and let the exponents p, p1, q, q1, r, r1 and N1 be as the conditions introduced in [3,

Theorem 1] and [2, Assumption 1]. Suppose that the initial data (n0, c0, v0, u0) ∈ Iα and the external force

f ∈ MN
N1

(RN ). There exist positive constants ε, δ = δ(ε), and K1 such that the problem (1) has a unique global

mild solution (n, c, v, u) ∈ Xα satisfying ∥(n, c, v, u)∥Xα ≤ 2K1ε provided that ∥(n0, c0, v0, u0)∥Iα ≤ δ. Moreover,

the data-solution map is locally Lipschitz continuous.

Since the space Xα is critical with respect to the scaling, we can obtain self-similar solutions.

Corollary 2.1. Let N ≥ 3 and γ = 0. Assume that (n0, c0, v0, u0) and f are as in Theorem 2.1. Suppose that

n0, c0, v0, u0 and f are homogeneous functions with degree −2, 0, 0,−1 and −1, respectively. Then, the solution

(n, c, v, u) obtained through Theorem 2.1 is self-similar.
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Abstract

The Renormalization Group (RG) method has found extensive applications in modern theoretical physics

and its application to the long-time asymptotic analysis of solutions to nonlinear differential equations has been

developed since the early 90’s. This work aims to study higher order corrections in the asymptotic behavior

of solutions of a class of nonlinear time-evolution problems, particularly we study the large-time behavior of

solutions to a generalized Burgers Equation, with initial zero mass data.

1 Introduction

The mathematical aspects of the Renormalization Group method for differential equations were rigorously

established by Bricmont, Kupiainen and collaborators [1] in 1994. Such methodology ended up developing great

success, specifically for the determination of critical exponents and universality classes and in providing the leading

order long-time asymptotics of solutions to a wide class of initial value problems, both analytically and numerically.

On the other hand, the method seemed inefficient when dealing with higher order corrections, as in the treatment

of problems with zero mass initial data,
∫
f(x)dx = 0.

Here we show that, by implementing a modification in the Renormalization Group operator, it is possible to

obtain the asymptotic behavior of solutions of the type{
ut + uux = uxx + λF (u, ux), x ∈ R, t > 1,

u(x, 1) = f(x),
(1)

for small enough initial data and if one of the two following hypotheses is satisfied:

(H-1)
∫
R f(x)dx = 0 and F (u, ux) =

∑
n≥2

cnu
nux,

(H-2) f is odd and F (u, v) =

∗∑
m,n≥0

cm,n u2m+1vn where the ∗ excludes the pairs (m,n) = (0, 0) and (m,n) = (0, 1)

from the sum.

We will show that the solution u(x, t) to IVP (1) behaves, for t≫ 1, as

u(x, t) ≈ A

t
f∗1

(
x√
t

)
, (2)

where A is a prefactor and

f∗1 (x) = −x
2

e−
x2

4

√
4π

. (3)

The long time behavior (2) will emerge from the iterates of a nonlinear operator (the RG operator) whose

linearization has f∗1 (x), given by (3), as a fixed point. Furthermore, the time decay exponent α = 1 and the

time spread exponent β = 1/2, on the right hand side of (2), are intimately related to the definition of the RG
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operator. The nonlinearity F (u, ux) in (H-1) or (H-2) is such that it preserves the symmetry of the initial data

along the time evolution. Also, F (u, ux) is chosen to be “irrelevant” under the RG flow so that the long time

behavior (2) will be, essentially, the one given by the linearized problem.

2 Main Result

In order to state our main result, we first need to define the space for the initial data. Given q > 1, let

∥f∥q = sup
ω∈R

(1 + |ω|q)
(
|f̂(ω)|+ |f̂ ′(ω)|+ |f̂ ′′(ω)|

)
(1)

and

Bq =
{
f ∈ L1(R) : f̂(ω) ∈ C2(R) and ∥f∥q < +∞

}
. (2)

Theorem 2.1. Given q > 2, consider IVP (1) satisfying hypothesis (H-1) or (H-2), f ∈ Bq and |λ| ≤ 1. There

are ϵ > 0 and A = A(f, F ) such that, if ∥f∥q < ϵ, then the solution u to IVP (1) satisfies

lim
t−→+∞

∥tu(t 1
2 ·, t)−Af∗1 ∥q = 0, (3)

where f∗1 is given by (3).

The RG approach that we employ to prove the above result is basically the integration of the equation followed

by a rescaling. That is, let u be a real-valued function of (x, t) ∈ R × R+. For a fixed L > 1, define, inductively,

a sequence of rescaled functions {un}∞n=0, by u0 = u and, for n ≥ 1, un(x, t) = L2un−1(Lx,L
2t). If the original

function u is a global solution to IVP (1), then we get that that un satisfies a sequence of renormalized IVPs. Then,

for sufficiently small initial data fn we prove the existence of a unique solution to each IVP, defined in a limited

time interval, allowing the definition of the RG operator with n ≥ 0:

(RL,nfn) (x) ≡ L2un(Lx,L
2), ∀x ∈ R. (4)

The study of the long-time asymptotics of solutions to (1) is equivalent to studying the fixed points, and their

basins of attraction (i.e., universality classes), of the transformation (4).
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Departamento de Matemática, UFPE, PE, Brasil1

roberto.capistranofilho@ufpe.br† luan.soares@ufpe.br‡

Abstract

In recent years, controllability problems for dispersive systems have been extensively studied. This work is

dedicated to proving a new type of controllability for a dispersive fifth order equation that models water waves,

what we will now call the overdetermination control problem. Precisely, we are able to find a control acting at

the boundary that guarantees that the solutions of the problem under consideration satisfy an overdetermination

integral condition. In addition, when we make the control act internally in the system, instead of the boundary,

we are also able to prove that this condition is satisfied. These results present a new way to prove boundary

and internal controllability results for a fifth order KdV type equation.

1 Introduction

In this work, we will be interested in a kind of control property to the Kawahara equation when an integral

overdetermination condition is required, namely∫ L

0

u(t, x)ω(x)dx = φ(t), t ∈ [0, T ], (1)

with some known functions ω and φ. To present the problem, let us consider the Kawahara equation in the bounded

rectangle QT = (0, T ) × (0, L), where T and L are positive numbers with boundary function hi, for i = 1, 2, 3, 4

and h or the right-hand side f of a special form to specify latter, namely,
ut + ux + uxxx − uxxxxx + uux = f(t, x) in QT ,

u(t, 0) = h1(t), u(t, L) = h2(t), ux(t, 0) = h3(t), in [0, T ],

ux(t, L) = h4(t), uxx(t, L) = h(t) in [0, T ],

u(0, x) = u0(x) in [0, L].

(2)

Thus, we are interested in studying two control problems, which we will call them from now on by

overdetermination control problem. The first one can be read as follows:

Problem A: For given functions u0, hi, for i = 1, 2, 3, 4 and f in some appropriated spaces, can we find a boundary

control h such that the solution associated to the equation (2) satisfies the integral overdetermination (1)?

The second problem of this work is concentrated to prove that for a special form of the function

f(t, x) = f0(t)g(t, x), (t, x) ∈ QT , (3)

the integral overdetermination (1) is verified, in other words.

Problem B: For given functions u0, hi, for i = 1, 2, 3, 4, h and g in some appropriated spaces, can we find an

internal control f0 such that the solution associated to the equation (2) satisfies the integral overdetermination (1)?
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2 Main Results

The first result of this work gives us an answer for Problem A, presented at the beginning of the introduction.

Theorem 2.1. Let p ∈ [2,∞]. Suppose that u0 ∈ L2(0, L), f ∈ Lp(0, T ;L2(0, L)), h̃ ∈ H and hi ∈ Lp(0, T ), for

i = 1, 2, 3, 4. If φ ∈W 1,p(0, T ) and ω ∈ J are such that ω′′(L) ̸= 0 and∫ L

0

u0(x)ω(x)dx = φ(0), (4)

considering c0 = ∥u0∥L2(0,L) + ∥f∥L2(0,T ;L2(0,L)) + ∥h̃∥H + ∥φ′∥L2(0,T ), the following assertions hold true.

1. For a fixed c0, there exists T0 > 0 such that for T ∈ (0, T0], then we can find a unique function h ∈ Lp(0, T )

in such a way that the solution u ∈ X(QT ) of (2) satisfies (1).

2. For each T > 0 fixed, exists a constant γ > 0 such that for c0 ≤ γ, then we can find a unique boundary control

h ∈ Lp(0, T ) with the solution u ∈ X(QT ) of (2) satisfying (1).

The next result ensures for the first time that we can control the Kawahara equation with a function f0 supported

in [0, T ]. Precisely, we will give an affirmative answer to the Problem B mentioned in this introduction.

Theorem 2.2. Let p ∈ [1,∞], u0 ∈ L2(0, L), h ∈ Lmax{2,p}(0, T ;L2(0, L)), h̃ ∈ H and hi ∈ Lp(0, T ), for

i = 1, 2, 3, 4. If φ ∈ W 1,p(0, T ), g ∈ C([0, T ];L2(0, L)) and ω ∈ J are such that ω′′(L) ̸= 0, and there exists a

positive constant g0 such that (4) is satisfied and∣∣∣∣∣
∫ L

0

g(t, x)ω(x)dx

∣∣∣∣∣ ≥ g0 > 0,

considering c0 = ∥u0∥L2(0,L) + ∥h∥L2(0,L) + ∥h̃∥H + ∥φ′∥L1(0,T ), we have that:

1. For a fixed c0, so there exists T0 > 0 such that for T ∈ (0, T0], exists a unique f0 ∈ Lp(0, T ) and a solution

u ∈ X(QT ) of (2), with f defined by (3), satisfying (1).

2. For a fixed T > 0, there exists a constant γ > 0 such that for c0 ≤ γ, we have the existence of a control input

f0 ∈ Lp(0, T ) which the solution u ∈ X(QT ) of (2), with f as in (3), verifies (1).

Some of the spaces that show up at the manuscript are listed below.

i. The space of Kawahara solution consider here is denoted by

X(QT ) = C([0, T ];L2(0, L)) ∩ L2(0, T ;H2(0, L)),

ii. Consider

H = H
2
5 (0, T )×H

2
5 (0, T )×H

1
5 (0, T )×H

1
5 (0, T ),

where h̃ = (h1, h2, h3, h4).

iii. The function ω must be a fixed function that belongs to the following set

J = {ω ∈ H5(0, L) ∩H2
0 (0, L); ω

′′(0) = 0}.
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Abstract

In this work we want to study the initialization problem for the bioconvective fluid system. That is, from

certain observations, recover the initial conditions. The problem is posed as an optimal control problem.

1 Introduction

Let Ω ⊆ R2 be a bounded domain and represents the region of flow of fluid. It denotes ∂Ω the boundary of Ω. We

consider the bioconvective flow system (see [2]):
∂u

∂t
− ν∆u+ u · ∇u+∇p = −κmχ+ f ,

divu = 0,
∂m

∂t
− θ∆m+ u · ∇m+U

∂m

∂x2
= 0, in (0, T )× Ω

(1)

with boundary and initial conditions
u = 0, on (0, T )× ∂Ω,

θ
∂m

∂n
−Umn2 = 0, on (0, T )× ∂Ω,

u(0) = u0, m(0) = m0, in Ω.

(2)

Here u(x, t) denotes the fluid velocity, p(x, t) is the hydrostatic pressure, c = κ(gρ)−1m where c(x, t) represents

the concentration of microorganisms at a point x = (x1, x2) ∈ Ω, and instant t ∈ [0, T ], here 0 < T < +∞, ν is

the kinematic viscosity of the culture fluid, g is the intensity of the acceleration of gravity (assumed constant), f

represents an external force given. We will suppose that f is divided into two parts,f̃ which does not depend on

t and f̂ that depends on t, θ is a constant that indicates the rate of diffusion of microorganisms, χ is a unitary

vector in the vertical direction, i.e., χ = (0, 1)t. That is, coordinate system is placed so that the gravitational forces

acting on vertical, U denotes the average velocity of swimming of the microorganisms in the vertical direction, ρ is

a positive constant, given by ρ =
ρ0
ρm

− 1, where ρ0 and ρm are the density of one organism and the culture fluid

density, respectively.

The functional framework is the following:

V (Ω) = {v ∈ H1
0 (Ω)

2 : divv = 0},

B =

{
w ∈ H1(Ω) :

∫
Ω

w(x)dx = 0

}
.

Let us define the trilinear maps b0 : V (Ω)× V (Ω)× V (Ω) → R b1 : V (Ω)×H1
0 (Ω)×H1

0 (Ω) → R given by

b0(u,v,w) =

2∑
i,j=1

∫
Ω

uj(x)
∂vi
∂xj

(x)wi(x)dx, b1(u, ϕ, ψ) =

2∑
i=1

∫
Ω

uj(x)
∂ϕ

∂xj
(x)ψ(x)dx
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2 Main Results

We consider the initialization problem (see [1]). Let T > 0, Z1, Z2 Hilbert spaces acting as observation spaces and

C : V (Ω)× B → Z1 × Z2 is a linear bounded mapping. We assume z = (z1, z2) ∈ L2(0, T ;Z1)× L2(0, T ;Z2). Let

S : V (Ω)×B → L2(0, T ;V (Ω))× L2(0, T ;B) be the mapping that takes the initial value (w0,m0) to the solution

(u,m), which it is possible to prove that it is continuous, among other properties. Define

J(ŵ, η̂) =

∫ T

0

∥CS(ŵ, η̂)(t)− (z1, z2)(t)∥2Z1×Z2
dt+ β∥(ŵ, η̂)∥2V (Ω)×B . (3)

We wish to solve the following optimal control problem: to find Ψ0 ∈ V (Ω)×B such that

J(w0, η0) = min{J(ŵ, η̂) : (ŵ, η̂) ∈ V (Ω)×B}. (4)

Theorem 2.1. There exists a solution of the problem (4), moreover, suppose that (w0, η0) is solution of the problem

(4), then there exist w,p ∈ L2(0, T ;V (Ω)) and η, q ∈ L2(0, T ;B) such that:(
∂w

∂t
,v

)
+

(
∂η

∂t
, ϕ

)
+ ν(∇w,∇v) + θ(∇η,∇ϕ) + b0(w,w,v) + b0(w,uα,v) + b0(uα,w,v)

+b1(w, η, ϕ) + b1(w,mα, ϕ) + b1(uα, η, ϕ)− U

(
η,

∂ϕ

∂x2

)
= κ(η, χ · v) + (f̂ ,v)

w(0) = w0, η(0) = η0,

−
(
∂p

∂t
,v

)
−
(
∂q

∂t
, ϕ

)
+ ν(∇p,∇v) + θ(∇q,∇ϕ) + b0(v,w,p) + b0(w,v,p) + b0(v,uα,p) + b0(uα,v,p)

+b1(p, η, ϕ) + b1(w, ϕ, q) + b1(v,mα, q) + b1(uα, ϕ, q)− U

(
ϕ,

∂q

∂x2

)
= κ(ϕ, χ · p) + (CS(Ψ0)− z, Cζ),

p(T ) = 0, q(T ) = 0.

(1)

2 {(p(0),v) + (q(0), ϕ)}+ β((Ψ0, ζ)) +

∫ T

0

{b1(p(t), η(t), φ2(t))− b1(φ1(t), η(t), q(t))} dt = 0, (2)

for all (v, ϕ) ∈ V (Ω)×B.
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Departamento de Matemática, UFPE, PE, Brasil1, Department of Mathematics, College of Science, Imam Abdulrahman

Bin Faisal University, Dammam, Saudi Arabia2

miguel.loayza@ufpe.br† mmajdoub@iau.edu.sa‡

Abstract

We prove existence and uniqueness of non-negative global solutions for the nonlinear heat equation ut−∆u =

|x|−γ uq, 0 < q < 1, γ > 0 in the whole space RN , and for initial data u0 ∈ C0(RN ), u0 ≥ 0.

1 Introduction

Consider the singular nonlinear parabolic problem{
ut −∆u = |x|−γ uq in RN × (0,∞),

u(x, 0) = u0(x) ≥ 0 in RN ,
(1)

where 0 < q < 1, γ > 0, and u0 ∈ C0(RN ), where C0(RN ) denotes the closure in L∞(RN ) of infinitely differentiable

functions with compact support in RN . Our main interest in this paper is to analyze the existence and uniqueness

of global solutions of (1) in the class L∞(RN × (0, T )).

The initial value problem (1) has attracted considerable attention in the mathematical community. The case

γ = 0 was considered in [1]. The case when |x|−γ is replaced with a function a(x) belonging to some Lebesgue

space was studied in [3] for bounded domains.

It is worth to mention that there has been a large amount of researches on the nonlinear heat equation with

convex nonlinearities (i.e. q > 1), and the monograph [4] cover a very extensive overview on the most established

results on the subject. See also [2, 5] and the references therein.

To our knowledge, there is no previous results on existence (local/global) for γ ̸= 0. The first difficulty to treat

problem (1) is that the nonlinearity uq is not a Lipschitz function. This is overcome, when γ = 0 in [1], by the fact

that every non-negative (nontrivial) solution u of problem (1) verifies the following estimate from below

u(t) ≥ [(1− q)t]1/(1−q) = u(t). (2)

Moreover, as it is easily verified, u is a global solution of problem (1) with u(0) = 0 and γ = 0. The second difficulty

is the presence of the singular weight a(x) = |x|−γ with γ > 0. In this case, u is not a solution of (1), and we need

to find a new estimate from below. Thus, we obtain the following estimate

u(x, t) ≥ η0t
1/(1−q)(|x|+

√
t)−γ/(1−q) = w(x, t),

where η0 is given by (2) below . In particular, when γ = 0 we have w(x, t) = u(t). Although w is not a solution of

problem (1) it is a subsolution with initial data u0 = 0; see Remark 2.1 below.

As is a standard practice, we study (1) via the associated integral equation:

u(t) = S(t)u0 +

∫ t

0

Sγ(t− σ)uq(σ) dσ, (3)

where {S(t)}t≥0 denotes the heat semigroup and Sγ(t) = S(t)| · |−γ .
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2 Main Results

Theorem 2.1. Let u0 ∈ C0(RN ), u0 ≥ 0, 0 < q < 1 and 0 < γ < min{2, N}. Then, there exists a non-negative

global solution for problem (1).

Theorem 2.2. Assume that 0 < q < 1, 0 < γ < min{2, N}, u0 ∈ C0(R)N , u0 ≥ 0.

� If u0 ̸= 0, then the solution of problem (1) is positive and verifies the following estimate

u(x, t) ≥ [η0(1− q)]1/(1−q)t1/(1−q)(|x|+
√
t)−γ/(1−q) := w(x, t), (1)

for all x ∈ RN and t ≥ 0, where

η0 = η0(γ, q) = (4π)−N/2
∫
RN

exp

(
−|z|2

4

)
(1 + |z|)−γ(2 + |z|)−γq/(1−q)dz. (2)

Moreover, w is a subsolution of problem (1) with u0 = 0.

� For u0 = 0 there exists a positive solution u which also verifies the inequality (1).

� There exists γ∗ ∈ (0,min{2, N}) so that for every u0 ̸= 0, the global solution obtained in Theorem 2.1 is

unique if 0 < γ < γ∗.

Remark 2.1. Here are some comments on Theorem 2.2.

� If γ = 0, then η0 = 1 and w(x, t) = [(1− q)]1/(1−q)t1/(1−q), that is, w is the bound from below given in (2).

� For γ = 0 and u0 ̸= 0, problem (1) admits a unique solution. Thus, we extend this result for a small values

of γ > 0.
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Sciences de Toulouse, Vol. VIII (1986-1987), 175–203.

[2] brezis, h. and cazenave, t., A nonlinear heat equation with singular initial data, Journal D’Analyse
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Abstract

This work is devoted to presenting Massera-type theorems for the Kawahara system, a higher-order dispersive

equation, posed in a bounded domain. Precisely, thanks to some properties of the semigroup and the decay of

the solutions of this equation, we can prove its solutions are periodic, quasi-periodic, and almost periodic.

1 Introduction

We are interested to prove some periodic properties of the following Kawahara equation in a bounded domain
ut + uxxx − uxxxxx + uux = 0 (x, t) ∈ I × R

u(0, t) = φ(t), u(1, t) = ux(1, t) = ux(0, t) = 0, t ∈ R

uxx(1, t) = αuxx(0, t), t ∈ R

u(x, 0) = u0(x), x ∈ I,

(1)

with a boundary force φ(t) in a bounded domain I = (0, 1) and a damping term αuxx(0, t), where |α| < 1. Precisely,

we are interested to understand if the system (1) has good properties when we investigate its solutions, considering

the context introduced to Massera. Roughly speaking, we are interested in the study of the existence and qualitative

property of recurrent solutions. This kind of property may be reformulated in the following question.

Question A : Are there periodic solutions for the system (1)?

The first result is devoted to proving the well-posedness via semigroup theory, which is the key to proving the

other main results of the article. Precisely, we first prove that the linear Kawahara operator generates {S(t)}t≥0

the C0–semigroup of contraction on L2(I).

Theorem 1.1. There exists ω > 0 such that for any k = 0, 1, 2, 3, 4 and 5, we can find a positive constant Ck > 0

which the semigroup associated to the linear Kawahara operator satisfies

∥S(t)u0∥Hk
α(I) ≤ Cke

−ωt∥u0∥Hk
α(I),

for all t > 0.

The previous theorem is the key to proving the existence of the bounded solution for the Kawahara equation

(1). The next theorem, thanks to the previous one, ensures that the solutions of (1) are bounded.

Theorem 1.2. There exists a constant ϵ > 0 such that for all φ ∈ C1(R) satisfying ∥φ∥C1(R) ≤ ϵ, the system (1)

admits a unique solution u such that

∥u∥X ≤ Cϵ,

where C > 0 is a constant independent of ϵ.
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The next three theorems give us Massera-type theorems for a higher-order dispersive system. The first one,

stated below, guarantees that the solution of (1) is T–periodic.

Theorem 1.3. Let

∥φ∥C1(R) ≤ ϵ,

where ϵ is the constant determined by Theorem 1.2. If φ is a function T–periodic, thus u solution of (1), given by

Theorem 1.2, is also a function T–periodic.

Additionally, the next Massera-type theorem gives some property of the periodicity of the solution to (1). The

result can be read as follows.

Theorem 1.4. Let

∥φ∥C1(R) ≤ ϵ,

where ϵ is the constant determined by Theorem 1.2. If φ is a quasi-periodic function, the solution u of (1), obtained

in Theorem 1.2, is also a quasi-periodic function. Moreover, if φ is ω–quasi-periodic function in t, thus the solution

u of (1), obtained in Theorem 1.2, is also ω–quasi-periodic function in t.

Finally, let us present the last result of this work. Precisely, we can prove that the solutions of (1) are almost

periodic.

Theorem 1.5. Let ∥φ∥C1(R) ≤ ϵ, where 0 < ϵ ≪ 1 is obtained via Theorem 1.2. If φ,φ′ are functions almost

periodic, the solution u of (1), given by Theorem 1.2, is also an almost periodic function.
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Abstract

In this work we establish some regularity results concerning the behavior of weak solutions and very weak

solutions of the degenerate wave equation near the boundary. For the nondegenerate case, the correponding

results were originally obtained by Fabre and Puel [1]. This kind of results is closely related to the exact

boundary controllability for the wave equation as the limit of internal controllability.

1 Introduction

In this work we are interested in studying the behavior, near the boundary point x = 1, of the weak and very weak

solutions of the following degenerate wave equation:

utt − (xαux)x = f, (t, x) ∈ Q,

u(t, 1) = 0, in (0, T ),
u(t, 0) = 0, if α ∈ (0, 1),

or

(xαux)(t, 0) = 0, if α ∈ [1, 2),

t ∈ (0, T ),

u(0, x) = u0(x) and ut(0, x) = u1(x) x ∈ (0, 1),

(1)

where T > 0, Q = (0, T ) × (0, 1), α ∈ (0, 2) and the data (f, u0, u1) belongs to spaces that will determine the

regularity of the solution. To develop this study, the L2 norm of the solution will be analyzed in an ε-neighborhood

of the boundary point x = 1.

For the nondegenerate wave equation, an analogous investigation has been considered by Fabre and Puel in [1].

Their results have played a key role in [2], where an exact boundary controllability is achieved as the limit of a

sequence of internal controllability problems, set in ε- neighborhoods of the boundary, as ε→ 0.

In order to stablish our main results, let us define some spaces. Consider α ∈ (0, 1), for the weakly degenerate

case (WDC), or α ∈ [1, 2), for the strongly degenerate case (SDC).

(I) For the (WDC), we set

H1
α := {u ∈ L2(0, 1); u is absolutely continuous in [0, 1], xα/2ux ∈ L2(0, 1) and u(1) = u(0) = 0},

equipped with the natural norm

∥u∥H1
α
:=
(
∥u∥2L2(0,1) + ∥xα/2ux∥2L2(0,1)

)1/2
;
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(II) For the (SDC),

H1
α := {u ∈ L2(0, 1); u is locally absolutely continuous in (0, 1], xα/2ux ∈ L2(0, 1) and u(1) = 0},

and the norm keeps the same;

(III) In both situations, the (WDC) and the (SDC),

H2
α := {u ∈ H1

α; x
α/2ux ∈ H1(0, 1)}

with the norm ∥u∥H2
α
:=
(
∥u∥2H1

α
+ ∥(xα/2ux)x∥2L2(0,1)

)1/2
.

Another important space in this context is H−1
α = (H1

α)
′ (the dual space of H1

α).

Now we are ready to state our main results below.

2 Main Results

Theorem 2.1. Given 0 < ε0 < 1, there exists C > 0 such that, for all (u0, u1) ∈ H1
α × L2(0, 1) and

f ∈ L1(0, T ;L2(0, 1)), if u is a weak solution to (1), then

1

ε3

∫ T

0

∫ 1

1−ε
|u(t, x)|2 dx dt ≤ C

(
∥f∥2L1(0,T ;L2(0,1)) + ∥u0∥2H1

α
+ ∥u1∥2L2(0,1)

)
, ∀ε ∈ (0, ε0],

where C only depends on ε0, α and T .

Theorem 2.2. Let us consider a family of functions (hε, φ
0
ε, φ

1
ε) ∈ L1(0, T : L2(Ω))× L2(Ω)×H−1

α such that

hε ⇀ h in L1(0, T : L2(0, 1)),

φ0
ε ⇀ φ0 in L2(0, 1),

φ1
ε ⇀ φ1 in H−1

α ,

and let φε be the solution by transposition of problem (1) with (f, u0, u1) = (hε, φ
0
ε, φ

1
ε). If

1

ε3

∫ T

0

∫ 1

1−ε
|φε(t, x)|2 dx dt ≤ C,

where C does not depend on ε, then φx(·, 1) ∈ L2(0, T ) and

1

3
∥φx(·, 1)∥2L2(0,T ) ≤ lim inf

ε→0+

(
1

ε3

∫ T

0

∫ 1

1−ε
|φε(t, x)|2 dx dt

)
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Abstract

This paper is concerned with dynamics of a class of beam/plate equation with nonlocal damping that is

derived from nonlocal dissipative energy models for flight structures proposed by Balakrishnan-Taylor [2].

1 Introduction

This work is concerned with the well-posedness and long-time dynamics of solutions to the initial boundary value

problem of a plate equation with nonlocal nonlinear damping and source terms:

utt +∆2u+ γ
[
∥∆u∥2 + ∥ut∥2

] β
2 ut + f(u) = h in Ω× R+. (1)

where γ > 0, β ≥ 1, Ω ⊂ RN is a bounded domain of with smooth boundary Γ = ∂Ω, f is a nonlinear function,

h is an external force, and ∥ · ∥ stands for the norm in L2(Ω). We consider either clamped or hinged boundary

conditions, described respectively by

u|Γ×R+ =
∂u

∂ν
|Γ×R+ = 0 or u|Γ×R+ = ∆u|Γ×R+ = 0, (2)

where ν is the unit exterior normal to Γ. The initial conditions associated to (PΦ) are given by

u(x, 0) = u0(x) and ut(x, 0) = u1(x), x ∈ Ω. (3)

Let V0 = L2(Ω) and V1 = H1
0 (Ω), and to attend the two boundary conditions in (2) we define V2 = H2

0 (Ω) or

V2 = H2(Ω) ∩H1
0 (Ω). Let λ1 > 0 the first eigenvalue of the bi-harmonic operator ∆2 in V2.

Assumption 1.1 f is a C1-function on R satisfying

� |f ′(s)| ≤ cf ′(1 + |s|ρ), ∀ s ∈ R,

� −cf − α
2 s

2 ≤ f̂(s) :=
∫ s
0
f(τ)dτ ≤ f(s)s+ α

2 s
2, ∀ s ∈ R,

where we consider cf ′ > 0, cf ≥ 0, 0 ≤ α < λ1, and ρ > 0 if 1 ≤ n ≤ 4 or 0 < ρ ≤ 4
n−4 if n ≥ 5.

Our analysis with respect to the global existence and long-time behavior of solutions is given on the phase space

H = V2 × V0 equipped with norm ∥(u, v)∥2H = ∥∆u∥2 + ∥v∥2.

2 Mathematical Results

The existence and uniqueness results of the global solutions in the space H are given in the following theorem.

Theorem 2.1. Let T > 0 be arbitrary, h ∈ W0, γ > 0, and β ≥ 1. Under Assumption 1.1 we have: if initial data

(u0, u1) ∈ H, then problem (PΦ)-(3) has a unique weak solution

(u, ut) ∈ C([0, T ],H), ∀ T > 0, (4)

satisfying

u ∈ L∞(0, T ;V2), ut ∈ L∞(0, T ;V0) and utt ∈ L2(0, T ;V ′
2). (5)
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Proof The principle of the proof is classical. We using the Faedo-Galerkin method associated to compactness

arguments. The well-posedness of problem (PΦ)-(3) given by Theorem 2.1 implies that the evolution operator

S(t) : H → H defined by

S(t)(u0, u1) = (u(t), ut(t)), t ≥ 0, (6)

where (u, ut) is the unique weak solution of the system (PΦ)-(3), defines a nonlinear C0-semigroup which is locally

Lipschitz continuous on the phase space H. Therewith the dynamics of problem (PΦ)-(3) can be studied through

the continuous dynamical system (H, S(t)).

Our main result in the present work is the following.

Theorem 2.2. Assume that hypotheses of Theorem 2.1 hold with 1 ≤ 2q−1q < 2. Then, we have

� (Global attractor) the associate dynamical system (H, S(t)) of problem (PΦ)-(3) has a compact global

attractor A in H.

� (Characterization) the global attractor A is precisely the unstable manifold A = Mu(N ) emanating from

the set of stationary solution N . In addition, A consist of full trajectories Υ = {U(t) = (u(t), ut(t)) : t ∈ R}
such that

lim
t→−∞

distH(U(t),N ) = 0 and lim
t→+∞

distH(U(t),N ) = 0.

Proof The existence of a compact global attractor is granted once our dynamical system (H, S(t)) is dissipative
and satisfies an asymptotic smoothness property. Here we explore recent results from dynamics theory for equations

of evolution of Chueshov and Lasiecka [3, 4].

References

[1] A. V. Balakrishnan, A theory of nonlinear damping in flexible structures. Stabilization of flexible structures,

p. 1-12, 1988.

[2] A. V. Balakrishnan and L. W. Taylor, Distributed parameter nonlinear damping models for flight structures,

in: Proceedings Damping 89, Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, 1989.

[3] chueshov, i. and lasiecka, i. - Long-Time Behavior of Second Order Evolution Equations with Nonlinear

Damping, Mem. Amer. Math. Soc. 195, no. 912, Providence, 2008.

[4] chueshov, i. and lasiecka, i. - Von Karman Evolution Equations: Well-Posedness and Long-Time

Dynamics, Springer Monographs in Mathematics, Springer, New York, 2010.



ENAMA - Encontro Nacional de Análise Matemática e Aplicações
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Abstract

In order to introduce uncertainty in geomechanical analysis, taking into account the random nature of soil

parameters, Bayesian inference techniques are implemented in highly heterogeneous porous media. Within the

framework of a coupling algorithm, these are incorporated into the inverse poroelasticity problem, with porosity,

permeability and Young modulus treated as stationary random fields obtained by the moving average (MA)

method. To this end, the Metropolis-Hasting (MH) algorithm was chosen to seek the geomechanical parameters

that yield the lowest misfit. Numerical simulations related to injection problems and fluid withdrawal in a 3D

domain are performed to compare the performance of this methodology. We conclude with some remarks about

numerical experiments

1 Introduction

Most flow-geomechanical simulators are impacted by rock heterogeneities. They are characterized by spatial

variations in the distribuition of their flow properties such as the permeability and porosity, and poromechanical

parameters that control the velocity and displacement of flow beyond the change of fluid content. In consequence,

there are fluctuations in Darcy velocity and stress caused by the variations in porosity, permeability field, and elastic

constants that directly impacts oil recovery models [1]. In this case, obtaining a more accurate solution is very

important since fingering instabilities are determined by these parameters, which are uncertain in the description

of the porous medium. The poromechanical parameters must be represented correctly in order to take into account

the random anture of the geomechanical simulation.

A particular interest in the present work is checking how random parameters (porosity, permeability, Young

modulus) impact the fluid pressure around the reservoir. These changes in the reservoir may interfere with the

production scenario; futhermore, they may create necessity for efficient reservoir modeling. Our goal is to present an

inversion procedure based on Bayesian inference for a coupled 3D poroelasticity problem in order to estimate fields

of porosity, permeability, and Young modulus, produced form a priori information of the solution in heterogeneous

reservoirs.

Porosity, permeability, and Young modulus will be modeled as random fields when describing two-phase flow in

porous media. We will use fluid dynamics relationships to construct inverse models of the porosity, permeability and

the Young modulus. Due to the random nature of the process, we will impose in the experiments that these fields

are generated independently by MA method [2]. To generate single-chains based on the Metropolis criterion, the

Random Walk (RW) algorithm is commonly used to generate posterior probability distributions for all parameters

[3]. It is important to note that we present a simple technique of Bayesian inference that is easily integrated into

any discretization technique.
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2 Stochastic Geomechanical Model

Let us consider a time interval [0, T ] and an open subset D ⊂ R3, with boundary ∂D and unit outward normal n.

Let (Ω,F , P ) be a complete probability space. Here Ω is the set of outcomes, F ⊂ 2Ω is the σ-algebra of events,

and P : F → [0, 1] is a probability measure. Let the set {ω,x, t} ⊂ Ω×D× [0, T ] based on an random event, spatial

position and time, respectively.

The displacement is given by u := u(ω,x, t) ∈ R3 while p := p(ω,x, t) refer to the Biot pressure related to the

fluid variables by the constitutive relation:

∇ · (σ(u)− αpI) = f , (1)

where f : D × (0, T ] → R3 is a external volumetric force, α is the Biot coefficient and I is the unit tensor, while

the elastic variables:

σ = Cε and ε(u) =
1

2
(∇+∇T )u. (2)

denote the Cauchy stress tensor and infinitesimal strain tensors respectively. The fourth order stiffness tensor C is

given by coefficients Cijkl = λsδijδkl + µs(δikδjl + δilδjk) where δij is the Kronecker delta and (λ, µ) is the pair of

Lamé coefficients associated with the Young modulus E := E(ω,x) through the definitions:

λ =
Eν

(1 + ν) (1− 2ν)
, µ =

E

2 (1 + ν)
, (3)

where ν is the deterministic Poisson ratio (with 0 ≤ ν < 0.5).

In order to relate the equations that govern elasticity and fluid, a constitutive relation for porosity is defined as:

ϕ = ϕ0 + α∇ · u+ cr(α− ϕ0)(p− p0), (4)

in that, ϕ0 and p0 refer to initial values of Lagrangian porosity and pressure respectively, while cr is the rock

compressibility (for details see [4] pg. 74). Here ϕ0 is a uncertainty parameter.

We consider a saturated porous medium where the governing equations of the two-fluid model are as follows:

∂t(ϕbksk) +∇ · (bkvk) = bkqk k = w, o, (5)

where qk is the source term, sk the saturation, and vk the Darcy velocity relating for the fluxes in the porous media

expressed by:

vk = −κrK
µk

(∇pk − ρkg∇z), (6)

such that g is the gravity field and K is the absolute permeability. For ease, we will assume that K = κ(x)I, where

I is a unit matrix and κ(x) is a scalar function. Here bk represents the ratio between volume at elevated pressure

and volume at surface conditions, κr is the relative permeability, µk define the viscosity, and ρk denote the density

of a fluid in the phase k.
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Departamento de Matemática, UFPB, PB, Brasil1, Departamento de Matemática, UFPB, PB, Brasil2
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Abstract

Pietsch’s Factorization Theorem is one of the main results of the theory of absolutely summing operators.

This work aims to study some classes of linear and multilinear operators, in a certain abstract context, that

satisfy a Pietsch-type Factorization theorem.

1 Introduction

The theory of absolutely summing linear operators plays a prominent role in Functional Analysis. A continuous

linear operator between Banach spaces T : X → Y is absolutely p-summing, 1 ≤ p <∞, if there is a constant C > 0

such that, for all n ∈ N and x1, . . . , xn ∈ X, we have n∑
j=1

∥T (xj)∥p
1/p

≤ C sup
φ∈BX∗

 n∑
j=1

|φ(xj)|p
1/p

,

where BX∗ denotes the closed unit ball of the topological dual X∗ of X.

If X is a Banach space, then the canonical map I : X → C(BX∗) given by

I(x)(φ) = φ(x), for all x ∈ X and φ ∈ BX∗ ,

is a linear isometry. In addition, if µ is a regular Borel probability measure on BX∗ , then the canonical inclusion

map Jp : C(BX∗) → Lp(µ) is absolutely p-summing.

Theorem 1.1 (Pietsch’s Factorization). An operator T : X → Y is absolutely p-summing if and only if there are

a regular Borel probability measure µ in BX∗ , a closed subspace Xp ⊆ Lp(µ), and a linear continuous operator

T̂ : Xp → Y such that Jp(I(X)) ⊆ Xp and

T = T̂ ◦ Jp ◦ I.

Due to the importance of this theorem and their applications, it is natural to investigate whether the above

theorem holds in generalizations of the class of absolutely summing linear operators. However, this task is quite

challenging as many tools used in linear theory do not work in more general contexts.

Thus, the main purpose here is to study some classes of linear and multilinear operators, introduced by Achour

et al. in [1], that satisfy a Pietsch-type Factorization theorem.

2 Main Results

A map between vector spaces Ψ : X → Y is absolutely homogeneous if Ψ(λx) = |λ|Ψ(x), for all x ∈ X and λ ∈ K. If

X and Y are normed spaces, then Ψ : X → Y is bounded if there is a constant KΨ > 0 such that ∥Ψ(x)∥ ≤ KΨ∥x∥,
for all x ∈ X.
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Letm ∈ N, andX1, . . . , Xm and Y Banach spaces. The canonical map Im : X1×· · ·×Xm → C(B(X1⊗̂π...⊗̂πXm)∗)

given by

Im(x)(φ) = φ(x1 ⊗ · · · ⊗ xm), for all x = (x1, . . . , xm) ∈ X1 × · · · ×Xm and φ ∈ B(X1⊗̂π...⊗̂πXm)∗ ,

is m-linear and continuous. Denoting by Im(x1, . . . , xm) = ⟨x1 ⊗ · · · ⊗ xm, ·⟩ and V̂m = span{Im(X1 × · · · ×Xm)},
the expression

x =

d∑
k=1

⟨x1,k ⊗ · · · ⊗ xm,k, ·⟩.

provides the usual representation for an element x ∈ V̂m.

Let Φ : V̂m → C(B(X1⊗̂π...⊗̂πXm)∗) an absolutely homogeneous map, Z a Banach space and J : span{Φ(V̂m)} →
Z a linear continuous operator. The expression

ρΦ,Z(x) = inf

{
r∑
i=1

∥∥∥∥∥J ◦ Φ

(
d∑
k=1

⟨x1,ki ⊗ · · · ⊗ xm,ki , ·⟩

)∥∥∥∥∥
Z

: x =

r∑
i=1

d∑
k=1

⟨x1,ki ⊗ · · · ⊗ xm,ki , ·⟩

}

defines a seminorm in V̂m. Consider the subspace N = {x ∈ V̂m : ρΦ,Z(x) = 0} of V̂m. The completion of V̂m/N ,

denoted by (V̂m)ZΦ and called domination space of V̂m defined by Φ and Z, is a Banach space with the norm

∥[x]∥
(V̂m)ZΦ

= ρΦ,Z(x).

Furthermore, if Φ is a bounded, then the canonical linear map I
(V̂m)ZΦ

: V̂m → (V̂m)ZΦ given by

I
(V̂m)ZΦ

(x) = [x], for all x ∈ V̂m,

is continuous.

Let Φ : V̂m → C(B(X1⊗̂π...⊗̂πXm)∗) an absolutely homogeneous map. A m-linear continuous operator

T : X1 × · · · × Xm → Y is strongly Φ-abstract p-summing, 1 ≤ p < ∞, if there is a constant C > 0 such

that, for all n, d ∈ N and xt,kj ∈ Xt, (t, j, k) ∈ {1, . . . ,m} × {1, . . . , n} × {1, . . . , d}, we have n∑
j=1

∥∥∥∥∥
d∑
k=1

T (x1,kj , . . . , xm,kj )

∥∥∥∥∥
p
1/p

≤ C

∥∥∥∥∥∥∥
 n∑
j=1

∣∣∣∣∣Φ
(

d∑
k=1

⟨x1,kj ⊗ · · · ⊗ xm,kj , ·⟩

)∣∣∣∣∣
p
1/p

∥∥∥∥∥∥∥
C(B(X1⊗̂π...⊗̂πXm)∗ )

. (1)

Theorem 2.1. If Φ : V̂m → C(B(X1⊗̂π...⊗̂πXm)∗) is a bounded absolutely homogeneous map, then an operator

T : X1×· · ·×Xm → Y is strongly Φ-abstract p-summing if and only if there are a regular Borel probability measure

µ in B(X1⊗̂π...⊗̂πXm)∗ , a domination space (V̂m)
Lp(µ)
Φ defined by Φ and Lp(µ), and a linear continuous operator

T̂ : (V̂m)
Lp(µ)
Φ → Y such that

T = T̂ ◦ I
(V̂m)

Lp(µ)

Φ

◦ Im.

Remark 2.1. By appropriately choosing the parameters of Theorem 2.1, we can recover and prove Pietsch-type

Factorization theorems for several classes of operators, such as absolutely p-summing linear operators, (p;σ)-

absolutely continuous linear operators, strongly p-summing multilinear operators, and factorable strongly (p;σ)-

summing multilinear operators.
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Abstract

In this work we present a certain class of mid summing linear operators, more general than the one defined in

[1], and a somewhat convenient relation of this class with classes of multiple summing operators. This kind of

relationship between linear and non-linear theory, object of study in our dissertation, establishes coincidence

and inclusion results for the presented class of operators.

1 Introduction

In the paper [3], A. Karn and D. Sinha introduce and study the concepts of p-limited sets, p-compactness and weak

p-compactness. These concepts are then worked on in various aspects, such as their relationship with certain classes

of operator and the Dunford-Pettis property. In particular, this study gives rise to the space of mid p-summable

sequences and this space was subject to a complementary and more detailed investigation in [1]. In this work, the

authors work from the point of view of the abstract theory of sequence classes, which generalizes classes of operators

characterized by transformations of vector-valued sequences, and study classes of mid summing operators.

From the work [2], which generalizes the space of mid p-summable sequences, we will present a result that relates

the linear theory of mid summing operators to the multilinear theory of absolutely summing operators. This result

leads us to inclusion and coincidence results that are not present in previous works.

In what follows, the letters E, F will denote Banach spaces over K = R or C. The symbol E
1
↪→ F denotes E ⊂ F

and ∥x∥F ≤ ∥x∥E , for all x ∈ E. The ideal of the multiple (q1, . . . , qn; p1, . . . , pn)-summing n-linear operators will

be denoted by Πnq1,...,qn;p1,...,pn . Other notations and symbols used here are well known or can be found in [1, 2].

2 Main Results

The space of mid (q, p)-summable sequences in E, denoted by ℓmid
q,p (E) is the space formed by all sequences (xj)

∞
j=1

in E satisfying ((φn(xj))
∞
n=1)

∞
j=1 ∈ ℓq(ℓp), whenever (φn)

∞
n=1 ∈ ℓwp (E

′). The expression

∥(xj)∞j=1∥q,p = sup
(φn)∞n=1∈Bℓwp (E′)

 ∞∑
j=1

( ∞∑
n=1

|φn(xj)|p
)q/p1/q

defines a complete norm in ℓmid
q,p (E) and when p = q we have ℓmid

p,p (E) = ℓmid
p (E), space studied in [1].

It is not difficult to show that ℓq(E)
1
↪→ ℓmid

q,p (E)
1
↪→ ℓwq (E), with 1 ≤ p, q < ∞, and that ℓmid

q,p (·) is a sequence

class.

If x = (xj)
∞
j=1 ∈ ℓwq (E), it follows that the operator ψx : E′ → ℓq, given by ψx(φ) = (φ(xj))

∞
j=1, is linear and

continuous, with ∥ψx∥ = ∥(xj)∞j=1∥w,q. Using Minkowski’s inequality and the operator ψx, we obtain the following

result.

Theorem 2.1. Let x = (xj)
∞
j=1 ∈ ℓwq (E).
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a) If q ≤ p and x ∈ ℓmid
q,p (E), then ψx ∈ Πp(E

′, ℓq) and πp(ψx) ≤ ∥(xj)∞j=1∥q,p.

b) If q ≥ p and ψx ∈ Πp(E
′, ℓq), then x ∈ ℓmid

q,p (E) and ∥(xj)∞j=1∥q,p ≤ πp(ψx).

Of course, the above sentences are equivalent if p = q.

From the theorem above it follows that ℓmid
q,p (E)

1
↪→ ℓmid

r,s (E), when q ≤ p ≤ s ≤ r. In particular,

ℓmid
p (E)

1
↪→ ℓmid

q (E), if p ≤ q.

Definition 2.1. Let q ≥ r and T ∈ L(E;F ). We say that T is weakly mid (q, p; r)-summing if (T (xj))
∞
j=1 ∈ ℓmid

q,p (F ),

whenever (xj)
∞
j=1 ∈ ℓwr (E).

The space of all weakly mid (q, p; r)-summing operators from E to F will be denoted by Wmid
q,p;r(E,F ). The

case p = q, denoted Wmid
p;r (E,F ), was defined and studied in [1] and the case p = q = r, denoted Wmid

p (E,F ), was

defined in [3].

A necessary and sufficient condition to T ∈Wmid
q,p;r(E,F ) is that there exists a constant B > 0 such that ∞∑

j=1

( ∞∑
n=1

|φn(T (xj))|p
)q/p1/q

≤ B ·
∥∥(xj)∞j=1

∥∥
w,r

· ∥(φn)∞n=1∥w,p , (1)

whenever (xj)
∞
j=1 ∈ ℓwr (E) and (φn)

∞
n=1 ∈ ℓwp (F

′). Defining the bilinear (continuous) form ΦT : F ′ × E → K by

ΦT (φ, x) = φ(T (x)), you can see that ∞∑
j=1

( ∞∑
n=1

|φn(T (xj))|p
) q

p

 1
q

=

 ∞∑
j=1

( ∞∑
n=1

|ΦT (φn, xj)|p
) q

p

 1
q

.

Using the expression above, the characterization in (1) and the definition of multiple summing operators (see [2,

Definition 4.3]) we get the result below.

Theorem 2.2. The operator T ∈ L(E;F ) is weakly mid (q, p; r)-summing if and only if the bilinear operator ΦT

be multiple (p, q; p, r)-summing.

Corollary 2.1. For an admissible choice of parameters q, q1, p, p1, r e r1:

(a) Wmid
q,p;r(E;F ) = L(E;F ), if Π2

p,q;p,r(F
′, E;K) = L(F ′, E;K).

(b) Wmid
q,p;r(E;F ) ⊆Wmid

q1,p1;r1(E;F ), if Π2
p,q;p,r(F

′, E;K) ⊆ Π2
p1,q1;p1,r1(F

′, E;K).

As applications of the results above, for 1 ≤ p, q < 2, we have: i) Wmid
p (E;F ) ⊂ Wmid

q (E;F ) when p ≤ q; ii) If

E,F ′ have cotype 2, then Wmid
p (E;F ) =Wmid

q (E;F ).

References

[1] botelho, g., campos, j. r. & santos, j. - Operator ideals related to absolutely summing and Cohen strongly

summing operators, Pacific J. Math 287, (2017), 1-17.

[2] campos, j. r. & santos, j. - An anisotropic approach to mid summable sequences, Colloquium Mathematicum

161, (2020), 35-49.

[3] karn, a. k. & sinha, d. p. - An operator summability of sequences in Banach spaces, Glasg. Math. J. 56

(2), (2014), 427-437.



ENAMA - Encontro Nacional de Análise Matemática e Aplicações
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Abstract

In classical Fourier analysis the decay of the Fourier transform is a fundamental theme. Norm inequalities

for the Fourier transform are known useful tools for relating smoothness and the decay of the transform. In this

work we explore weighted norm inequalities for integral transforms generated by continuous kernels satisfying a

size condition. We present Pitt’s inequality for the integral tranforms we consider and, in particular, we recover

important and classical inequalities for the Fourier, Hankel and Jacobi transforms.

1 Introduction

The classical Pitt’s inequality for the Fourier transforms states that for 1 < p ≤ q <∞, it holds(∫
Rn

|f̂(y)|q|y|−qγdy
)1/q

≲

(∫
Rn

|f(x)|q|x|pβdx
)1/p

,

if and only if

max {0, n(1/p+ 1/q − 1)} ≤ γ < n/q and β − γ = n(1− 1/p− 1/q).

Above f̂ represents the Fourier transform of f and the sign a(s) ≲ b(s) means a(s) ≤ cb(s), for some constant does

not depending on s. We will employ the notation a(s) ≍ b(s), for a(s) ≲ b(s) and b(s) ≲ a(s).

We will present Pitt’s inequality for a general class of integral transforms. The results are weighted norm

inequalities for the so called F-transform. The goal is to characterize the pairs of the weights u and v, that are

non-negative and locally integrable functions, such that inequalities of type

||F (f)||q,u ≲ ||f ||p,v

holds, with the operator F : Lpv −→ Lqu given by

F (f)(x) =

∫ ∞

0

f(y)K(x, y)s(y)dy, x > 0,

where s a continuous function satisfying a monotonicity condition, K is a continuous kernel, and for f locally

integrable functions.

2 Main Results

In this section we present the definition of the integral transforms we will work with and we state Pitt’s inequality

for the general transform. We follow the path designed in [1]. The classical setting, i.e., weighted inequalities for

the Fourier transform, can be seen in [2].
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Let s > 0 a non-decreasing continuous function that satisfies

s(2y) ≲ s(y), y > 0,

and consider K a continuous kernel. The integral transform

Ff(x) :=

∫ ∞

0

f(y)K(x, y)s(y)dy, x > 0, f ∈ L1
loc,

is a F-transform if there exists a non-decreasing function w ≥ 0 with w(x)s (1/x) ≍ 1, for x > 0, such that, for

all f ∈ L2
s, the Bessel’s inequality

||Ff ||2,w ≲ ||f ||2,s or ||w1/2Ff ||2 ≲ ||s1/2f ||2

holds, and the kernel K satisfies

|K(x, y)| ≲ min
{
1, [w(x)s(y)]−1/2

}
, x, y > 0.

In the main theorem we employ the notation

Pxg =

∫ x

0

g(y)dy, and Qxg =

∫ ∞

x

g(y)dy,

for g a non-negative function and x > 0. We will also write f∗ the non-increasing rearrangement of f ∈ Lp(Rn) as
in ([3], p. 189).

Theorem 2.1. (A) Let 1 < p ≤ q < ∞, 1 < a ≤ 2, (p, q, a) ̸= (2, 2, 2), u and v locally integrable functions such

that u∗, v1−p
′

∗ ∈ L1
loc,

(
P1/ru

∗) 1q (Prv1−p′∗

) 1
p′

≲ 1, and
[
Q1/r

(
x−

q
a′ u∗

)] 1
q
[
Qr

(
y−

p′

a′ v1−p
′

∗

)] 1
p′

≲ 1, r > 0.

Then, the Pitt’s inequality

||w
1
a′ Ff ||q,u ≲ ||s

1
a f ||p,v,

holds for the wights s and w from the definition of the F-transform. Moreover, if p = q = a = 2, u and v are locally

integrable functions such that u∗, v−1
∗ ∈ L1

loc, and(
P1/ru

∗) (Prv−1
∗
)
≲ 1, r > 0,

then Pitt’s inequality

||w
1
2Ff ||2,u ≲ ||s

1
2 f ||2,v,

holds, for the wights s and w from the definition of the F-transform.
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UFAL - Universidade Federal de Alagoas
XVI ENAMA - Novembro 2023 175–176

INTRODUCTION TO THE THEORY OF DISTRIBUTIONS
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Abstract

Our main goal in this work is to present the concept and main properties of the Theory of Distribution, which

is fundamental in the study of solutions for PDEs. Observe that, in classical calculus, the equations
∂2u

∂x∂y
= 0

and
∂2u

∂y∂x
= 0 do not have the same solution: the first equation is satisfied by u(x, y) = |x| while ∂u

∂x
is not

defined for x = 0. In distributions, we complement the function space with new objects, so that the derivatives

are always possible.

1 Introduction

The discussion of solutions for partial differential equations is facilitated by the Theory of Distributions, as it

generalizes classical notions of Mathematical Analysis, in order to derive a larger class of functions. In this text,

the space of distributions and their essential operations are defined. There is the remarkable fact that, if a function

is differentiable in the classical sense, then the derivative in both senses coincides. To illustrate the use of the

presented techniques, fundamental solutions are calculated for some very important partial differential equations:

the Cauchy-Riemann operator in C and the Laplacian
a

in RN.

2 Main Results

Definition 2.1. For an open subset Ω of RN, the space of distribuitions D′(Ω) is defined to be the dual space of

D(Ω). That is, D′(Ω) is the space of all continuous linear maps T from D(Ω) to C. Analogously, E ′(Ω) is defined

to be the dual space of E(Ω). The pairing between an element T of D′(Ω) and an element ϕ of D(Ω) will be denoted

by (T, ϕ)Ω ∈ C.

Example 2.1. Let T be a locally integrable function on Ω. Then T can be viewed as an element of D′(Ω) by

defining

(T, ϕ)Ω =

∫
x ∈ ΩT (x)ϕ(x)dx for ϕ ∈ D(Ω).

Example 2.2. For a point p ∈ RN, the delta function at p, δp defines an E ′(RN)-distribution defined by

(δp, f)RN = f(p) , f ∈ E(RN).

Definition 2.2. If T is a smooth function on Ω and ϕ ∈ D(Ω), then

(DαT, ϕ)Ω =

∫
x ∈ Ω(DαT )ϕdx = (−1)|α|

∫
x∈Ω

TDαϕdx

= (−1)|α|(T,Dαϕ)Ω.

Example 2.3. For the distribution δp then

(Dαδp, ϕ)RN = (−1)|α|(Dαϕ)(p) for ϕ ∈ E(RN).
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Definition 2.3. If T belongs to E(RN) and ψ belongs to D(RN), then the convolution T ∗ ψ is the smooth function

defined by

(T ∗ ψ)(x) =
∫
y∈RN

T (y)ψ(x− y)dy.

As a distribution on RN, we have

(T ∗ ψ, ϕ)RN =

∫
x ∈ RN

(∫
y∈RN

T (y)ψ(x− y)dy

)
ϕ(x)dx, ϕ ∈ D(RN)

=

∫
y∈RN

(∫
x∈RN

ψ(x− y)ϕ(x)dx

)
dy.

Taking ψ̂(t) = ψ(−t), then we have

(T ∗ ψ, ϕ)RN =

∫
y ∈ RNT (y)(ψ̂ ∗ ϕ(y)

= (T, ψ̂ ∗ ϕ)RN .

Lemma 2.1. For T ∈ D′(RN), then δ0 ∗ T = T .

Definition 2.4. T ∈ D′(RN) is a fundamental solution for P (D) if

P (D) {T} = δ0.

Theorem 2.1. Let P (D) is a partial differential operator with constant coefficients. Supose T is a fundamental

solution for P (D). If ϕ ∈ D(RN) then u = T ∗ ϕ is a solution to the differential equation P (D) {u} = ϕ.

Theorem 2.2. The distribution T (z) =
1

πz
is a fundamental solution for the Cauchy-Riemann operator

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
on C.

Theorem 2.3. Let

T (x) =


1

2π
log |x| if N = 2

1
(2−N)ωN−1

|x|2−N if N ≥ 3.

where ωN−1 =
2π

N
2

Γ(N2 )
is the volume of unit sphere in RN. Then T is a fundamental solution for the Laplacian

a
=

N∑
j=1

(
∂2

∂x2j

)
on RN.
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Abstract

This work presents a brief overview of basic sequences in topological vector spaces. While this theory in

normed spaces is well established, studying these sequences in more general spaces is rare in the literature. Our

main goal is to present the Banach-Grunblum-Nikolskii criteria for basic sequences on general environments that

are not necessarily convex, such as F -spaces.

1 Introduction

Definition 1.1. Let X be a topological vector space. A sequence (xn)
∞
n=1 is said to be a basis in X if for every

x ∈ X there exists a unique sequence of scalars (an)
∞
n=1 such that

x =

∞∑
n=1

anxn.

When the sequence (xn)
∞
n=1 forms a basis for the space span{xn : n ∈ N}, we simply say that (xn)

∞
n=1 is a basic

sequence.

Our main goal is to investigate when a sequence is basic. In particular, in the context of normed spaces the

Banach-Grunblum-Nikolskii criterion is widely known and plays a fundamental role in this analysis. We will now

state this criterion, which detailed proof can be found in [1].

Theorem 1.1. A sequence (xn)
∞
n=1 of non-zero vectors in a Banach space X is basic if and only if, there exist a

constant K ≥ 1 such that for every sequence of scalars (an)
∞
n=1,∥∥∥∥∥

m∑
i=1

aixi

∥∥∥∥∥ ≤ K

∥∥∥∥∥
n∑
i=1

aixi

∥∥∥∥∥ , whenever n ≥ m.

Topological vector spaces with a local base formed by convex sets are usual in the literature. We will study

environments in which the local convex property is not mandatory. For this, the spaces are equipped with a

structure similar to the norm. Firstly, let us recall some basic facts.

Definition 1.2. A topological vector space X is said to be locally convex when the origin admits a (topologial) basis

of convex neighborhoods.

The following result brings us a characterization of these spaces.

Theorem 1.2. A topological vector space X is locally convex if and only if its topology is generated by a family of

seminorms.

Definition 1.3. A barrel in locally convex space X is a subset convex, balanced, absorvent and closed. A locally

convex space X is barreled if each barrel in X is a neighborhoods of the origin.
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In the non-locally convex settings, a F -norm plays the role of a norm, providing the topological properties of

the space.

Definition 1.4. Let X be a vector space. A F -norm on X is a map ∥ · ∥ : X → R that fulfills the following

properties:

1. ∥x∥ ≥ 0 for every x ∈ X and ∥x∥ = 0 if and only if, x = 0;

2. ∥αx∥ ≤ ∥x∥ for every α ∈ K with |α| ≤ 1 e x ∈ X;

3. lim
n→∞

∥∥∥x
n

∥∥∥ = 0 for every x ∈ X;

4. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for every x, y ∈ X.

Each F -norm induces a metric on X given by d(x, y) = ∥x− y∥. When (X, d) is complete, we say that (X, ∥ · ∥) is
an F -space.

2 Main Results

J.R. Retheford and C.W. McArthur presented in [2] the first characterization of basic sequences on locally convex

spaces.

Theorem 2.1. Let (X, τ) is barreled space and (xn)
∞
n=1 be a sequence in X such that xn ̸= 0 for all n ∈ N and

X = span{xn : n ∈ N}. Let Γ be the collection of all continuous seminorms that generate the topology τ . Then

(xn)
∞
n=1 is a base in X if, and only if, for every ρ ∈ Γ there are σ ∈ Γ and K = K(ρ) > 0 such that

ρ

(
n∑
i=1

aixi

)
≤ Kσ

(
m∑
i=1

aixi

)
,

for any m ≥ n ∈ N and all scalars a1, a2, · · · , am.

In the context of F -spaces, P.K. Kamthan and M. Gupta proved an analogous version of Theorema 1.1, which

we present next.

Theorem 2.2. (Banach-Grunblum-Nikolskii Criteria). A sequence (xn)
∞
n=1 of non-zero vectors of a F -space

(X, ∥ · ∥) is basic if and only if there is a constant M ≥ 1 such that for every sequence of scalars (an)
∞
n=1,∥∥∥∥∥

m∑
i=1

aixi

∥∥∥∥∥ ≤M

∥∥∥∥∥
n∑
i=1

aixi

∥∥∥∥∥ whenever n ≥ m.
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Abstract

The universality limit, proved by Doron Lubinsky in 2009, was previously known only for a few cases of

measures, namely weighted Legendre measures. In this work we present the technique employed by Lubinsky in

order to prove the universality limit for the Stahl-Totik regular measures. The proof is based on approximations

for the reproducing kernels of Stahl-Totik regular measures in terms of the reproducing Kernels of weighted

Legendre measures.

1 Introduction

The universality limit explored in this work raises in the theory of random matrix with the model given by the

Gaussian Unitary Ensemble (GUE). The GUE is an important tool in random matrix theory and closely related to

the orthogonal polynomials theory (see [3, 5]). In this model, reproducing kernels of orthogonal polynomials can be

seen as a stathistical model for the so-called determinantal point process and, the probability distribution can be

described in terms of the reproducing kernel associated to Hermite polynomials.

Let µ be a finite Borel measure on the interval [−1, 1]. There exists a sequence of polynomials {pn} on [−1, 1],

each one with leading coefficient γn > 0 and, satisfying the following orthonormality relation∫ 1

−1

pnpmdµ = δmn,

where δmn represents the Kronecker delta. A positive finite Borel measure µ is Stahl-Totik regular (see [2]) if

γ
1/n
n → 2, as n → ∞. The regularity described here can be obtained by the following criteria. If the Radon-

Nikodym derivative of a measure supported in [−1, 1] with respect to the Lebesgue measure is positive almost

everywhere on its support, then this measure is Stahl-Totik regular.

We consider a Stahl-Totik regular measure µ and ω its Radon-Nikodym derivative with respect to Lebesgue

measure. The sequence of the normalized reproducing kernel associated to the measure µ is defined as follows

K̃n(x, y) = ω(x)1/2ω(y)1/2
n−1∑
k=0

pk(x)pk(y), x, y ∈ [−1, 1], n ∈ N.

The Gaussian Unitary Ensemble (see [4]) is defined by the probability distribution

pn(M)dM = c · e−
∑n

i=1 x
2
i

n∏
1≤i<j≤n

(xi − xj)
2dx1 · · · dxn,

where M is a Hermitian matrix of order n ∈ N and c is a normalizing constant such that
∫
pn(M)dM = 1. For

k ∈ {1, . . . , n}, the k-th correlation function (see [4]) for the GUE is given in terms of the normalized reproducing

kernels associated to the weighted measure ce−x
2

, with Rn,k(x1, . . . , xk) = det[K̃n(xi, xj)]
k
i,j=1, for x1, . . . , xk ∈ R.

This equality means that the GUE is a Determinantal Point Process. In Random Matrix theory, the limit

lim
n→∞

Rn,k

(
x+

x1

K̃n(x, x)
, . . . , x+

xk

K̃n(x, x)

)
/K̃n(x, x) = det

[
sin[π(xi − xj)]

π(xi − xj)

]k
i,j=1

,
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with x, x1, . . . , xk in compact subsets of R, is called universality limit and, from the case k = 2, it is possible to

recover it to any k ∈ {1, . . . , n}, n ∈ N. Our goal is to show that for x in compact subsets of [−1, 1] and a, b in

compact subsets of R, then the limit above exists for Stahl-Totik regular measures.

2 Main Results

We present the following universality limit

lim
n→∞

K̃n

(
x+

a

K̃n(x, x)
, x+

b

K̃n(x, x)

)
/K̃n(x, x) =

sin[π(a− b)]

π(a− b)
, (1)

for Stahl-Totik regular measures, with x in compact subsets of [−1, 1] and a, b in compact subsets of R. The proof is
based on application of the Lubisnky’s inequality, that provides an upper bound for the difference of two reproducing

kernels associated with finite Borel measures on [−1, 1] in terms of their Christoffel Functions.

For n ∈ N, the n-th Christoffel function associated to finite Borel measure µ defined on [−1, 1] is given by

λn(x) = 1/Kn(x, x).

Lemma 2.1 (Lubinsky’s Inequality, [1]). Let µ and µ∗ be measures on [−1, 1] such that µ ≤ µ∗ in [−1, 1]. Then

we have that,

|Kn(x, y)−K∗
n(x, y)|

Kn(x, x)
≤
(
λn(x)

λn(y)

) 1
2
[
1− λn(x)

λ∗n(x)

] 1
2

, ∀x, y ∈ [−1, 1], n ∈ N.

Theorem 2.1 ([1]). Let µ be a Stahl-Totik regular measure. If J ⊂ (−1, 1) is a compact subset where µ is absolutely

continuous in an open set containing J and its Radon-Nykodim deivative ω is positive and continuous in J , then

universality limit (1) holds.

The Christoffel Functions have the asymptotics well known, then the proof follows by arguments of localization

and smoothing, i.e., by approximations of the Stahl-Totik regular measure in a neighborhood of a point by the

Lebesgue measure.
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Abstract

In this work we will study distributional chaos for linear operators on Fréchet spaces. We will present a

characterization of distributional chaos using a distributional chaos criterion and also in terms of the existence

of distributionally irregular vectors. This work is based on results of [1].

1 Introduction

From now on X denotes a Fréchet space and (∥·∥n)n∈N denotes a sequence of seminorms in X that defines the

metric of X. For any set A, we denote by cardA the cardinality of A.

Given a continuous map f : X → X, for each pair x, y ∈ X and each n ∈ N the distributional function

Fnxy : R+ → [0, 1] is defined by

Fnxy(ε) =
1
ncard

{
0 ≤ i ≤ n− 1 : d(f i(x), f i(y)) < ε

}
.

We also define F ∗
xy(ε) := lim supn F

n
xy(ε) and Fxy(ε) := lim infn F

n
xy(ε).

Given A ⊂ N, its upper and lower densities are, respectively, defined by

dens(A) = lim supn
card(A∩[0,n])

n and dens(A) = lim infn
card(A∩[0,n])

n
.

Definition 1.1. A continuous map f : X → X is said to be distributionally chaotic if there exist an uncountable

set Γ ⊂ X and ε > 0 such that for everey τ > 0 and each pair of distinct points x, y ∈ Γ, we have that Fxy(ε) = 0

and F ∗
xy(τ) = 1. In this case, the set Γ is called a distributionally ε-scrambled set and the pair (x, y) is called a

distributionally chaotic pair.

Definition 1.2. Let T : X → X and x ∈ X. We say that x is a distributionally irregular vector for T if there are

m ∈ N, A,B ⊂ N with dens(A) = dens(B) = 1 such that

limn∈A T
nx = 0 and limn∈B ∥Tnx∥m > 0.

Definition 1.3. Let T : X → X be a continuous linear operator and x ∈ X. The orbit of x (that is

{x, T (x), T 2(x), . . .}) is said distributionally near to 0 if there exists A ⊂ N with dens(A) = 1 such that

limn∈A T
nx = 0. We say that x has a distributionally unbounded orbit if there exists B ⊂ N with dens(B) = 1 and

m ∈ N such that limn∈B ∥Tx∥m = ∞.

Definition 1.4. Let T : X → X be a continuous linear operator. We say that T satisfies the Distributional Chaos

Criterion (DCC) if there exists sequences (xk), (yk) ∈ X such that

a) There exist A ⊂ N with dens(A) = 1 such that limn∈A T
nxk = 0 for all k.

b) yk ∈ span {xn : n ∈ N}, limk yk = 0 and there exist ε > 0 and an increasing sequence (Nk) in N such that

card
{
1 ≤ j ≤ Nk : d(T jxk, 0) > ε

}
≥ Nk(1− k−1)

for all k.
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2 Main Result

The main result of this work is a characterization of distributional chaos and it was proved in [1, Theorem 12].

First we enunciate a lemma which is a simple consequence of the definition of distributionally chaotic pair.

Lemma 2.1. Let T : X → X be a continuous linear operator, and x, y ∈ X with x ̸= y. Then the pair (x, y) is

distributionally chaotic if only if, there exists ε > 0 such that, for all τ > 0,

dens {n ∈ N : d(Tnx, Tny) < ε} = 0 and dens {n ∈ N : d(Tnx, Tny) < τ} = 1.

Theorem 2.1. If T : X → X is a continuous linear operator, then the following assertions are equivalent:

i) T satisfies DCC;

ii) T has a distributionally irregular vector;

iii) T is distributionally chaotic;

iv) T admits a distributionally chaotic pair.

Sketch of the proof. (i) ⇒ (ii): Consider the set X0 := {x ∈ X : limn∈A T
nx = 0}. Obviously X0 is a subspace

of X, T (X0) ⊂ X0 and T (X0) ⊂ X0. By hypothesis xk ∈ X0 and yk ∈ X0 for all k. Using [1, Propositions 8 and

9] we get that the set of all vectors x ∈ X0 with distributionally unbounded orbit and with orbits distributionally

near to 0 is residual in X0. Thus the set of all distributionally irregular vectors is residual in X0 and so there exists

a distributionally irregular vector.

(ii) ⇒ (iii): Let u ∈ X be a distributionally irregular vector. It is not difficult to prove that the set {λu : λ ∈ K} is

an uncountable distributionally ε-scrambled set for a certain ε > 0.

(iii) ⇒ (iv): Trivial.

(iv) ⇒ (i): Consider a distributionally chaotic pair (x, y) ∈ X ×X and put u := x− y. By Lemma 2.1 there exists

ε > 0 such that

dens
{
j ∈ N : d(T ju, 0) > ε

}
= 1 and dens

{
j ∈ N : d(T ju, 0) < δ

}
= 1, (1)

for each δ > 0. Hence there exists an increasing sequence (nk) in N such that

card
{
1 ≤ j ≤ nk : d(T ju, 0) < k−1

}
≥ nk(1− k−1). (2)

Consider Ak :=
{
1 ≤ j ≤ nk : d(T ju, 0) < k−1

}
and A :=

⋃∞
k=1Ak. By (2), dens(A) = 1 and limn∈A T

nu = 0.

Defining xk := T ku, we have limn∈A T
nxk = 0, for all k ∈ N. Now choose sk such that ∥T sku∥k < k−1 and put

yk := T sku. Then yk → 0 and by (1), we have

dens
{
j ∈ N : d(T jyk, 0) > ε

}
= 1,

for all k. Therefore there exists an increasing sequence (Nk) in N such that

card
{
j ∈ N : d(T jyk, 0) > ε

}
≥ Nk(1− k−1),

for all k. Thus T satisfies DCC.
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Abstract

In this work, using only measure theoretic arguments, we give sufficient conditions for a sequence in L1[0, 1]

to be weakly null. We obtain the fact that the Rademacher sequence is weakly null in L1[0, 1] as a particular

case. Additional examples are provided.

1 Introduction

Let rn : [0, 1] −→ R be the n-th Rademacher function, that is,

rn(t) = sgn(sin(2nπt)) for every t ∈ [0, 1].

The fact that the Rademacher sequence (rn)
∞
n=1 is weakly null in L1[0, 1] is extremely useful in several areas of

mathematical analysis and in probability theory. For example, it is used to show that L1[0, 1] fails the Schur

property, that is, it contains weakly null non-norm null sequences. This fact is crucial in the theory of Banach

lattices, because it shows that there are Banach lattices with the positive Schur property (meaning that positive

weakly null sequences are norm null) which fail the Schur property (see, e.g., [2]).

On the one hand, it is obvious that (rn)
∞
n=1 is non-norm null in L1[0, 1], but the fact that it is weakly null is far

from obvious. The usual proofs of this fact use powerful tools from Banach space theory, including the Khintchine

inequality (see [3]).

In the main result of this work we give a purely measure theoretic proof of the fact that the Rademacher sequence

is weakly null in L1[0, 1]. Actually, we give sufficient conditions for a sequence to be weakly null in L1[0, 1], and we

recover the case of the Rademacher sequence as a particular case. An additional example of a sequence that can

be proved to be weakly null in L1[0, 1] with the help of our main result is given.

2 Main Results

All integrals are taken in the sense of Lebesgue with respect to the Lebesgue measure m on [0, 1].

Definition 2.1. Let fn : [0, 1] −→ R, n ∈ N, be a sequence of Lebesgue integrable functions. We say that the

sequence (fn)
∞
n=1 has null integral of order even if, for every k ∈ N,∫ H

2k

L

2k

fn(t)dt = 0

for every n ≥ k and all L,H ∈
{
0, 1, . . . , 2k

}
such that H ≤ L and L−H is even.

Theorem 2.1. Every bounded sequence in L∞ [0, 1] having null integral of order even is weakly null in L1 [0, 1].
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Proof. We just give a sketch of the proof. Let (fn)
∞
n=1 be a bounded sequence in L∞ [0, 1], we say |fn(t)| < M

for some M > 0 and for every n ∈ N and almost every t ∈ [0, 1]. Given a functional φ ∈ L1 [0, 1]
∗
, by the Riesz

Representation Theorem [1, Teorema 4.1.2], there exists g ∈ L∞ [0, 1] such that

φ(f) =

∫ 1

0

g(t)f(t)dt for every f ∈ L1 [0, 1] .

Using that the simple functions are dense in L1 [0, 1] (see [4]), for every ε > 0 there is a simple function ψ such

that, for every n ∈ N,∣∣∣∣∫ 1

0

g(t)fn(t)dt

∣∣∣∣ = ∣∣∣∣∫ 1

0

g(t)fn(t)− ψ(t)fn(t) + ψ(t)fn(t)dt

∣∣∣∣ ≤ ε

2
+

∣∣∣∣∫ 1

0

ψ(t)fn(t)dt

∣∣∣∣ .
Writing the canonical representation of ψ as ψ =

m∑
k=1

akχEk
, and using that the measure m if finite we get

∣∣∣∣∫ 1

0

ψ(t)fn(t)dt

∣∣∣∣ ≤ m∑
k=1

∣∣∣∣∫ 1

0

akχEk
(t)fn(t)dt

∣∣∣∣ = ε

4
+

m∑
k=1

∣∣∣∣∣
mk∑
h=1

ak

∫ 1

0

χJk
h
(t)fn(t)dt

∣∣∣∣∣ ,
where the sets Jkn are such that m

(
Ek∆

(
mk⋃
h=1

Jkh

))
<

ε

M2k+2|ak|
(by ∆ we mean the symmetric difference).

Finally, using that the sequence (fn)
∞
n=1 has null integral of order even, it follows that∣∣∣∣∫ 1

0

g(t)fn(t)dt

∣∣∣∣ < ε whenever n ≥ N, hence lim
n 7→∞

∣∣∣∣∫ 1

0

g(t)fn(t)dt

∣∣∣∣ = 0.

This proves that fn
ω−→ 0 in L1[0, 1].

Example 2.1. It is clear that the Rademacher sequence (rn)
∞
n=1 fulfills the conditions of Theorem 2.1, so it is

weakly null in L1[0, 1].

Many other sequences can be proved to be weakly null in L1[0, 1] by Theorem 2.1. We just give one more

concrete example.

Example 2.2. Let a ∈ R be given. For every n ∈ N, define fn : [0, 1] −→ R by

fn(x) =


−2n+1ax+ a (2k − 1) if k−1

2n ≤ x < k
2n and k ∈ {1, . . . , 2n − 1}

−2n+1ax+ a (2k − 1) if k−1
2n ≤ x ≤ k

2n and k = 2n.

The sequence (fn)
∞
n=1 satisfies the conditions of Theorem 2.1, so it is weakly null in L1[0, 1].

Remark 2.1. As far as we know, this method of getting weakly null sequences in L1[0, 1] has not appeared in the

literature before.
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Abstract

In this work, we analyze the numerical behavior of the solutions of a nonlinear parabolic problem

with homogeneous Neumann boundary conditions, when some nonlinear reaction term is concentrated in a

neighborhood of the boundary of a domain in R2 and this neighborhood shrinks to the boundary as the parameter

ϵ goes to zero.

Our main objective is to analyze how the numerical solution of a parabolic problem with nonlinear Neumann

boundary conditions is aproximated by the family of numerical solutions of the concentrated problem using the

finite element method and we evaluate the error made in this approximation as ϵ goes to zero. Numerical results

associated with the dynamics of these concentrated problems will be presented as a great novelty.

1 Introduction

Let Ω =
{
(x, y) ∈ R2 : x2 + y2 < 1

}
and gϵ(s) = g

(
s,
s

ϵ

)
= 2 + cos

(s
ϵ

)
, for 0 < ϵ ≤ 1 and s ∈ [0, 2π], that is, the

oscillatory function gϵ presents a purely periodic behavior. Consider the following parametrization

ωϵ =
{
ξ ∈ R2 : ξ = ((1− t) cos(s), (1− t) sin(s)) , s ∈ [0, 2π] and t ∈ [0, ϵgϵ(s))

}
, 0 < ϵ ≤ 1.

Based in [2] and using the concentration tecnique developed in [3], we want to analyze, as ϵ goes to zero,

the numerical behavior of the following concentrated nonlinear parabolic problem with homogeneous Neumann

boundary conditions 
∂uϵ
∂t

−∆uϵ + uϵ =
1

ϵ
χωϵuϵ(1− uϵ), in (0,∞)× Ω

∂uϵ

∂N⃗
= 0, on (0,∞)× ∂Ω

uϵ(0) = sin(x2 + y2),

(1)

where χωϵ
is the characteristic function of the set ωϵ, N⃗ is the unit outward normal vector to ∂Ω and we refer to

the term
1

ϵ
χωϵ

uϵ(1− uϵ) as the nonlinear reaction concentrating on the region ωϵ.

More precisely, we analyze how the solutions of (1) approximate to the solution of the following parabolic

problem with nonlinear Neumann boundary conditions
∂u0
∂t

−∆u0 + u0 = 0, in (0,∞)× Ω

∂u0

∂N⃗
= µu0(1− u0), on (0,∞)× ∂Ω

u0(0) = sin(x2 + y2),

(2)

and we evaluate the error made in this approximation for sufficiently small ϵ. The boundary coefficient µ ∈ L∞(∂Ω)

in (2) is given by

µ = µ(s) =
1

2π

∫ 2π

0

g(s, τ) dτ, ∀s ∈ (0, 2π).

185



186

2 Main Results

Initially, in [1] we establish an abstract form for the problems (1) and (2) and we prove that they have a unique

global solution on H1(Ω).

Using an appropiate finite difference scheme, we can obtain the numerical solutions of the problems (1) and (2)

and then taking small arbitrarely values for ϵ, we can observe that the solutions of the problem (1) converge in

H1(Ω) to the solution of the problem (2), as ϵ goes to zero, in a numerical sense.

When ϵ is sufficiently small, the error made in the approximation remains constant around 0.37. Taking a

tolerance of 10−1 for the error, our stopping criterion is satisfied.

We can see this graphically by considering the differents heat maps generated for the numerical solution of

the problem (1). For example, the Figure 1 illustrates the heat maps for ϵ equals to 0.1, 0.01, 0.001 and 0.0001,

respectively.

Figure 1: Evolution of the heat map for the numerical solution of the problem (1).

We compare this heat maps with the heat map for the numerical solution of the limit problem (2) given in the

Figure 2.

Figure 2: Heat map for the numerical solution of the limit problem (2).

As far as we know, these simulations are the first of their kind and constitutes a numerical verification of the

results obtained in work [2], thanks to the work [3], where the concentration technique was developed.
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Abstract

In this work, we investigated the existence of a correlation between the average temperature and the daily cases

of COVID-19 recorded for São Paulo city in the triennial 2020-2022 using wavelet analysis.

1 Introduction

Nonlinear and non-stationary phenomena present several difficulties in being characterized and for which the wavelet

analysis has been successfully used in your investigation process [4]. Using the cross wavelet transform and wavelet

coherence we investigated the possible correlations between air temperature and COVID-19 cases in São Paulo city

considering the 2020-2022 years.

2 Cross Wavelet Transform and Wavelet Coherence

Let be f(t) e g(t) signals and ψ(t) a wavelet function. The cross wavelet transform of f(t) e g(t) is defined as:

Wf,g
ψ (a, τ) =

∫
R
f(t)ψ∗

(
t− τ

a

)
dt

∫
R
g∗
(
t− τ

a

)
dt (1)

where ∗ indicate complex conjugation, a > 0 and τ ∈ R varies continuously. Regardless of the magnitude of

Wf,g
ψ (a, τ) the Equation (1) shows the phase difference between f(t) and g(t) for t = τ , as in [1]. The wavelet

coherence (WC) is given by

R2(a, τ) =
|a−1Wf,g

ψ (a, τ)|
|a−1Wf

ψ(a, τ)||a−1Wg
ψ(a, τ)|

, (2)

whose values vary in the interval [0, 1]. Values biggest 0.5 indicates that the f(t) e g are correlated [1, 3]. A

summary of the theory and tips for the application of these tools is given in [5].

3 Data

We analyzed the air temperature and COVID-19 cases in São Paulo city between 2020/02/29 and 2022/12/31. For

details about the official resources used see the file “readme.txt” in https://github.com/magriniluciano1983/

enama2023. A graphical representation of these data can be seen in panels A and B of Figure (1).
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Figure 1: Panels A, B, C, and D: Air Temperature, COVID-19 Cases, CWT, and WC, respectively.

4 Numerical Analysis and Results

The CWT e a WC to data is represented in panels C and D of Figure (1). The CWT analysis shows that for

the longest periods (and thus for low-frequency content) the COVID-19 cases are strongly correlated with daily

temperature. In particular, for the period equal to 8 this correlation is present for all time analyzed. The analysis

shows that the correlation is present for the smallest periods (and thus for high-frequency content). We can

conclude, via wavelet analysis that the average temperature and daily cases of COVID-19 are correlated with whose

investigation is in progress.

Acknowledgments

The authors are grateful to FAPESP Grant (2021/12708-4) and A. Grinsted for the software (2004) used.

References

[1] grinsted, a. & moore, j. c. & jevrejeva, s. - Application of the cross wavelet transform and wavelet

coherence to geophysical time series, Copernicus GmbH, 11, 2004, 561-566.

[2] torrence, c. & webster, j.p. - Interdecadal changes in the ENSO–monsoon system, Journal of Climate,

12, 1999, 2679-2690.

[3] torrence, c. & compo, g. p. - A practical guide to wavelet analysis, Bulletin of the American

Memythrological Society, 79, 1998, 61-78.

[4] addison, p. - The illustrated wavelet transform handbook: introductory theory and applications

in science, engineering, medicine and finance, 2017.

[5] magrini, l. a. & baroni, m. p. m. a. & amari, g. & gadotti, m. c. -Correlations Between COVID-19

Cases and Temperature, Air Humidity and Social Isolating Rate with Cross Wavelet Transform

and Wavelet Coherence: Case Study of New York and São Paulo Cities, 2023 (submitted).



ENAMA - Encontro Nacional de Análise Matemática e Aplicações
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Abstract

In this work, we present one discretization of ψ-Riemann-Liouville fractional derivative and show a one-

dimensional application in order to assess the discretization.

Keywords. BE ψ-Riemann-Liouville Approximation, ψ-Riemann-Liouville fractional derivative, Backward

Euler.

1 Introduction

Fractional calculus appeared at about the same time as the classical calculus of Newton and Leibniz, however,

at that time it had little attraction for researchers. It was only in 1974, after the first conference dedicated to

fractional calculus, that it began to gain prominence in the scientific community. In recent years, fractional calculus

has been consolidated and highlighted as a tool to solve and describe complex phenomena. Several definitions of

fractional derivatives have been introduced over the years, the best known being those of Riemann-Liouville and

Caputo. On the other hand, the numerical solution of fractional differential equations (FDEs) is a topic of great

interest to many researchers in the area, thus motivated by the ideas of the work [3], where the approximation

L1 − 2 ψ-Caputo is discussed and, from the work [1], where the Riemann-Liouville integral is approximated, we

develop an approximation for the Riemann-Liouville fractional derivative of one function with respect to another.

In this work, a BE ψ-Riemann-Liouville approximation is presented.

2 Definitions and important considerations

In this section, two definitions are displayed: ψ-Riemann-Liouville fractional derivative and ψ-Riemann-Liouville

approximation.

Definition 2.1. [3] Let α > 0, n ∈ N, I = [a, b] be the interval (−∞ ≤ a < t < b ≤ ∞), ψ(t) an increasing function

and ψ′(t) ̸= 0, for all t ∈ I. The Riemann-Liouville fractional derivative of a function u with respect to ψ of order

α is given by

Dα;ψa u(t) =
1

Γ(n− α)

(
1

ψ′(t)

d

dt

)n ∫ t

a

ψ′(ξ)(ψ(t)− ψ(ξ))n−α−1u(ξ)dξ, (1)

where n = [α] + 1, with [α] being the integer part of α.

On the other hand, let’s consider a uniform mesh with points t0, t1, · · · , tN of an interval [a, b], where ∆t will

be the amplitude of the step, tk = k∆t for 0 < k ≤ N and u a continuous function on [a, b].

The approximation presented below, arises as a result of using the backward Euler method to approximate the

derivative that appears in (1) with 0 < α < 1, as discussed in [3] and defining the function u(t), as being u(t) = u(tj),

for all t ∈ [tj , tj+1), following the idea presented by [1] in the Riemann-Liouville integral approximation.
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Definition 2.2. Let 0 < α < 1, I = [a, b], u ∈ C(I,R) and ψ(t) be an increasing function such that ψ′(t) ̸= 0,

for all t ∈ I. Given a uniform mesh of points t0, t1, · · · , tN of the interval I, such that t0 = a, tk = k∆t for

0 < k ≤ N , where ∆t is the step width. The BE ψ-Riemann-Liouville approximation to u at the point tk of order

α, is given by

RBDα;ψ
t0 u(t)

∣∣∣
t=tk

=
1

Γ(2− α)

1

ψ′(tk)∆t


k−1∑
j=1

u(tj)
[
aα;ψk,j − aα;ψk−1,j

]
+ u(tk)a

α;ψ
k,k

 ,

where aα;ψk,j = (ψ(tk)− ψ(tj−1))
1−α − (ψ(tk)− ψ(tj))

1−α and Γ(·) is a gamma function.

3 Application

We want to find u(t) using the BE ψ-Riemann-Liouville approximation and knowing that
RLDα;t

ρ

0 u(t) =

∞∑
s=0

3s

s!

Γ((s+ ρ)/ρ)

Γ((s+ ρ− αρ)/ρ)
ts−αρ, t ∈ (0, 1], α ∈ (0, 1)

u(0) = 1.

Figure 1: Numerical results comparing the exact and the approximate solution with α = 0.7 and ρ = 0.2.
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Abstract

The main objective of this work is to investigate the temporal evolution of non-conserved field variables

through the application of the Allen-Cahn equation. The equation serves as the foundation for several phase-

field models utilized in cell migration studies, particularly in the context of tumor cells and cancer metastasis.

The model describes cells as 2D soft bodies, considering mechanical and biological factors to simulate cell

movement.

1 Introduction

Mathematical models have been widely employed to study cell migration, especially in the context of tumor cells,

as they play a significant role in cancer development and metastasis [2, 3]. These models incorporate various

biological mechanisms and mechanical considerations to simulate cell movement. By employing efficient algorithms,

researchers have been able to explore cell movement and interaction, contributing to a better understanding of

cellular behavior in diverse environments [1, 2, 3].

The main objective of this work is to observe the temporal evolution of non-conserved field variables using the

Allen-Cahn equation, which serves as the foundation for many phase-field models in the literature. The focus is on

understanding cell migration, a crucial process in various biological phenomena, including cancer metastasis, which

constitutes the key purpose of this study.

2 Main Results

In the model, each cell is described by an order parameter φ, which individually characterizes them in the phase

field model, with a value of 1 inside the cell and 0 outside. They are treated as a 2D soft body, whose equilibrium

shape minimizes the following free energy:

F0 =
∑
n

[
γn

∫
V

[
(∇φn)2 +

30

λ2
φ2
n (1− φn)

2

]
dV +

µn
πR2

(
πR2 −

∫
V

(
φ2
n

)
dV

)2
]
, (1)

where R is the cell radius, λ represents the width of the cell boundary, µn is considered a parameter that determines

the energetic cost associated with changes in the cell’s area while keeping its volume approximately constant, and

γn is a parameter that controls the elasticity of the cells, as described in [1].

The free energy F0 represents the cells individually, while the total energy, taking into account the interactions

between them, is given by F = Fo + Fint, with Fint being defined, in [1], as

Fint =
30κ

λ2

∫
V

 ∑
n,m̸=n

φ2
nφ

2
m

 dV, (2)

191



192

where κ is the coefficient of gradient energy. Furthermore, the temporal evolution of each cell is described as

∂φn
∂t

+ vn · ∇φn = −1

2

δF

δφn
, (3)

with the term vn being defined as the time-dependent velocity of the cell, divided into two parts: vn,I + vn,A, as

said in [1]. The term vn,A represents the active part of the velocity, i.e., the self-propulsion of the cell. In the model,

it is considered to have a constant magnitude. On the other hand, the velocity vn,I is determined by the forces

arising from the interaction with other cells and is defined as

vn,I =
60κ

ξλ2

∫
V

φn (∇φn) ∑
m̸=n

φ2
m

 , (4)

where ξ represents the friction between the cells and the liquid environment around, as seem in [1]. Finally, by

solving the functional derivative in equation (3), we obtain the equation that describes the temporal evolution of

the cells,

∂φn
∂t

= γn∇2φn − 30

λ2

γnφn(1− φn) (1− 2φn) + 2κ
∑
m̸=n

φnφ
2
m

− 2µ

πR2
φn

[∫
V

(
φ2
n

)
dV − πR2

]
− vn · ∇φn. (5)

It is shown in Figure 1 the time evolution of the multicellular system containing normal and five soft (cancer)

cells, in three different times.

Figure 1: Temporal evolution of cell migration in three different times
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Abstract

The aim of this work is to evaluate the computational time to simulate the pollutants dispersion considering

different methodologies to solve the linear system that is obtained by applying the 3D-GILTT method in the

three-dimensional advection-diffusion equation. To validate the model, unstable tank experiment data were

considered. The results show that the Gauss-Seidel method has the shortest computational time to simulate the

pollutant dispersion. As expected, similar results are obtained to the pollutant concentration, regardless of the

methodology used to solve the linear system.

1 Introduction

The aim of this work is to evaluate the computational time to simulate the pollutants dispersion, considering

different methods to solve the linear system that is generated by the application of the 3D-GILTT method in the

transient three-dimensional advection-diffusion equation [1] given by

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z
= −∂u

′c′

∂x
− ∂v′c′

∂y
− ∂w′c′

∂z
(1)

where c is the average concentration of a passive contaminant and u, v and w are the cartesian components of

the mean wind (m/s) and u′c′, v′c′ e w′c′ represent, respectively, the contaminant turbulent flow (g/sm2) in

the longitudinal, lateral and vertical directions. Therefore, after applying the 3D-GILTT method, the following

equation can be written in matrix notation Y ′′(x)+F.Y ′(x)+G.Y (x) = 0, where Y (x) is the column vector whose

components are {cn,i(x, r)}. The F and G matrixes are given by F = B−1.R and G = B−1.S, respectively [2].

The GILTT technique combines series expansion with integration. In the expansion, is used a trigonometric base

determined with the help of an auxiliary Sturm-Liouville problem. The ordinary differential equations resulting

system is analytically solved using the Laplace transform and diagonalization.

Applying an order reduction in the equation Z ′ (x) + H.Z (x) = 0, we can write

Z(x) = X .


e−d1 x 0 . . . 0

0 e−d2 x . . . 0
...

...
. . .

...

0 0 . . . e−dn x

 . X−1 . Z(0), where H is the block matrix H =

[
0 −I
G F

]
, with X

being the eigenvector matrix and dn the eigenvalues and Z (0) is the initial condition. Defining, ξ = X−1 . Z(0), the

following linear system must be solved X ξ = Z (0). In order to verify the best methodology to be used, were tested

different techniques to solving linear systems (LU decomposition method, iterative Jacobi method, Gauss-Seidel

method and successive over-relaxation) [3] to reduce errors and computational time.

In this work, the advection-diffusion equation is considered in its most complete form, considering a three-

dimensional model and the non-local closure term of the turbulence. To carry out the simulations, the ubuntu linux
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operating system was used on a notebook with core i5. The model was written in python language. The turbulent

eddy diffusivities were parameterized as

Kα =
0, 583w∗ziciψ

2/3(z/zi)
4/3X∗[0, 55(z/zi)

2/3 + 1, 03c
1/2
i ψ1/3(f∗m)

2/3
i X∗]

[0, 55(z/zi)2/3(f∗m)
1/3
i + 2, 06c

1/2
i ψ1/3(f∗m)iX∗]2

(2)

where α refers to the directions x, y and z [2]. The classic tank experiment data [4] were used to simulate the

pollutants dispersion. The parameters used are: Monin-Obukhov length L = −10m; convective velocity scale

w∗ = 2m/s; source intensity Q = 10m/s; source height Hs = 300m; boundary layer height z = 1150m; wind

speed V = 2.6m/s; dimensionless distance X∗ = 0.5 and the observed dimensionless pollutant concentration is

4.90.

2 Main Results

Table 1: Computational time to simulate the pollutants dispersion

Method Time Concentration at ground level

LU decomposition 15m44.006s 6.210295391310229

Jacobi 16m1.388s 6.210295391310232

Gauss-Seidel 15m41.430s 6.210295391310232

Successive over-relaxation 16m20.570s 6.210299612494771

As we can see from the table 1, the shortest computational time to simulate the pollutants dispersion is

obtained with the iterative Gauss-Seidel method. Successive over-relaxation is the method that presents the highest

computational time. As expected, the Jacobi method has a higher computational time when compared with the

Gauss-Seidel method. The LU decomposition and Gauss-Seidel method presents similar simulation time. Regardless

of the methodology used to solve the linear system, the pollutants concentration presents similar results and the

user can decide which method to use.
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Abstract

In this work, we present the existence of a positive solution to a second-order nonlinear problem with mixed

boundary conditions. The proofs of the main results are based on the Mawhin’s coincidence degree.

1 Introduction

Assuming that f : [0, T ]× [0,+∞[×R → R is a Lp-Carathéodory function, in this work, we prove the existence of

a positive solution to the second-order nonlinear problem with boundary conditions{
u′′ + f(t, u, u′) = 0, 0 < t < T

B(u) = (0, 0),
(1)

where the linear operator B : C1([0, T ],R) → R2 represents the boundary conditions, which can be

B(u) ∈= {(u′(T )− u(0), u′(0)− u(0)) , (u(T )− u(0), u′(0)) , (u′(T )− u′(0), u(0))} (2)

A solution to problem (1) is a function u : [0, T ] → R, of class C1 such that u′(t) is absolutely continuous

and u(t) satisfies (1) for almost every t ∈ [0, T ]. We are interested in positive solutions of (1), i.e., solutions

u such that u(t) > 0 for all t ∈ [0, T ]. However, when the problem is studied with the boundary condition

B(u) = (u′(T )− u′(0), u(0)), we already know in advance that u vanishes at t = 0. In this case, the sought-after

solution will be such that u(t) > 0 for all t ∈ ]0, T ]. In the problema (1), f : [0, T ] × [0,+∞[×R → R is an

Lp-Carathéodory function, for some 1 ≤ p ≤ ∞, satisfying the following conditions:

(f1) f(t, 0, ξ) = 0, for almost every t ∈ [0, T ] and for every ξ ∈ R;

(f2) there exists a nonnegative function k ∈ L1[0, T ] and a constant ρ > 0 such that |f(t, s, ξ)| ≤ k(t)(|s|+ |ξ|), for
almost every t ∈ [0, T ], for every 0 ≤ s ≤ ρ, and |ξ| ≤ ρ;

(f3) In addition to the above assumptions, we will also suppose that f(t, s, ξ) satisfies a kind of Bernstein-Nagumo

condition in order to have |u′(t)| bounded whenever u(t) is bounded.

For each η > 0, there exists a continuous function

ϕ = ϕη : [0,+∞[→ [0,+∞[, with

∫ ∞ ξ
p−1
p

ϕ(ξ)
dξ = ∞,

and a function ψ = ψη ∈ Lp ([0, T ], [0,+∞[) such that

|f(t, s, ξ)| ≤ ψ(t)ϕ(|ξ|), for almost every t ∈ [0, T ],∀ s ∈ [0, η],∀ ξ ∈ R.

For technical reasons, when dealing with Nagumo functions ϕ(ξ) as above, we always assume that

lim inf
ξ→+∞

ϕ(ξ) > 0.

This avoids the possibility of pathological examples as can be seen in [1, p. 46-47] and does not affect our

application.
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2 Main Results

Theorem 2.1. Assume (f1), (f2), and (f3), and suppose that there exist two constants r,R > 0, with r ̸= R, such

that the following hypotheses are true:

(Hr) The condition ∫ T

0

f(t, a+ at, a)dt < 0, para a =
r

1 + T

is satisfied. Moreover, any solution u(t) of the problem{
u′′ + ϑf(t, u, u′) = 0, 0 < t < T

B(u) = (0, 0),
(1)

for 0 < ϑ ≤ 1, such that u(t) > 0 in [0, T ], satisfies |u|∞ ̸= r.

(HR) There exists a non-negative function v ∈ Lp([0, T ],R) with v ̸≡ 0 and a constant α0 > 0, such that every

solution u(t) ≥ 0 of the problem{
u′′ + f(t, u, u′) + αv(t) = 0, 0 < t < T

B(u) = (0, 0),
(2)

for α ∈ [0, α0], satisfies |u|∞ ̸= R. Moreover, there are no solutions u(t) of (2) for α = α0 with 0 ≤ u(t) ≤ R,

for every t ∈ [0, T ].

Then the problem (1) has at least one positive solution u(t) with

min{r,R} < max
t∈[0,T ]

u(t) < max{r,R}.

The proof is given by a topological approach based on the Mawhin’s coincidence degree introduced in [2, 3].

Furthermore, to ensure that the found solution is positive, we employ a maximum principle.

References

[1] coster, c. d. & habets, p. - Two-point boundary value problems: lower and upper solutions, vol. 205 of

Mathematics in Science and Engineering, Elsevier B. V., Amsterdam, (2006).

[2] gaines, r. e. & mawhin, j - Coincidence Degree, and Nonlinear Differential Equations, vol. 568 of Lecture

Notes in Mathematic, Springer, (1977).

[3] mawhin, j. - Topological degree methods in nonlinear boundary value problems, vol. 40 of CBMS Regional

Conference Series in Mathematics, American Mathematical Society, Providence, R.I., (1979).

[4] feltrin, g. & zanolin, f. - Existence of positive solutions in the superlinear case via coincidence degree: the

Neumann and the periodic boundary value problems, Advances in Differential Equations, 20 (2015), 937 - 982.



ENAMA - Encontro Nacional de Análise Matemática e Aplicações
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Instituto de Ciências Matemáticas e de Computação, USP, SP, Brasil1, Faculdade de Matemática, UFU, MG, Brasil2
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Abstract

We establish necessary conditions to ensure persistence of Itô-Henstock SDEs with Lévy noise on Hilbert

spaces.

1 Introduction

It is our intention to present a new result concerning persistence of Ito-Henstock stochastic differential equations

with Lévy noise on Hilbert spaces. Consider V a Hilbert space and (Ω,F , {Ft}t∈I ,P) a filtering probability space,

for I ⊂ R+ an unbounded set. We are going to investigate the following Ito Hentosck SDE with Lévy Noise

dXt = f(Xt, t)dt+ σ(Xt, t)dWt +

∫
Y
γ(t, y)Ndt(dy), t ∈ I ⊂ R+, (1)

where {Xt : t ∈ I} is a {Ft}-adapted process, where Xt ∈ Lp(Ω, V ) for t ∈ I, f ∈ G(Lp(Ω, V ) × I, h, Id),

σ ∈ G(Lp(Ω, V ) × I, h,W ), {Wt : t ∈ I} is a Q-Wiener process on V , Ndt(dy) is a real-valued Poisson counting

measure with characteristic measure ν on a measurable set Y ⊂ R+ with ν(Y) <∞ and γ : I × Y → (−1,∞).

The study of SDEs with Lévy noise is of big relevance in the population dynamics field since it can model more

properly natural disasters, such as hurricanes, earthquakes, epidemics, ocean red tide, and more (see [1], [3]). Then,

to bring this type of noise to the Ito-Henstock SDEs is an important step to develop the theory of population

model systems, that is because instead of asking for continuity and boundedness of f and σ and boundedness of

the Lévy noise we simply ask for the Lipschitz condition on the expectation of each function and still guarantee

global solution and condition to persistence. To be clear, the term persistence in population dynamics theory can

be roughly summarized as ”the population may not be extinct in the future”. Our main goal is to prove that under

a certain condition, the solution of (1) is persistent. Let us give the proper definitions and provide the necessary

tools to state the result.

Definition 1.1 (Class of G [2]). Let h : I ⊂ R → R be a nondecreasing function, {Wt : t ∈ I} be a Q-Wiener

process and T : Lp(Ω, V ) × I → Lp(Ω, V ) be a functional. We say that T ∈ G(Lp(Ω, V )) × I, h,W ) if, for every

{Ft}-adapted process {Xt : t ∈ I} on a filtering probability space with Xt ∈ Lp(Ω, V ), for t ∈ I, the Itô-Henstock

integral
∫
I
T (Zs, s)dWs exists and, for [s1, s2] ⊂ I we have

�

E
[∥∥∥∥∫ s2

s1

T (Zs, s)dWs

∥∥∥∥p
V

]
≤ |h(s2)− h(s1)|;

� for {Yt : t ∈ I} is also {Ft}-adapted on the filtering probability space

E
[∥∥∥∥∫ s2

s1

[T (Zs, s)− T (Ys, s)]dWs

∥∥∥∥p
V

]
≤ ∥Z − Y ∥pLp |h(s2)− h(s1)|.

Definition 1.2 (Persistence). Let (Ω,F , {Ft},P) be a filtering probability space and {Xt : t ∈ I ⊂ R+}, where I is

unbounded, be a {Ft}-adapted process. We say that Xt is
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� weakly persistent if

lim sup
t→∞

{∥Xt∥V } ≠ 0, (a.s);

� strongly persistent if

lim inf
t→∞

{∥Xt∥V } ≠ 0, (a.s);

� persistent if it is strongly and weakly persistent and the limits coincide.

For simplicity, letX and Y be Hilbert spaces, and f : Lp(Ω, Y ) → Lp(Ω, Y ) be a Itô-Henstock integrable function

with respect to W = {Wt : t ∈ I ⊂ R} a Q-Wiener process, we define the following notation

⟨f⟩Wy =
1

t

∫ t

y

f(Xs)dWs, t ∈ I, Xt ∈ Lp(Ω, Y ).

2 Main Result

Theorem 2.1. [4] Let f, g ∈ G(Lp(Ω, V ) × [t0,∞)], h, Id), where g : [t0,∞) × Lp(Ω, V ) → Lp(Ω, V ) is a function

given by

g(t, Zt) = Zt ·
∫
Y
γ(t, y)Ndt(dy), y ∈ Y,

also σ ∈ G(Lp(Ω, V ) × [t0,∞)], h,W ), {Xt : [t0,∞)} be a global solution of the stochastic differential equation (1)

with Xt0 = X̃ and Xt ∈ Lp(Ω, V ), t ∈ [t0,∞). Then, if

lim
t→∞

(⟨f + g⟩Idt0 + ⟨σ⟩Wt0 ) ̸= 0 (a.s) =⇒ Xt is persistent.
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Abstract

We prove eigenvalue bounds for two-dimensional linearized disturbances of parallel flows of micropolar fluids,

deriving the Orr-Sommerfeld equations and providing a sufficient condition for linear stability of such flows. We

also derive wave speed bounds.

1 Introduction

In this short note, we study two dimensional perturbations of parallel flows of micropolar, also known as asymmetric,

fluids. To this end, we first derive the Orr-Sommerfeld equations for this kind of fluids and, through a variational

method, prove some bounds for their eigenvalues. We obtain bounds for the imaginary part of the eigenvalue

ensuring stabilty in some regions of the parameters. We also prove some wave speed bounds for perturbations

of the base flow. Our results here are the generalization to micropolar fluids of the results by Joseph [1] for the

classical Navier-Stokes case.

First we construct, by application of elementary isoperimetric inequalities following the same procedure done

by Joseph [1], some estimates to the real and imaginary parts of the eigenvalue

C = Cr + iCi

of the Orr-Sommerfeld problem for micropolar fluids

iα[(U − C)(D2 − α2)− U ′′]φ =
( 1

Rµ
+

1

2Rk

)
(D2 − α2)2φ+

R0

Rk
(D2 − α2)ω; (1)

iα[(U − C)ω −W ′φ] =
[ 1

Rγ
(D2 − α2)− 2R0

Rν

]
ω − 1

Rν
(D2 − α2)φ (2)

where D = d
dy , with boundary conditions

φ(0) = φ(1) = φ′(0) = φ′(1) = ω(0) = ω(1) = 0. (3)

2 Main Results

Theorem 2.1. Let R1 = min
{

1
Rµ
, 1
2Rk

, R0

Rν

}
and R2 = max

{
R0

2Rk
, 1
2Rν

}
. If R1 > R2, then

Ci ≤
q1 + q2
2α

− π2 + α2

αR
,

where 1
R = min

{
R1 −R2,

1
Rµ

+ 1
2Rk

, 1
Rγ

}
. Moreover, no amplified disturbances (Ci > 0) of (1), (2) and (3) exist if

2αRq1 < f(α) := max
{
M1,M2

}
; 2αRq2 < g(α) := max

{
N1, N2

}
, (1)

where {
M1 = (4.73)2π + 2

3
2α3,

M2 = (4.73)2π + 2α2π;

{
N1 = 2(4.73)2π + 2

3
2απ,

N2 = 2(4.73)2π + 2α3.
(2)
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Theorem 2.2. Let C(α,R) be any eigenvalue of (1), (2) and (3). Then, the following inequalities hold:

a)

Umin − W ′
max

2α
< Cr < Umax +

U ′′
max

2(π2 + α2)
+
W ′
max

2α
(U ′′

min ≥ 0 and W ′
min ≥ 0)

b)

Umin − W ′
max

α
+
W ′
min

2α
< Cr < Umax +

U ′′
max

2(π2 + α2)
− W ′

min

α
+
W ′
max

2α
(U ′′

min ≥ 0 and W ′
min ≤ 0 ≤W ′

max)

c)

Umin +
W ′
min

2α
< Cr < Umax +

U ′′
max

2(π2 + α2)
− W ′

min

2α
(U ′′

min ≥ 0 and W ′
max ≤ 0)

d)

Umin +
U ′′
min

2α2
− W ′

max

2α
< Cr < Umax +

U ′′
max

2(π2 + α2)
+
W ′
max

2α
(U ′′

min ≤ 0 ≤ U ′′
max and W ′

min ≥ 0)

e)

Umin+
U ′′
min

2α2
−W

′
max

α
+
W ′
min

2α
< Cr < Umax+

U ′′
max

2(π2 + α2)
−W

′
min

α
+
W ′
max

2α
(U ′′

min ≤ 0 ≤ U ′′
max and W ′

min ≤ 0 ≤W ′
max)

f)

Umin +
U ′′
min

2α2
+
W ′
min

2α
< Cr < Umax +

U ′′
max

2α2
− W ′

min

2α
(U ′′

min ≤ 0 ≤ U ′′
max and W ′

max ≤ 0)

g)

Umin +
U ′′
min

2α2
− W ′

max

2α
< Cr < Umax +

W ′
max

2α
(U ′′

max ≤ 0 and W ′
min ≥ 0)

h)

Umin +
U ′′
min

2α2
− W ′

max

α
+
W ′
min

2α
< Cr < Umax −

W ′
min

α
+
W ′
max

2α
(U ′′

max ≤ 0 and W ′
min ≤ 0 ≤W ′

max)

i)

Umin +
U ′′
min

2α2
+
W ′
min

2α
< Cr < Umax −

W ′
min

2α
(U ′′

max ≤ 0 and W ′
max ≤ 0).

Here, Umax, Umin, U
′′
max, U

′′
min,W

′
max and W ′

min are maximum and minimum values on the range of U(y), U ′′(y)

and W ′(y) for y ∈ [0, 1].
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Abstract

We study here one paper of Kanishka Perera, namely An abstract critical point theorem with applications to

elliptic problems with combined nonlinearities [1]. It is proved in the paper an abstract critical point theorem

based on cohomological index theory that produces pairs of nontrivial critical points with nontrivial higher critical

groups. This theorem yields pairs of nontrivial solutions that are neither local minimizers nor of mountain pass

type for problems with combined nonlinearities. Applications are given to subcritical and critical p-Laplacian

problems, Kirchhoff type nonlocal problems, and critical fractional p-Laplacian problems.

1 Introduction

The purpose of this work is to prove an abstract critical point theorem that can be used to obtain pairs of nontrivial

solutions of problems of the type{
−∆pu = λ|u|p−2u+ µf(x, u) + |u|q−2u in Ω

u = 0 on ∂Ω
(1)

where Ω is a bounded domain in RN , N ≥ 1, p > 1, ∆pu = div
(
|∇u|p−2∇u

)
is the p-Laplacian of u,

p < q ≤ p∗ = Np/(N − p) if p < N and p < q < ∞ if p ≥ N , λ, µ > 0 are parameters, and f is a Carathéodory

function on Ω× R satisfying

f(x, t) = |t|σ−2t+ o(|t|σ−1) as t→ 0, uniformly a.e. in Ω (2)

for some 1 < δ < p, the sign condition

F (x, t) =

∫ t

0

f(x, s)ds > 0 for a.a. x ∈ Ω and all t ∈ R\ {0} (3)

and the growth condition

|f(x, t)| ≤ a
(
|a|r−1 + 1

)
for a.a. x ∈ Ω and all t ∈ R (4)

Let us denote

E(u) =
1

p

∫
Ω

|∇u|pdx− λ

p

∫
Ω

|u|pdx− µ

∫
Ω

F (x, u)dx− 1

q

∫
Ω

|u|qdx, u ∈W 1,p
0 (Ω)

the energy functional associated to 1.

Now let us recall the definition of the Z2-cohomological index of Fadell and Rabinowitz [2].
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Definition 1.1. Let W be a Banach space and let A denote the class of symmetric subsets of W\{0}. For A ∈ A,

let A = A/Z2 be te quotient space of A with each u and −u identified, let f : A → RP∞ be the classifying map

of A, and let f∗ : H∗(RP∞) → H∗(A) be the induced homomorphism of the Alexsander-Spanier cohomology rings.

The cohomological index of A is defined by

i(A) =

0 if A = ∅

sup
{
m ≥ 1 : f∗(ωm−1) ̸= 0

}
if A ̸= ∅

(5)

where ω ∈ H1(RP∞) is the generator of the polynomial ring H∗(RP∞) = Z2[ω].

2 Main Results

Theorem 2.1. Let E be a C1-functional on W and let M be a bounded symmetric subset of W\{0} radially

homeommorphic to the unit sphere S = {u ∈W : ∥u∥ = 1} and A0, B0 closed subsets of M such that

i(A0) = i(M\B0) = k <∞

Assume that there exist ω0 ∈ M\A0, 0 ≤ r < ρ < R and a < b such that, setting

A1 = {πM((1− s)v + sw0) : v ∈ A0, 0 ≤ s ≤ 1}

A∗ = {tu : u ∈ A1, r ≤ t ≤ R}

B∗ = {tw : w ∈ B0,≤ t ≤ ρ}

A = {ru : u ∈ A1} ∪ {tv : v ∈ A0, r ≤ t ≤ R} ∪ {Ru : u ∈ A1}

B = {ρw : w ∈ B0}

where πM : S → M is the radial homeomorphism of M with S, we have

a < inf
B∗

E, sup
A
E < inf

B
E, sup

A∗
E < b (1)

If E satisfies the (PS)c condition for all c ∈ (a, b), then E has a pair of critical points u1, u2 with

inf
B∗

E ≤ E(u1) ≤ sup
A
E, inf

B
E ≤ E(u2) ≤ sup

A∗
E.

If, in addition, E has only a finite number of critical points with the corresponding critical values in (a, b), then u1

and u2 can be chosen to satisfy

Ck(E, u1) ̸= 0 Ck+1(E, u2) ̸= 0

where C∗(f, p) denotes the critical groups of f with respect to the critical point p.
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Abstract

In this work we consider existence of solutions for the following nonlocal elliptic problem:−m
(
∥∇u∥22

)
∆u+ V (x)u = λa(x)|u|q−2u− θb(x)|u|p−2u in RN ,

u ∈ H1(RN ),
(Pλ,θ)

where N ≥ 3, λ, θ > 0, 2 < 2(σ + 1) < q < p < 2∗ = 2N/(N − 2), σ ∈ (0, 2/(N − 2)) and a, b ∈ L∞(RN ) with

a(x), b(x) > 0 almost everywhere in RN . This type of problem contains the function m : R+ → R+ known as the

Kirchhoff function given by m(t) = α1 +α2t
σ with α1, α2 > 0 and t ∈ R+. Under our assumptions the potential

V : RN → R and the nonlinearities can be sign changing functions.

1 Introduction

The main objective in the present work is to investigate existence and multiplicity of solutions to Kirchhoff elliptic

problem in the whole space RN given in (Pλ,θ). Recall that the conditions about the functions a and b implies

that Lλ(x, t) = λa(x)|t|q−2t− θb(x)|t|p−2t is a sing changing function. An immediate consequence is that the above

problem has at least one ground state solution and at least one bound state solution whenever λ ∈ (λ∗,+∞) for

some suitable λ∗ > 0. The main idea is to use the minimization method in the Nehari manifold together with the

nonlinear Rayleigh quotient. Throughout this work we assume the following assumptions:

(m1) The function m is defined as m(t) = α1 + α2t
σ with t ∈ R+ and α1, α2 > 0;

(a1) 2 < 2(σ + 1) < q < p < 2∗ = 2N/(N − 2) where 0 < σ < 2/(N − 2) and N ≥ 3;

(a2) The functions a, b : RN → R satisfy a, b ∈ L∞(RN ) with a(x), b(x) > 0 almost everywhere in RN ;

(v1) V ∈ L∞
loc(RN ) and there exists a constant V0 > 0 such that V (x) ≥ −V0 for all x ∈ RN ;

(v2) It holds that

d := inf
u∈X,∥u∥L2(RN )=1

∫
RN

[
α1|∇u|2 + V (x)u2

]
dx > 0;

(v3) For each M > 0, it follows that
∣∣{x ∈ RN : V (x) ≤M

}∣∣ < +∞.

It is important to mention that the working space is defined by

X :=

{
u ∈ H1(RN ) :

∫
RN

V (x)u2dx < +∞
}
,

endowed with the inner product and norm given by

⟨u, φ⟩ =
∫
RN

[α1∇u∇φ+ V (x)uφ] dx and ∥u∥ =

( ∫
RN

[
α1|∇u|2 + V (x)u2

]
dx

) 1
2

for all φ ∈ X.
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Now, define the energy functional J : X → R associated to problem (Pλ,θ) by

J(u) =
1

2
∥u∥2 + α2

2(σ + 1)
∥∇u∥2(σ+1)

2 − λ

q

∫
RN

a(x)|u|qdx+
θ

p

∫
RN

b(x)|u|pdx for all u ∈ X.

According to our assumptions, we have that a function u ∈ X is a critical point for the functional J if, and

only if, u is a weak solution for problem (Pλ,θ). Furthermore, we define a set called Nehari manifold given by

N = {u ∈ X\{0} : J ′(u)u = 0} . As a product, due to the works [4] and [5], we consider the nonlinear Rayleigh

quotients Rn, Re : X\{0} → R associated with the parameters λ, θ > 0 in the following way:

Rn(u) =
∥u∥2 + α2∥∇u∥2(σ+1)

2 + θ∥u∥pp,b
∥u∥qq,a

and Re(u) =

1
2∥u∥

2 + α2

2(σ+1)∥∇u∥
2(σ+1)
2 + θ

p∥u∥
p
p,b

1
q∥u∥

q
q,a

, u ∈ X\{0}.

To simplify the notation, we define the extremal values as follows:

λ∗ = inf
u∈X\{0}

inf
t>0

Rn(tu) and λ∗ = inf
u∈X\{0}

inf
t>0

Re(tu).

2 Main Results

Theorem 2.1. Suppose (m1), (a1)-(a2), (v1)-(v3) and cN− < cN 0 where cN− := inf{J(w) : w ∈ N−} and

cN 0 := inf{J(w) : w ∈ N 0}. Then for each λ ∈ (λ∗,+∞) and θ > 0, there exists θ2 > 0 such way that problem

(Pλ,θ) admits at least a bound state solution u ∈ X\{0} satisfying u ∈ N− whenever 0 < θ < θ2. Furthermore, we

obtain that 0 < λ∗ < λ∗ < +∞.

Theorem 2.2. Suppose (m1), (a1)-(a2), (v1)-(v3) and cN+ < cN 0 where cN+ := inf{J(w) : w ∈ N+} and

cN 0 := inf{J(w) : w ∈ N 0}. Then for each λ ∈ (λ∗,+∞) and θ > 0, problem (Pλ,θ) admits at least a ground state

solution v ∈ X\{0} satisfying v ∈ N+.
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Abstract

In this work we will list some results of the Morse theory for functionals I ∈ C2 defined on a Hilbert space H.

In certain cases, such results, when combined with deformation theorems, allow us to describe critical groups

of certain critical points and, therefore, the acquisition of critical point theorems, which guarantee under which

conditions I admits one or more non-trivial critical points.

As an application, we will study the existence and multiplicity of solutions for the following class of problems{
−∆u = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω is a smooth bounded domain in RN and f ∈ C1(Ω × R,R). To do so, we will use variational calculus

tools and Morse Theory applied to the functional I, associated with the above problem, defined in the Sobolev

space H1
0 (Ω).

1 Introdução

In this work, we will use methods from Algebraic Topology and Analysis with the goal of applying the tools of

Morse Theory introduced by Gromoll-Meyer [2] to ensure the existence and multiplicity of non-trivial critical points

for a class of functions I ∈ C2(H,R) defined on a Hilbert space H. As an application, we obtain the existence and

multiplicity of solutions for a class of elliptic problems involving the Laplacian operator.

The main motivation for using the aforementioned tools lies in the fact that when analyzing at critical values,

the topology of the level sets Ia = {x ∈ H |I(x) ≤ a} undergoes changes. Thus, in finite-dimensional spaces, it is

possible to study the topology of these spaces without resorting to techniques from Algebraic Topology. However,

when dealing with infinite-dimensional spaces, we lose the geometric and topological intuition about them. Hence,

we turn to homology groups in neighborhoods of critical points, known as critical groups, to establish the structure

of these abelian groups and their modifications in the presence of critical points, thereby ensuring the existence or

non-existence of new critical points.

In this sense, following the work of Silva [3], we will present three abstract results that ensure the existence and

multiplicity of critical points for a class of functionals satisfying the Cerami (Ce) condition and:

(I0) The origin is an isolated critical point, I(0) = 0, I ′(0) = 0 and there exists i ∈ {0, 1, · · · }, such that

Cq(I, 0) ∼=

{
Z, q = i,

0, q ̸= i.

(I1) There exists d1 < 0 such that I ′(u)(u) < 0 for every u ∈ Id1 .

(I2) The set S− = {u ∈ ∂B(0, 1) | I(tu) → −∞ as t → +∞} is a non-empty subset of ∂B(0, 1) homotopy

equivalent to a point.
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(I3) There exists d2 < 0 such that I(tu) ≥ d2 for all t ≥ 0 and u ∈ ∂B(0, 1) \ S−.

(I4) There exist u0 ∈ H and α, ρ > 0 such that

I(u) ≥ I(u0) + α, for every u ∈ ∂B(0, ρ)

(I5) There exists e ̸∈ B(u0, ρ) such that I(e) < I(u0) + α.

(I6) I
′′ is a Fredholm operator and dim[Ker(I ′′(u))] ≤ 1, for every u critical point of I such that the Morse index

of u is zero.

As an application, we will study the existence and multiplicity of solutions for the following class of problems{
−∆u = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1)

where Ω is a smooth and bounded domain in RN , f ∈ C1(Ω× R,R) and satisfies some necessary assumptions.

2 Main Results

More precisely, in this work, we will present the following theorems from Silva [3], which use the techniques of critical

group description to establish the existence and multiplicity of critical points for a class of functionals satisfying

(Ce) and (I0)− (I6).

The first result guarantees the existence of at least one non-trivial critical point as follows.

Theorem 2.1. Suppose I ∈ C1(H,R) and satisfies (Ce) and (I0) − (I4). Then, I possesses at least one nonzero

critical point in H.

The next result establishes the existence of at least four critical points for this class of functionals.

Theorem 2.2. Suppose I ∈ C2(H,R) is such that I ′′(u) is a Fredholm operator, for every u critical point of I.

Assume I satisfies (I0), with i ̸= 1, (I1)− (I3), (I6) and (Ce). Then, I possesses at least four critical points in H

provided that it has a local minimum u0 ̸= 0.

Finally, as an application of the above theorems, under certain conditions on f , we will establish the existence

and multiplicity of solutions for the problem (1). To achieve this, we will ensure that the functional I associated

with this problem, defined in the Sobolev space H1
0 (Ω), satisfies conditions (Ce) and (I0)− (I6). For this purpose,

we will employ techniques from variational calculus and establish the critical groups of I based on the relationship

between f and the eigenvalues of the Laplacian.
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UFAL - Universidade Federal de Alagoas
XVI ENAMA - Novembro 2023 207–208

CHARACTERIZATION OF THE MAXIMUM PRINCIPLE FOR LINEAR SECOND ORDER

ELLIPTIC OPERATORS WITH NON-LOCAL TERM

ISMAEL OLIVEIRA1,† & WILLIAN CINTRA1,‡

Departamento de Matemática, UnB, DF, Brasil1

mael.anjo1412@gmail.com† willian@unb.br‡

Abstract

In this work we establishes a characterization of the maximum principle for a class of second order uniformly

elliptic operators with a non-local term and mixed boundary conditions. The results will be presented in Sobolev

spaces contexts. As a consequence we obtain several monotonicity properties of the principal eigenvalue of this

non-local operator, as well as some existence and non-existence results for certain elliptic equations.

1 Introduction

The main goal of this work is to present a characterization of the maximum principle for a class of second order

uniformly elliptic operators with a non-local term and under mixed boundary conditions.

LI := −div(A∇·) + ⟨⃗b,∇·⟩+ c−
∫
Ω

K(x, y) · dy,

Bψ :=

ψ, on Γ0,

∂ψ
∂ν + βψ, on Γ1,

where Ω ⊂ Rn is a regular boundary domains such that ∂Ω consists of two disjoint open and closed subsets, Γ0 and

Γ1, K ∈ L∞(Ω × Ω) and K ≥ 0. Moreover, A = (aij), b⃗ = (b1, ..., bN ) with aij ∈ W 1,∞(Ω), bj , c ∈ L∞(Ω), i, j =

1, 2, ..., N.

The following definitions will play a key role for our purposes: a function h ∈W 2,p(Ω), p > N , h is said to be a

supersolution of (LI ,B,Ω) if {
LIh ≥ 0 in Ω,

Bh ≥ 0 on ∂Ω.
(1)

If, in addition, some of these inequalities is strict on a measurable set of positive measure, we say that h is a strict

supersolution of (LI ,B,Ω).

A principal eigenvalue of {
LIu = σu in Ω,

Bu = 0 on ∂Ω.
(2)

is an eigenvalue whose associated eigenfunction does not change sign.

We emphasize that we proved the existence and uniqueness of the principal eigenvalue using the Krein-Rutman

Theorem and it will be denoted by σ1(LI ,B,Ω).

2 Main Results

A crucial step to obtain the main result is to establish the following proposition which provides the behavior of

supersolutions of (LI ,B,Ω).
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Proposition 2.1. Suppose that (LI ,B,Ω) has a positive supersolution h ∈ W 2,p(Ω), p > N , such that h(x) > 0,

for all x ∈ Ω. Then any supersolution u ∈W 2,p(Ω) of (LI ,B,Ω) must satisfy some the following alternatives:

A1. u = 0 in Ω.

A2. u is strongly positive, that is, u(x) > 0, ∀x ∈ Ω ∪ Γ1 and

∂u

∂ν
(x) < 0,∀x ∈ u−1(0) ∩ Γ0.

A3. There exists a constant m < 0 such that u = mh in Ω. In such case Γ0 = ∅ and

u(x) < 0, ∀x ∈ Ω.

We emphasize that this result is a version for LI of [2, Theorem 7.1.7].

The result that we present below is a generalization of [1, Lemma 2.4], where we are considering here a more

general class of operators, as well as boundary conditions.

Theorem 2.1. The following assertions are equivalent:

1. The principal eigenvalue associate with (3) that we will denote by σ[LI ,B,Ω], is positive;

2. (LI ,B,Ω) has a strict supersolution h ∈W 2,p(Ω), p > N ;

3. The tern (LI ,B,Ω) satisfies the strong maximum principle, i.e, if any supersolution h ∈ W 2,p(Ω) \ {0},
p > N , of (LI ,B,Ω) is strongly positive;

4. The tern (LI ,B,Ω) satisfies the maximum principle, i.e, if any supersolution h ∈ W 2,p(Ω), p > N , of

(LI ,B,Ω) satisfies h ≥ 0;

5. The resolvent operator of the linear problem {
LIu = f in Ω,

Bu = 0 on ∂Ω,
(3)

is strongly positive.

It should be noted that the hypothesisK ≥ 0 is important for us to apply Krein-Rutman Theorem, since without

it the resolvent operator may no longer be strongly positive.

This result provides us with important applications in the study of elliptic PDE’s with non-local term, such as

monotony of the principal eigenvalue with respect to several parameters, existence and non-existence of solutions

and even the punctual characterization of the principal eigenvalue.
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Abstract

It is established existence of solution with prescribed Lp norm for the following nonlocal elliptic problem: (−∆)spu + V (x)|u|p−2u = λ|u|p−2u+ β |u|q−2 u in RN ,∫
RN

|u|pdx = mp, u ∈W s,p(RN ).

where s ∈ (0, 1), sp < N, λ > 0, β > 0 and q ∈ (p, ps] where ps = p + sp2/N . The main feature here is to

consider the cases Lp-subcritical and Lp-critical. Furthermore, we consider a huge class of potentials V taking

into account periodic potentials, asymptotically periodic potentials and coercive potentials. More precisely, we

ensure the existence of a normalized solution for the periodic and asymptotically periodic potential V in the

Lp-subcritical for each β > 0. Furthermore, for the Lp critical case, we also prove an existence result for each

β > 0 small enough.

1 Introduction

In this work we consider a class of problems that has been widely studied in recent years by several authors. As

motivation, we consider the existence of normalized solution for the following nonlocal elliptic problem: (−∆)spu + V (x)|u|p−2u = λ|u|p−2u+ β |u|q−2
u in RN ,∫

RN

|u|pdx = mp, u ∈W s,p(RN ),
(Pm)

where the parameter λ is given by the Lagrange Multiplier Theorem, N > ps, s ∈ (0, 1), β > 0 and 1 < p < q ≤ p =

p+ sp2/N . Now, we define the space X for the Problem (Pm) as follows:

X =

{
u ∈W s,p(RN ) :

∫
RN

V (x)|u|pdx <∞
}
,

Here, we remember that W s,p(RN ) is the fractional Sobolev space. At this stage, we consider the sphere of radius

m in space Lp(RN ) as follows:

Sm =

{
u ∈ X :

∫
RN

|u|pdx = mp

}
.

Our main objective is to find the existence of minimizers for the functional J : X → R restricted to the set Sm,

that is, we need to ensure the existence of u ∈ Sm that satisfies

γm = inf{J(w) : w ∈ Sm} = J(u),

where the energy functional J is given by

J(u) =
1

p
[u]p +

1

p

∫
RN

V (x)|u|pdx− β

q

∫
RN

|u|qdx.
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In order to state our hypotheses we consider the important set F introduced in [2] which represents a class of

functions f ∈ C(RN ) ∩ L∞(RN ) such that for all ε > 0 the Lebesgue measure of the set {x ∈ RN : |f(x)| ≥ ε} is

finite. Under these conditions, we shall consider the following hypotheses:

(V1) The potential V ∈ L∞(RN ) is 1− periodic and V (x) ≥ 0, for all x ∈ RN .

(V2) The potential V ∈ C(RN ) ∩ L∞(RN ) is asymptotically periodic, i.e., there exists a potential Vθ ∈
C(RN ) ∩ L∞(RN ), 1-periodic, with Vθ(x) ≥ V (x) ≥ 0, V ̸≡ Vθ such that V − Vθ ∈ F .

In the present work, the continuous embedding from the Sobolev spaces into the Lebesgue spaces does not work

directly. In fact, by using the fact that V can be zero in some subsets Ω ⊂ RN , the standard continuous embedding

is not verified. Hence, we need to apply a hypothesis introduced by Sirakov [3]. Namely, we consider the following

statement:

(V3) σ = inf
u∈X

{
∥u∥p :

∫
RN

|u|pdx = 1

}
> 0.

For the case q = p+ sp2/N we assume the following auxiliary assumption:

(V4) There holds µ
(
{x ∈ RN : V (x) ≤M}

)
<∞ for each M > 0.

2 Main Results

Theorem 2.1 (Lp-subcritical case, periodic potential). Suppose that q ∈ (p, p + sp2/N) and (V1), (V3), β > 0.

Then, for every m > 0, there exists δ = δ(m) > 0 such that if ∥V ∥∞ < δ, we obtain that the Problem (Pm) has at

least one solution u ∈ Sm satisfying J(u) = γm < 0.

Now, by using hypothesis (V2), we can consider the existence of local minimizers u ∈ Sm for asymptotically

periodic potentials. More precisely, we are able to consider the following result;

Theorem 2.2 (Lp-subcritical case, asymptotically periodic potential). Suppose q ∈ (p, p + sp2/N), β > 0, (V2)

and (V3). Then, for every m > 0 there exists δ = δ(m) > 0 such that if ∥Vθ∥∞ < δ, the Problem (Pm) has at least

one weak solution u ∈ Sm such that J(u) = γm < 0.

Theorem 2.3 (Lp-critical case). Suppose q = p + sp2/N . Also assume that (V3) and (V4) are satisfied. Then,

there exists β0 > 0 such that the Problem (Pm) has at least one solution u ∈ Sm, for every β ∈ (0, β0) where

β0 = β0(N, s, p,m) > 0.
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Abstract

In this work, we study the following class of linearly coupled system involving Stein-Weiss type convolution
−∆u+ u =

1

|x|β

(∫
R2

F (u(y))

|y − x|µ|y|β dy

)
f(u(x)) + λv in R2,

−∆v + v =
1

|x|β

(∫
R2

G(v(y))

|y − x|µ|y|β dy

)
g(v(x)) + λu in R2,

(Sλ)

where 0 < µ < 2, β ≥ 0, 0 < 2β + µ < 2 and F (s), G(s) are the primitives of f(s) and g(s) respectively. The

coupling parameter λ ∈ (0, 1). Assuming that the nonlinearities f(s) and g(s) have critical exponential growth

in the sense of Trudinger-Moser inequality, we study the existence of ground state solution of the above system.

Moreover, regularity results and asymptotic behaviour of solutions complement the study of the work.

1 Introduction

Recently, inspired by the physical appeal and the interesting mathematical point of view, elliptic problems

involving Stein-Weiss type nonlinearities have been studied, we refer the readers to [3, 5]. There are a few works

considering Stein-Weiss term and a nonlinearity with critical exponential growth, see for example [1, 2, 6]. In

[6], authors have considered logarithmic potential combined with Stein-Weiss critical and subcritical nonlinearity.

In [2] authors used the Mountain-Pass Theorem combined with shifted sequences jointly with Lions’ vanishing-

nonvanishing arguments which may not be applicable in the lack of periodicity of the nonlocal term. A similar

observation is noted in [3], pp 2190.

The main purpose of the present work is to investigate the existence of ground state solution for the linearly

coupled system (Sλ) involving doubly critical nonlinearity in R2 and our contributions are the following:

(i) In the above context, the result of our work completes the picture of [4] in two dimensional case. We complement

and extend some works which consider the Choquard type nonlinearity;

(ii) The existence result obtained in [1] and (Sλ) is compatible in the light of study of asymptotic behaviour of

solutions of (Sλ) with respect to λ→ 0 as done in the work;

(iii) The work presents an alternative approach to the standard arguments based on Lions’ vanishing-nonvanishing

and shifted sequences which is not applicable in the presence of β ̸= 0.

2 Main Results

Inspired by the Trudinger - Moser type inequality, we say that a function h : R → R has α0− critical exponential

growth at +∞ if there exists α0 > 0 such that lims→+∞ h(s)/eαs
2

= 0, if α > α0 and lims→+∞ h(s)/eαs
2

= +∞ if

α < α0. We suppose that the nonlinearity f and g has α0− critical exponential growth at +∞ and the following

hypotheses:

(f1) f, g ∈ C(R), f(s) = g(s) = 0 for all s ≤ 0 and f(s) = g(s) = o(s
2−2β−µ

2 );
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(f2) lim inf |s|→∞
f(s)

eα0s2
= lim inf |s|→∞

g(s)

eα0s2
= ξ >

√
(2−µ)(3−µ)(4−µ)(4−2β−µ)

(α0/2)ρ4−2β−µ , where ρ satisfies 4−2β−µ
4 ρ2 < 1;

(f3) there exists θ > 2 such that 0 < θF (s) ≤ 2f(s)s and 0 < θG(s) ≤ 2g(s)s for all s > 0;

(f4) there exist M0 > 0 and m0 ∈ (0, 1] such that 0 < sm0F (s) ≤ M0f(s) and 0 < sm0G(s) ≤ M0g(s), for all

s ≥ s0;

(f5) the functions s 7→ f(s) and s 7→ g(s) are increasing for s ≥ 0.

Theorem 2.1 (Existence). Suppose that f and g satisfy assumptions (f1)− (f5) and λ ∈ (0, 1). Then, system (Sλ)

has a positive ground state solution (uλ, vλ).

Theorem 2.2 (Regularity). Let (uλ, vλ) ∈ H1(R2) × H1(R2) is the positive ground state solution of System

(Sλ) obtained in Theorem 2.1. Then (uλ, vλ) ∈ L∞(R2) × L∞(R2). In addition, the solution obtained is

C1,γ(R2)× C1,γ(R2) for some γ ∈ (0, 1).

Theorem 2.3 (Asymptotic behavior). Suppose that assumptions (f1) − (f5) are satisfied by f and g. Let

(λn) ⊂ (0, 1) be such that λn → 0+ as n→ ∞ and for each n ∈ N, (uλn , vλn) ∈ H1
rad(R2)×H1

rad(R2) is the positive

ground state solution of system (Sλn
) obtained in Theorem 2.1. Then, up to a subsequence, (uλn

, vλn
) → (u0, v0)

in H1(R2)×H1(R2) as n→ +∞, where either v0 = 0 and u0 > 0 or u0 = 0 and v0 > 0 is a ground state solution

to the equation, respectively,

−∆u+ u =
1

|x|β

(∫
R2

F (u(y))

|y − x|µ|y|β
dy

)
f(u(x)) and −∆v + v =

1

|x|β

(∫
R2

G(v(y))

|y − x|µ|y|β
dy

)
g(v(x)).
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Abstract

In this work, we establish some abstract results on the perspective of the fractional Musielak-Sobolev spaces,

such as: uniform convexity, Radon-Riesz property with respect to the modular function, (S+)-property and

other monotonicity results. Moreover, we apply the theory developed to study the existence of solutions to the

following class of nonlocal problems{
(−∆)sΦx,y

u = f(x, u), in Ω,

u = 0, on RN \ Ω,
(PΦ)

where N ≥ 2, Ω ⊂ RN is a bounded domain with Lipschitz boundary ∂Ω and f : Ω× R → R is a Carathéodory

function not necessarily satisfying the Ambrosetti-Rabinowitz condition.

1 Introduction

Recently, Azroul et al. [1, 2] have considered a new class of fractional problems driven by nonlocal integro-

differential operator of elliptic type defined as follows

(−∆)sΦx,y
u(x) := 2 lim

ε→0

∫
RN\Bε(x)

φ

(
x, y,

|u(x)− u(y)|
|x− y|s

)
u(x)− u(y)

|x− y|s
dy

|x− y|N+s
, x ∈ RN , (1)

where s ∈ (0, 1) and Φx,y(t) := Φ(x, y, t) =
∫ |t|
0
τφ(x, y, τ) dτ is a generalized N -function that satisfies some suitable

assumptions. Due to the nonlocality of the operator (1), they introduced the new fractional Musielak-Sobolev space

in a domain Ω ⊂ RN defined as

W s,Φx,y (Ω) :=
{
u ∈ LΦ̂x

(Ω): Js,Φ(u) <∞
}
, where LΦ̂x

(Ω) :=
{
u : Ω → R measurable : JΦ̂(u) <∞

}
,

Φ̂(x, t) := Φ(x, x, t) and the modular functions JΦ̂ and Js,Φ are determined in the following form:

Js,Φ(u) =

∫
Ω

∫
Ω

Φ

(
x, y,

|u(x)− u(y)|
|x− y|s

)
dxdy

|x− y|N
, JΦ̂(u) =

∫
Ω

Φ̂(x, |u(x)|) dx.

Furthermore, they considered the following work space

W
s,Φx,y

0 (Ω) = {u ∈W s,Φx,y (RN ) : u = 0 a.e. in RN \ Ω}.

The fractional Musielak-Sobolev space extends many other known concepts in the literature, for instance, the

fractional Sobolev with variable exponents space [5] and fractional Orlicz-Sobolev space [4]. In [1], the authors

proved that W s,Φx,y (Ω) is a separable and reflexive Banach space when endowed with the Luxemburg norms.

Moreover, if Φ satisfies the ∆2-condition and t 7→ Φx,y(
√
t) is convex for all (x, y) ∈ Ω × Ω, then W s,Φx,y (Ω) is a

uniformly convex space. This convexity assumption has also been used to obtain the (S+)-property for a wide class

of operators associated to the fractional Orlicz-Sobolev space, see [3].

Motivated by the above discussion, our main goal in this work is extend and complement the previous results

on the perspective of the new class of fractional Musielak-Sobolev space W s,Φx,y (Ω) and the nonlocal operator (1)

assuming only that Φ and its conjugate function satisfy the ∆2 condition.
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2 Main Results

Throughout this work, we assume that Ω ⊂ RN (N ≥ 2) is a bounded domain with Lipschitz boundary and

φ : Ω× Ω× (0,+∞) → [0,+∞) is a Carathéodory function satisfying the following assumptions:

(φ1) lim
t→0

tφx,y(t) = 0 and lim
t→+∞

tφx,y(t) = +∞, where φx,y(t) := φ(x, y, t) for all (x, y) ∈ Ω× Ω;

(φ2) t 7→ tφx,y(t) is nondecreasing on (0,+∞);

(φ3) there exist 1 < ℓ ≤ m < +∞ such that ℓ ≤ t2φx,y(t)
Φx,y(t)

≤ m for all (x, y) ∈ Ω× Ω and t > 0;

The assumptions (φ1)−(φ3) imply that Φ and its conjugate are generalizedN -functions and satisfy ∆2 condition.

Theorem 2.1. The space W s,Φx,y (Ω) is a uniformly convex. Furthermore, if un ⇀ u in W
s,Φx,y

0 (Ω) and

Js,Φ(un) → Js,Φ(u), then un → u in W
s,Φx,y

0 (Ω).

The next results establish some monotonicity properties of the operator J ′
s,Φ :W

s,Φx,y

0 (Ω) →
(
W

s,Φx,y

0 (Ω)
)∗

.

Proposition 2.1. The operator J ′
s,Φ satisfies the following properties:

(i) J ′
s,Φ is bounded, coercive and monotone;

(ii) J ′
s,Φ is pseudomonotone.

Theorem 2.2. The operator J ′
s,Φ satisfies the (S+)-property, that is, given {un}n∈N ⊂ W

s,Φx,y

0 (Ω) satisfying

un ⇀ u weakly in W
s,Φx,y

0 (Ω) and lim supn→∞⟨J ′
s,Φ(un), un − u⟩ ≤ 0, there holds un → u strongly in W

s,Φx,y

0 (Ω).

Proposition 2.2. Assume that (φ1), (φ3) hold and t 7→ tφx,y(t) is strictly increasing. Then, J ′
s,Φ is a

homeomorphism strictly monotone.

In second part this work, we apply the theory developed to obtain the existence of weak solutions to the class

of nonlocal problem (PΦ) where f : Ω×R → R is a Carathéodory function satisfying suitable growth assumptions.

In order to prove our main existence result, we need to assume that φ is symmetric with respect to x, y and that

there exist constants C1, C2 > 0 such that C1 ≤ Φx,y(1) ≤ C2, for all (x, y) ∈ Ω× Ω. The first assumption is used

to define the notion of weak solution and the second one plays a key role in the continuous embedding theorem and

Poincaré inequality for W
s,Φx,y

0 (Ω).
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Abstract

It is establish existence and multiplicity of solutions for nonlocal elliptic problems where the nonlinearity is

driven by two convolutions terms. More specifically, we shall consider the following Choquard type problem:{
−∆u+ V (x)u = µ(Iα1 ∗ |u|q)|u|q−2u− λ(Iα2 ∗ |u|p)|u|p−2u in RN ,

u ∈ H1(RN ),

where p > q, λ, µ > 0, α1 ≤ α2; α1, α2 ∈ (0, N), N ≥ 3; p ∈ (2α2 , 2
∗
α2

); q ∈ (2α1 , 2
∗
α1

), 2αj = (N + αj)/N and

2∗αj
= (N + αj)/(N − 2), j = 1, 2.

1 Introduction

In the present work we shall consider the Choquard problem with two convolutions terms defined in the whole

space. Namely, we shall consider the following nonlocal elliptic problem:{
−∆u+ V (x)u = µ(Iα1 ∗ |u|q)|u|q−2u− λ(Iα2 ∗ |u|p)|u|p−2u, in RN ,
u ∈ H1(RN ),

(1)

where p > q and λ > 0, µ > 0, α1 ≤ α2; α1, α2 ∈ (0, N), N ≥ 3; p ∈
(
2α2

, 2∗α2

)
; q ∈

(
2α1

, 2∗α1

)
. Throughout

this work we write 2αj = (N + αj)/N and 2∗αj
= (N + αj)/(N − 2) for j = 1, 2. The potential V : RN → R

is a continuous function. Later on, we shall consider some hypotheses for the potential V . Recall that the Riesz

potential can be written as follows:

Iα(x) =
Aα(N)

|x|N−α , x ∈ RN and Aα(N) =
Γ(N−α

2 )

Γ(α2 )π
N
2 2α

where α ∈ (0, N) and Γ denotes the Gamma function, see [1]. Throughout this work we assume the following

assumptions:

(h1) The potential V : RN → R is continuous function and there exists a constant V0 > 0 such that V (x) ≥ V0 for

all x ∈ RN .

(h2) For each M > 0 it holds that |{x ∈ RN : V (x) ≤M}| < +∞.

(h3) There exists r ∈ [2, 2∗) such that d1 > 0 where d1 = inf
u∈X\{0}

∥u∥2
(p−q)
p−1

r B(u)
q−1
p−1

A(u)

 where

B(u) =

∫
RN

(Iα2
∗ |u|p)|u|pdx, A(u) =

∫
RN

(Iα1
∗ |u|q)|u|qdx, (2)
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2 Main Results

Theorem 2.1. Suppose (h1) − (h3) holds. Assume also that cN+
λ,µ

< cN 0
λ,µ

holds. Then there exists at least one

weak solution vλ,µ ∈ N+
λ,µ for the problem (1). Furthermore, vλ,µ is a ground state solution such that

cN+
λ,µ

= Jλ,µ(vλ,µ) = inf
w∈N+

λ,µ

J(w).

Moreover, we obtain that Jλ,µ(vλ,µ) > 0 whenever µ ∈ (µn, µe). Similarly, Jλ,µ(vλ,µ) = 0 for µ = µe and

Jλ,µ(vλ,µ) < 0 for each µ > µe.

Corollary 2.1. Suppose (h1)− (h3) holds. Assume that at least one of the following items is satisfied:

i) λ > 0, µ ≥ µe;

ii) λ ∈ (0, λ∗), µ ∈ (µn, µe);

iii) λ > 0, µ ∈ (µe − ϵ, µe);

where λ∗ > 0 is fixed and ϵ > 0 is small enough. Then the problem (1) admits at least one weak solution vλ,µ ∈ N+
λ,µ

which is a ground state solution. Furthermore, we obtain that

cN+
λ,µ

= Jλ,µ(vλ,µ) = inf
w∈N+

λ,µ

Jλ,µ(w).

Theorem 2.2. Suppose (h1) − (h3) holds. Assume also that cN−
λ,µ

< cN 0
λ,µ

holds. Then there exists at least one

weak solution uλ,µ ∈ N−
λ,µ for the problem (1) such that

cN−
λ,µ

= Jλ,µ(uλ,µ) = inf
w∈N−

λ,µ

Jλ,µ(w).

Corollary 2.2. Suppose (h1) − (h3) and µ > µn holds. Then there exists λ∗ > 0 such that for every λ ∈ (0, λ∗)

the problem (1) admits at least one weak solution uλ,µ ∈ N−
λ,µ. Furthermore, we also have

cN−
λ,µ

= Jλ,µ(uλ,µ) = inf
w∈N−

λ,µ

Jλ,µ(w).

As a consequence, by using Theorems 2.1 and 2.2, we obtain the following result:

Corollary 2.3. Suppose (h1) − (h3) holds. Assume also that µ > µn and λ ∈ (0,min(λ∗, λ
∗)) hold. Then the

problem (1) admits at least two weak solutions vλ,µ ∈ N+
λ,µ and uλ,µ ∈ N−

λ,µ such that

cN+
λ,µ

= Jλ,µ(vλ,µ), cN−
λ,µ

= Jλ,µ(uλ,µ). (3)

Theorem 2.3. Suppose (h1) − (h3) holds. Assume also that µ < µn and λ > 0. Then the Problem (1) does not

admit any nontrivial solution.
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Abstract

In this work, we establish the existence of nontrivial solutions for the following class of Hamiltonian systems:{
−∆u+ V (x)u = Q(x)g(x, v), x ∈ R2,

−∆v + V (x)v = Q(x)f(x, u), x ∈ R2,
(1)

where V and Q decay to zero at infinity as (1 + |x|α)−1 with α ∈ (0, 2), and (1 + |x|β)−1 with β ∈ [2,+∞),

respectively. The nonlinear terms f(x, s) and g(x, s) have exponential subcritical or critical growth. We show

an alternative proof of a weighted Trudinger-Moser-type inequality and combine with a Galerkin approximation

method and a linking theorem.

1 Introduction

We shall consider the following assumptions:

(V ) V ∈ C(R2), there exists α, a > 0 such that
a

1 + |x|α
≤ V (x), and V (x) ∼ |x|−α as |x| → ∞;

(Q) Q ∈ C(R2), there exists β, b > 0 such that 0 < Q(x) ≤ b

1 + |x|β
, and Q(x) ∼ |x|−β as |x| → ∞;

(h0) f, g : R2 × R → R2 are continuous;

(h1) f(x, s) = o(|s|) and g(x, s) = o(|s|) at the origin and uniformly on x ∈ R2;

(h2) for any bounded interval J ⊂ R2, there exists C > 0 such that |f(x, s)| ≤ C and |g(x, s)| ≤ C for all

(x, s) ∈ R2 × J ;

(h3) there exists θ > 0 such that


0 < θF (x, s) := θ

∫ s

0

f(x, t)tdt ≤ sf(x, s)

0 < θG(x, s) := θ

∫ s

0

g(x, t)tdt ≤ sg(x, s)

for all (x, s) ∈ R2 × (0,∞);

(h4) there exists constants M0 > 0 and s1 > 0 such that{
0 < θF (x, s) ≤M0f(x, s)

0 < θG(x, s) ≤M0g(x, s)
for all (x, s) ∈ R2 × [s1,∞).

We say f(x, s) has critical growth if there exists critical exponent γ0 > 0 such that,

lim
s→+∞

f(x, s)

eγ1s2
=

{
0, for all γ1 > γ0

+∞, for all γ1 < γ0
, uniformly in x,

and has subcritical growth if such limit is zero for all γ1 > 0, uniformly in x.
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We denote by Lpw(R2) the weighted Lp-space consisting of all measurable functions u : R2 → R2 satisfying∫
R2 w(x)|u|pdx <∞, and introduce the weighted Sobolev space

H1
V (R2) :=

{
u ∈ L2

V (R2 : |∇u| ∈ L2(R2)
}
,

with norm ∥u∥2 := ∥∇u∥22 +
∫ 2

R V (x)u2.

We denote the product space E = H1
V ×H1

V equipped with the inner product

⟨(u, v), (φ,ψ)⟩E =

∫
R2

[∇u∇v + V (x)uφ+∇u∇ψ + V (x)vψ]dx,

for all (u, v), (φ,ψ) ∈ E, to which corresponds to the norm ∥(u, v)∥E = ⟨(u, v), (u, v)⟩1/2E .

2 Main Results

First, we prove an Trudinger-Moser-type inequality with an alternative proof to the ones presented in [3, 4].

Theorem 2.1. Suppose that (V ) and (Q), with α ∈ (0, 2) and β ∈ [2,+∞), are satisfied. For any γ > 0 and

u ∈ E, we have Q(·)(eγu2 − 1) ∈ L1(R2). Moreover, for any 0 < γ < 4π,

sup
u∈E,∥u∥E≤1

∫
R2

Q(x)(eγu
2

− 1)dx <∞.

Moreover, we can prove that H1
V (R2) ↪→ LpQ(R2), for any p ∈ [2,∞). In particular, since β > α, such embedding

is compact. Equipped with this and inspired by [1, 2], our main results are:

Theorem 2.2 (Subcritical case). Suppose f(x, s) has exponential subcritical growth or critical growth, g(x, s) has

exponential subcritical growth, (V ), (Q) and (h0)− (h3) are satisfied. Then (1) possesses a nontrivial weak solution

(u, v) ∈ E.

For the next result, we assume that there exists γ0 > 0 such that the functions f, g satisfy

lim inf
|s|→∞

sf(s)

eγ0s2
, lim inf

|s|→∞

sg(s)

eγ0s2
= β0 >M,

where M =: inf
r>0

4e1/2r
2Vmax,r

γ0r2Qmin,r
, Vmax,r := max

|x|≤r
V (x) > 0 and Qmin,r := min

|x|≤r
Q(x) > 0.

Theorem 2.3 (Critical case). Suppose f(x, s) and g(x, s) has exponential critical growth, (V ), (Q) and (h0)− (h4)

are satisfied. Then (1) possesses a nontrivial weak solution (u, v) ∈ E.
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NAÍSA CAMILA GARCIA1,† & MARCUS ANTONIO MENDONÇA MARROCOS2,‡
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Abstract

In this talk, we will address the eigenvalue problem of the Grushin Laplacian with Dirichlet and Neumann

boundary conditions. We consider isovolumetric bounded domains on product manifolds of the formM = Rk×N ,

and analyze the shape of the domain that maximize the principal eigenvalue of the Grushin Laplacian with

Neumann boundary condition.

1 Introduction

Let M be a product manifold of the form M := Rk ×N , where (N, gN ) is a closed Riemannian manifold and M
is endowed with the product Riemannian metric. The Grushin Laplacian operator acts in u ∈ C∞(M) by:

∆Gu = ∆Rk

u+ ∥x∥2sRk∆
Nu

where s ∈ R, ∆Rk

and ∆N respectively denote the Laplacian Beltrami in Rk and in N .

For a bounded domain (open and connected set) Ω ⊂ M, with C2 boundary, we consider the eigenvalue problems

for the Laplacian Grushin operator with Neumann or Dirichlet boundary conditions:{
−∆G u = λu em Ω

Bα(u) = 0 sobre ∂Ω
(1)

Bα(u) = α⟨∇Gu, ν⟩+(1−α)u, for α ∈ {0, 1}. In other words, when α = 0 we are considering the Dirichlet boundary

condition and when α = 1 we are considering the Neumann boundary condition, u : Ω ⊂ M → R, ν is the unit

normal vector exterior to ∂Ω and ∇Gu is called Grushin gradient of u given by: ∇Gu = (∇xu, ∥x∥2sRk∇yu), where

∇x and ∇y denote the gradients of Rk and N respectively.

The Grushin Laplacian is not uniformly elliptic since it degenerates to ∆Rk

on points of the fiber {0} × N

however, some classic results from the theory of elliptic operators remain valid for the Grushin operator, such as

Sobolev inequality, Poincaré inequality, and the existence of weak solutions.

Our goal is to examine isovolumetric bounded domains that maximize the principal eigenvalue of the Grushin

Laplacian with Neumann boundary conditions. To achieve this, we will first present some useful in order to ensure

the tools and conditions that ensure the existence the maximizing domain.

2 Preliminary

2.1 Weighted Sobolev Spaces

Let Ω be a domain in M. We denote by W 1,2
G the space of real-valued functions in L2(Ω) such that ∂u

∂xi
∈ L2(Ω) for

all i = 1, · · · , k and ∥x∥s ∂u∂yj ∈ L2(Ω), endowed with norm ∥u∥W 1,2
G (Ω) :=

(∫
Ω

u2 +

∫
Ω

|∇G u|2
) 1

2

and we denote

by W 1,2
G,0(Ω) the closure of C∞

c (Ω) in W 1,2
G (Ω).
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2.2 Spectral Theorem

Definition 2.1. We say that a function u ∈ W 1,2
G,0(Ω)

(
W 1,2
G (Ω)

)
is a weak solution for the problem (1), when it

satisfies ∫
Ω

∇Gu · ∇G φ = λ

∫
Ω

uφ ∀ φ ∈W 1,2
G,0(Ω)

(
W 1,2
G (Ω)

)
Theorem 2.1. Let Ω ⊂ M be a domain (of class C∞). Then the eigenvalue problem (1) has an infinity countable

number of eigenvalues 0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ · · · with limn→∞ λm = ∞ and eigenfunctions ui ∈W 1,2
G,0(Ω)

(
W 1,2
G (Ω)

)
orthonormal in L2(Ω) that satisfy Bα(u) = 0 on ∂Ω.

3 Main Results

Let Ωr be a cylindrical domain Ωr := {(x, y) ∈ M;x ∈ Rk, ∥x∥ ≤ r, y ∈ N} ⊂ M, r > 0 and consider the eigenvalue

problem of the Laplacian Grushin (1) on Ωr.

In what follows we will only consider the Neumann boundary condition, that is, we consider α = 1 in (1).

The following proposition is the first step in the proof of Theorem 3.1.

Proposition 3.1. Let r > 0. If Ω ⊂ M is a bounded open set, satisfies |Ω| = |Ωr|, then λ2(Ω) ≤ µr = µ2(Br),

where µ2(Br) is the first nonzero eigenvalue of the Laplacian on the ball.

Theorem 3.1. Let |Ωr| = v. Then we have λ2(Ω) ≤ λ2(Ωr) for every bounded open set Ω ⊂ M with |Ω| = v.
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Abstract

In this work, we study an elliptic problem in RN
+ with non-linearities with arbitrary growth at infinity. We

obtain infinitely many solutions by supposing that this nonlinearity is concave-convex and odd near the origin.

1 Introduction

In this paper, we consider the following equation


−∆u− 1

2

(
x · ∇u

)
= 0, in RN+

∂u

∂η
= µa(x′)|u|q−2u+ f(u), on RN−1

, (1)

where f is odd and superlinear near to 0. This type of problem arises when we look for self-similar solutions for

the heat equation [2]. We obrain infinitely many solutions for the equation.

2 Main Results

We suppose that a and f verify the follwing:

(f1) f ∈ C(R;R),

(f2) There exists p ∈ (2, 2∗) such that
f(s)

sp−1
→ 0 if s→ 0,

(a1) a ∈ L
σq

K (RN−1) ∩ L∞(RN−1), where (
p

q

)′

< σq ≤
(
2

q

)′

, (1)

(a2) Ω+
a = {x ∈ RN−1 : a(x) > 0} = RN−1.

With the assumptions above, we shall to prove the following result

Theorem 2.1. There exists C = C(N, p, q) > 0 such that, if f is odd in [−C,C], then (1) has infinitely many

solutions for µ > 0 small.
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Proof (Sketch) We follow similar arguments of [1]. By setting F (s) =
∫ s
0
f(t)dt, we first notice that the formal

functional associated to the problem (1), namely

J(u) =
1

2

∫
RN

+

K(x)|∇u|2dx− µ

q

∫
RN−1

K(x′)a(x′)|u|qdx′ −
∫
RN−1

K(x′)F (u)dx′, (2)

is not be well defined, since f has arbitrary growth at infinity. So, we follow [1] and define g : R → R by

g(s) =

f(s), |s| ≤ A

f(A)

Ap−1
|s|p−2s, |s| > A,

(3)

where A > 0 is free for now.

Once know that f is odd in [−A,A], we have that g is an odd function in the entire real line. Moreover, there

exists cg > 0 such that |g(s)| ≤ cg|s|p−1 for every s ∈ R. Let G(s) =
∫ s
0
g(t)dt and define the class C1 functional

I(u) =
1

2

∫
RN

+

K(x)|∇u|2dx− µ

q

∫
RN−1

K(x′)a(x′)|u|qdx′ −
∫
RN−1

K(x′)G(u)dx′. (4)

Our goal is to prove the existence of infinitely many solutions for the problem (1) replacing f by g. After that,

we show that these solutions belongs to L∞(RN−1) and satisfies |u|∞ ≤ C, and therefore they are solutions of

the original problem. By Hölder’s inequality and making use of the Sobolev embeddings for our working space

D1,2
K (RN+ ), we have positive constants C1, C2 in a such way that

I(u) ≥ 1

2
∥u∥2 − C1µ

q
|a|σq

∥u∥q − C2∥u∥p := h(∥u∥),

By straightforward computation, for µ > 0 small enough, h has only two positive roots, namely R1 and R2, with

R1 < R2. We now consider a cutoff function ϕ ∈ C∞
c ([0,+∞)) such that ϕ ≡ 1 in [0, R1] and ϕ ≡ 0 on [R2,+∞).

With this, we can define the coercive and C1 functional given by

Φ(u) =
1

2

∫
RN

+

K(x)|∇u|2dx− µ

q

∫
RN−1

K(x′)a(x′)|u|qdx′ − ϕ(∥u∥)
∫
RN−1

K(x′)G(u)dx′. (5)

Since Φ is coercive and even, we can apply genus theory to obtain infinitely many critical points of Φ with

negative energy. Furthermore, we prove that: If Φ(u) < 0 then ∥u∥ < R1 and I(v) = Φ(v) for a small neighborhood

of u. Moreover, Φ satisfies a local (PS)c-condition for c < 0. Thus, these points are critical points of I as well.

For the final step we adapt the Moser’s Iteration method and we find a constant C = C(N, p, q) > 0, uniformly in

A, which bound from above the L∞ norm of any these critical points. So, taking A = C in (3) and repeating all

previous steps we conclude the proof.
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Abstract

This work presents a result of the existence of solutions for the class of p(x)−Laplacian problems −div (|∇u|p(x)−2∇u) + |u|p(x)−2u =

k∑
i=1

hi(x)
|u|p

∗
si

(x)−2
u

|x|si(x)
+ f(x, u), in Ω,

u = 0 on ∂Ω,

(1)

where Ω ⊂ RN is a bounded domain with 0 ∈ Ω; p(x), s1(x), · · · , sk(x) are Lipschitz continuous and

radially symmetric in Ω such that 1 < p− ≤ p(x) ≤ p+ < N ; 0 ≤ si(x) ≪ p(x), ∀i ∈ {1, · · · , k} and

|{x ∈ Ω / si(x) = sj(x), ∀i ̸= j}| = 0; p∗si(x) = p(x)·(N−si(x))
N−p(x)

and the functions hi (i = 1, · · · , k) and f are

functions whose properties will be given later. We obtain this result via the Lions’ concentration-compactness

principle for critical Sobolev-Hardy exponent in W
1,p(x)
0 (Ω) due to Yu , Fu and Li [3] and the Fountain Theorem

in [1].

1 Introduction

Throughout this work we assume the following: The functions hi : Ω → R are continuous and satisfy

hi(x) = hi(|x|) > 0, ∀x ∈ Ω− {0} and hi(0) = 0, (2)

lim
x→0

hi(x) ·
1

|x|si(x)
= +∞, ∀i ∈ {1, · · · , k}. (3)

The required conditions for the function f : Ω× R −→ R are below

(f1) f satisfies the Caratheodory condition;

(f2) There are constants c1, c2 such that |f(x, t)| ≤ c1 + c2|t|q(x)−1, where q : Ω −→ R is a measurable Lebesgue

function such that p(x) ≪ q(x) ≪ p∗si(x); ∀i ∈ {1, · · · , k}, for all x ∈ Ω;

(f3) f(x, t) = f(|x|, t), ∀(x, t) ∈ Ω× R;

(f4) f(x, t) = −f(x,−t), ∀(x, t) ∈ Ω× R.

2 Main Results

Theorem 2.1. Assume Ω ⊂ RN bounded, 0 ∈ Ω, and conditions (2)−(3) and (f1)−(f4) hold, then problem (1) has

a sequence (un) ⊂W
1,p(x)
0 (Ω) of solutions such that, for its energy functional J :W

1,p(x)
0 (Ω) −→ R, J(un) → +∞,

as n→ +∞.
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Abstract

This work aims to investigate the behavior of the eigenvalues of a family of degenerate elliptic operators

defined on a Riemannian manifold. We are interested in the family of operators parameterized by the Riemannian

metric on the manifold.

1 Introduction

The spectral theory for elliptic operators has several branches and applications. The most common of these operators

is known as the Laplace-Beltrami operator which acts on smooth functions on Riemannian manifolds and is defined

as the divergence of the gradient of the function or, equivalently, the trace of the Hessian of the function.

The Grushin Laplacian operator that acts on functions C∞(Rk × Rh)) is defined by

∆Gu(x, y) := ∆Rk

u+ |x|2sRk∆
Rh

u,

where s > 0, ∆Rk

and ∆Rh

denote, respectively, the Laplacian Beltrami in Rk and in Rh. Note that ∆G is not

uniformly elliptic throughout Rk × Rh, because it degenerates for ∆Rk

in points on the axis y. Despite this, some

classic results from the theory of elliptic operators remain valid for the Grushin operator, as such the Sobolev’s

inequality and Poincaré’s inequality, existence of weak solutions and Hölder’s regularity, Maximum principles,

Hardy’s inequalities and an Rellich-Kondrachov theorem analogue.

In [2] it is studied the spectral problem for the Grushin Laplacian under to Dirichlet boundary conditions on

a bounded open subset of Rn. It was proved that the symmetric functions of a given subset of eigenvalues really

depend real analytically on the perturbations of the domain and a Hadamard type formula was given for the

Grushin eigenvalues. As an application, the critical domains for the symmetric functions under isovolumetric and

isoperimetric perturbations were characterized in terms of overdetermined problems. In the present work, we are

interested in the Spectral Theory for the differential operators that generalize the Grushin Laplacian considering

both Neumann and Dirichlet boundary conditions.

We propose to investigate whether the results of Lamberti [2] remain valid in more general situations, considering

wider class of degenerate elliptic operators and in Riemannian Manifolds and not just in Rn.
Let (M, g) be an n-dimensional compact Riemannian manifold with boundary ∂M . Consider a symmetric

positive semidefinite (0, 2)-tensor T , and a smooth function η : M → R. The Grushin-type Laplacian operator is

defined by

LT,ηf = divη(T∇f) = divg(T∇f)− g(∇η, T∇f)

Note that LT,η is a degenerate operator since T is positive semidefinite. Note that the operator also smoothly

depends on the metric g and η. Here, div stands for the divergence of smooth vector fields and ∇ for the gradient

of smooth functions.

The existence of eigenvalues and eigenfunctions for the operator LT,η with Dirichlet or Neumann condition

defined in domains Ω of Rn depends on suitable assumptions over T and Ω, see [3]. There is a sequence of
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eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · −→ +∞ and ϕi : M → R associated eigenfunctions, for the eigenvalues

problem given by {
−LT,ηϕi = ληϕi em M

Bα(u) = 0 sobre ∂M

where Bα(u) = α⟨∇u, Tν⟩+ (1− α)u, for α ∈ {0, 1}, in other words, when α = 0 the Dirichlet boundary condition

is met, and when α = 1, it satisfies the Neumann boundary condition.

As the operator LT,η clearly depends on the metric g let’s consider the family of operators LgT,η parameterized

by g. It is known in the literature that the eigenvalues of elliptic operators depend continuously on g. We are

interested in checking the regularity of the dependence on the eigenvalues of LgT,η degenerate with respect to the

metric g. In general, we cannot expect the λn :M → R that associates each metric g to the nth eigenvalue of LT,η
to be differentiable.

Kato’s choice theorem tells us that in an analytic family of operators it is possible to parameterize the eigenvalues

analytically without necessarily putting them in ascending order. For our problem we will consider an analytic family

of metrics parameterized by a real parameter t.

2 Main Results

Let M be the set of all smooth Riemannian metrics on M.

Definition 2.1. The application ΛF,τ : M −→ R is defined as the elementary symmetric functions of the

eigenvalues, and are given by

ΛF,τ [g] :=
∑

j1,...,jτ∈F
j1<···<jτ

λj1 [g] · · ·λjτ [g] ∀ g ∈ M, F ⊂ N, τ ∈ {1, · · · , |F |}

Definition 2.2. ḡ is said a critical metric of ΛF,τ under the volume constraint g ∈ V [v] if it satisfies

dg=ḡΛF,τ [H] + c̄dg=ḡV[H] = 0 ∀ H ∈ S2(M), all c ∈ R where H − (0, 2)− tensor.

Let V [v] := {g ∈ M /V olg = v}. Note that T ′ is the directional derivative of F in the direction of H,

dFḡ(H) =
d

dt

∣∣∣∣
t=0

F(g(t)) =
d

dt

∣∣∣∣
t=0

Tg = T ′

Theorem 2.1. If ḡ is a critical metric for ΛF,τ under the volume constraint g ∈ V [v], then there exists a constant

c ∈ R such that ∑
i∈F

divη(T∇ϕ2i )ḡ + 2∇ϕi ⊗ T∇ϕi − dF∗
ḡ (∇ϕi ⊗∇ϕi) = cḡ
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Abstract

We study the asymptotic behavior of the wave equation with localized Kelvin-Voigt damping and memory

effects. We show that there is no exponential stability of the solution when the purely elastic part is connected

only with the Kelvin-Voigt damping. In this case we show that the solutions decay polynomially with the rate

1/t2.

1 Introduction

In this work, we consider an elastic string with local viscoelastic damping of Kelvin-Voigt type and past history

damping. The mathematical model is the following partial differential equation:

u′′(x, t)−
[
βux(x, t)− a(x)

∫ ∞

0

g(s)ux(x, t− s)ds+ b(x)u′x(x, t)
]
x
= 0, in (0, L)× (0,∞) (1)

with initial and boundary conditions

u(x, 0) = u0(x); u′(x, 0) = u1(x), u(x,−s) = ϕ0(s), in (0, L)× (0,∞),

u(0, t) = u(L, t) = 0, in (0,∞).

Here we consider the coefficients

a(x) = a0χ(a1,a2)(x) and b(x) = b0χ(b1,b2)(x),

where (a1, a2) and (b1, b2) are subintervals of (0, L). The e coefficients β, a0 and b0 are positive and the kernel of

the memory satisfies: 
g ∈ L1([0,∞)) ∩ C1([0,∞)) is a positive function such that

g0 := g(0) > 0, g̃ :=
∫∞
0
g(s)ds, ã(x) := β − a(x)g̃ > 0, and

g′(s) ≤ −c0g(s), for some c0 > 0,∀s ≥ 0.

(2)

As in Dafermos [1], we introduce the following change of variable:

η(x, s, t) := u(x, t)− u(x, t− s), (x, s, t) ∈ (0, L)× (0,∞)× (0,∞).

Then, the equation (1) becomes

utt(x, t)− [ã(x)ux(x, t) + a(x)

∫ ∞

0

g(s)ηx(x, s)ds+ b(x)uxt(x, t)]x = 0, (x, t) ∈ (0, L)× (0,∞), (3)

ηt(x, s, t) + ηs(x, s, t)− ut(x, t) = 0, (x, s, t) ∈ (0, L)× (0,∞)× (0,∞). (4)
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satisfying the initial and boundary conditions

u(·,−s) = ϕ0(s), u(·, 0) = u0(·), ut(·, 0) = u1(·), η(·, s, 0) = η0(·, s) := u0(·)− ϕ0(s), in (0, L)× (0,∞);

u(0, t) = u(L, t) = 0, in (0,∞), η(·, 0, t) = 0, in (0, L)× (0,∞), η(0, s, t) = η(L, s, t) = 0, in (0,∞)× (0,∞).

In this work we use the following phase space H := H1
0 (0, L) × L2(0, L) where Gg is the weighted space

L2
g((0,∞);H1

0 (0, L)) with the inner product (η1, η2)Gg
:=
∫ L
0

∫∞
0
g(s)η1xη

2
xdsdx, ∀ η1, η2 ∈ Gg. The Hilbert space H

is equipped with the inner product defined by

(U1, U2)H =

∫ L

0

v1v2dx+

∫ L

0

ã(·)u1xu2xdx+

∫ L

0

∫ ∞

0

a(·)g(s)η1x(·, s)η2x(·, s)dsdx,

for U1 = (u1, v1, η1(·, s)), U2 = (u2, v2, η2(·, s)) in H. We define the unbounded linear operator A : D(A) ⊂ H → H
defined by

A(u, v, η(·, s)) =
(
v, (ã(·)ux + a(·)

∫ ∞

0

g(s)ηx(·, s)ds+ b(·)vx)x, v − ηs(·, s)
)⊤

, ∀ U = (u, v, η(·, s))⊤ ∈ D(A)

with domain

D(A) =

{
U = (u, v, η(·, s))⊤ ∈ H | v ∈ H1

0 (0, L), ηs(·, s) ∈ Gg, η(·, 0) = 0 in (0, L)

(ã(·)ux + a(·)
∫∞
0
g(s)ηx(·, s)ds+ b(·)vx)x ∈ L2(0, L)

}
.

2 Main Results

Our main result is as follows:

Theorem 2.1. Under the hypotheses (2). If the purely elastic part is connected only with the Kelvin-Voigt damping

then the system (3)-(4) is not exponentially stable. Moreover, the system decays polynomially with the rate t−2,

that is

∥etAU0∥H ≤ Ct−2∥U0∥D(A), ∀ U0 ∈ D(A), t ≥ 1,

where the constant C > 0 is independent of U0.
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Abstract

The paper presents a study of a two-dimensional model of pollutant dispersion in landfills, considering the

governing equation in dimensionless form. The adopted model is solved using the Generalized Integral Laplace

Transform Technique (GILTT), and the obtained solution is analytical. The results are presented, highlighting

the influence of the soil retardation factor parameter, demonstrating that the proposed method is effective in

reproducing the physical characteristics of the problem.

1 Introduction

The Eq. (1), written in dimensionless form, found in the work of Albuquerque [1], describes the transport of

pollutants in a saturated porous medium, occurring underneath a landfill site where urban solid waste (USW) is

disposed:

R
∂C

∂τ
= L∗ ∂

2C

∂X2
+
∂2C

∂Y 2
− Pe

∂C

∂Y
, (1)

where R represents the soil retardation factor, C is the concentration of the contaminant in the liquid phase, τ

denotes time, L∗ is the aspect ratio of the problem between X and Y dimensions
(
L∗ = (L1

L2
)2
)
and Pe is the Peclet

number.

The initial condition of the problem is given by:

C(X,Y, 0) = C0, (2)

where C0 is the initial concentration of the contaminant in the USW storage cell.

The boundary conditions in dimensionless form and in the X direction are given by:

∂C

∂X
(0, Y, τ) = 0,

∂C

∂X
(1, Y, τ) = 0, (3)

where null flux conditions are used at the boundaries of the domain in X.

The boundary conditions in the Y direction are given by:

C(X, 0, τ) = 1, (4)

which represents the interface condition corresponding to continuous and uniform leachate leakage in a USW cell,

and:
∂C

∂Y
(X, 1, τ) +BiC(X, 1, τ) = 0, (5)

where Bi is the Biot number and this condition represents the convective flow located at the contact zone between

the soil and the groundwater table.
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Using the Generalized Integral Laplace Transform Technique (GILTT) to obtain the analytical solution of the

two-dimensional mass transport model in a saturated porous medium, we obtain:

C(X,Y, τ) =

N∑
n=0

φn(X)

[
K∑
k=0

ψk(Y )C̃k(τ)

]
+ CE(Y ), (6)

where φn(X) = cos

(
λn√
L∗X

)
, ψk(Y ) = sen(βkY ), C̃k(τ) is defined by Z(τ) = X · G(τ) · X−1 · Z(0), which

is part of a series in terms of eigenfunctions, and CE(Y ) is the solution for the steady-state problem, given by

CE(Y ) = ePe(Pe+Bi)−BiePeY

ePe(Pe+Bi)−Bi .

2 Main Results

After obtaining the solution of the two-dimensional pollutant transport model in the porous medium, the results

obtained through the online software Google Colaboratory in the Python language will be presented and analyzed.

The influence of the parameter R on the concentration field will be observed, where the retardation factor is a

measure of the soil’s capacity to retain contaminants and slow down their movement.

Figure 1: On the left side, Pe = 2, R = 1, and τ = 0.50 were considered. On the right side, Pe = 2, R = 5, and

τ = 0.50 were considered.

Considering the same values for the parameters Pe and τ in both cases, it can be observed that the parameter

R causes a change in the results of the pollutant concentration field. For R = 1, it can be seen that the pollutant

reaches about 50% of the soil with elevated pollutant levels, approximately 0.7. By increasing the parameter to

R = 5, it can be observed that the concentration levels are different; in this case, the pollutant reaches about 30%

of the soil with a level of 0.7. In other words, from the figure, it is evident that as the value of R increases, the

dimensionless concentration will be lower, meaning that the concentration of the contaminant is retained by the

porosity of the soil. Therefore, the soil retardation factor parameter is an essential consideration for understanding

and managing soil and groundwater contamination, aiming to protect human health and the environment.

References

[1] Albuquerque, F. A. - Estudo da propagação de contaminante em aterros sanitários via GITT. (2018).
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Abstract

This work is developed in a dissertation where studying controlabillity for the linearized Korteweg-de Vries

equation, and the nonlinear Korteweg-de Vries equation in bounded domains. The aim of this work is to prove

the controllability of these systems through the Hilbert’s Uniqueness Principle.

1 Introduction

Given two states, one initial and one final, is it possible to move the system of control from the initial state to the

final state? We consider nonlinear partial differential equation of KdV as a system control.

The well-posedness nonlinear equation of KdV is given by
yt + yx + yyx + yxxx = 0, t ∈ (0, T ), x ∈ (0, L),

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, L).

(1)

The solution equation model solitary waves. The linearized equation of KdV is obtained by the operator

Af = −fx − fxxx, ∀x ∈ D(A) :=
{
f ∈ H3(0, L); f(0) = f(L) = fx(L) = 0

}
.

That is closed, and dense in L2(0, L). Note that both A and A∗ are dissipative which proves existence and uniqueness

(see [2]) of solution of (1).

Definition 1.1. (Controllability) Let T > 0. The control system of the KdV equation is controlable in time

T if and only if for every y0 ∈ L2(0, L) and avery y1 ∈ L2(0, L), there exist a u ∈ L2(0, T ) such that the solution y

of Cauchy problem (1) satisfies y(T, .) = y1.

2 Main Results

It is a curious fact that the linearized control system at (1) has the folowing condition.

Theorem 2.1. Let T > 0. Let the set

N :=

{
2π

√
j2 + l2 + jl

3
; j, l ∈ N− {0}

}
(1)

The control sistem is controlable in time T iff L /∈ N .

Now we can reconfigure the controlabillity problem with duality between controllability and observability.

So let T > 0. Let us define a linear map FT : L2(0, T ) −→ L2(0, L) as following. Let u ∈ L2(0, T ). Let

y ∈ C0([0, T ];L2(0, L)) be the wake solution of the Cauchy problem (1) with y0 := 0. Then FT (u) := y(T, .).
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Proposition 2.1. The control system of KdV equation is controllable in time T if and only if FT is onto.

Proposition 2.2. (Observability Inequalities) Let H1 and H2 be two Hilbert spaces. Let F be a linear

continuous map from H1 into H2. Then F is onto if and only if there exists c > 0 such that

∥F ∗(x2)∥H1
≥ c∥x2∥H2

,∀x2 ∈ H2.

The proofs of (1) is completed by C-linear map A : NT ′ −→ NT ′ using the lemma

Lemma 2.1. Let T > 0 and y0 ∈ L2(0, L) such that yx(., 0) = 0 for all y := S(t)y0 at semigroup form. If L ∈ N
then y0 = 0.

Theorem 2.2. Let T > 0 and L > 0. Then there exist r0 > 0 such that for all y0, yT ∈ L2(0, L), with ∥y0∥ < r0,

∥yT ∥ < r0, there exist a solution y ∈ C([0, T ];L2(0, L)) ∩ L2(0, T,H1(0, L)) ∩W 1,1(0, T,H−2(0, L))

yt = (yx + yyx + yxxx) ∈ D′(0, T,H−2(0, L));

y(·, 0) = 0 ∈ L2(0, T )
(2)

satisfazendo y(·, 0) = y0, e y(T, ·) = yT

By Hilbert’s uniqueness principle there existe a linear map Π : yT ∈ L2(0, L) −→ ux(·, L) ∈ L2(0, T ). Let F a

nonlinear map definide by

F : L2(0, T,H1(0, L)) −→ B

y 7−→ F (y) := S(·)y0 +Ψ1 ◦ Γ(yT − S(T )y0 +Ψ2(yyx)(T, ·)) + Ψ2(−yyx). (3)

Using the Banach’s fixed point contraction we prove that there exist a control u such thath the nonlinear system

control is locally controllable.
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Abstract

Energy (or Lyapunov) functions are used to prove stability of equilibria, or to indicate a gradient-like structure

of a dynamical system. Matano constructed a Lyapunov function for quasilinear non-degenerate parabolic

equations [1]. We modify Matano’s method to construct an energy formula for fully nonlinear degenerate

parabolic equations.

1 Introduction

Lyapunov functions occur in physical systems that naturally lose energy, for example, certain dissipative dynamical

systems. Mathematically, these functions are used to prove the stability of equilibrium points.

For certain PDEs, we know the existence of Lyapunov functions, and in particular cases, we know its specific

formula. This is the case of the ρ-Laplacian equation,

ut = (p− 1)|ux|p−2uxx + f(u), (1)

where p ∈ N e p > 2. It energy is given by:

E =

∫ 1

0

|ux|p

p
−
∫ u

0

f(u1)du1 dx. (2)

In this setting, this present work consists of showing a method to construct a Lyapunov function for fully nonlinear

degenerate parabolic equations:

f(x, u, ux, uxx, ut) = f(x, u, p, q, r) = 0, (3)

where f ∈ C2, with fq · fr ⩽ 0, fr ̸= 0 and fq(x, u, p, 0, 0) ̸≡ 0.

2 Main Results

Given an differential equation as in (3), a Lyapunov function is a non-negative map E, such that:

dE

dt
(u(x, t)) ≤ 0, (4)

along solutions u(x, t) of (3). We follow the method proposed by H. Matano [1] for quasilinear equations, and by

B. Fiedler and P. Lappicy [2] for fully nonlinear equations. First we rewrite (3) as

fq(x, u, p, 0, 0)uxx = F 0(x, u, p) + F 1(x, u, p, q, r). (5)

We want to find a function L(x, u, p) such that

E =

∫ 1

0

L(x, u, p) dx. (6)
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It is found through a function g(x, u, p), according to

Lpp = fq(x, u, p, 0, 0) · exp(g(x, u, p)). (7)

We prove the existence of g(x, u, p) by the characteristic method, so we guarantee that L(x, u, p) exists, and we

recover it integrating twice the equation (7). Then we can obtain the desired:

dE

dt
= −

∫ 1

0

exp(g)F 1ut dx ⩽ 0. (8)

Therefore, if the characteristic equations have a solution g, we obtain a Lyapunov function for (3). This method

allow us to calculate explicitly the Lyapunov function for some generalizations of the equation (3), for example:

ut = (ρ− 1)|ux|ρ−2uxx + unx , (9)

with n ∈ R. Using our method, we obtain the energy function:

E = k∗

∫ 1

0

(ρ− 1)|ux|ρ−n

(ρ− n)(ρ− (n+ 1))
− u dx, (10)

for n ̸= ρ, ρ− 1 and k∗ ∈ R a constant.

By modifying the method introduced by H. Matano, we expand the scope of equations that possess a Lyapunov

function. We mention that our method doesn’t work for all degenerate equation, since it depends on the existence

of solutions of the ODE system obtained by the characteristic method, and furthermore, the equations need to

comply with the restrictions. This doesn’t occur, for example, for the Trudinger’s equations:

(uα)t = uxx, (11)

where α > 0, since fr = 0.
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Abstract

This manuscript deals with a suspension bridge model with internal damping. We use semigroup theory.

The existence of solution is proved by applying the Lumer-Phillips theorem. Exponential stability is obtained

due to the analyticity of the semigroup associated with the energy space.

1 Introduction

In this paper we study the existence of solutions and analyticity for the initial boundary value problem of a

suspension bridge with internal damping of the type

utt − αuxx − λ(φ− u) + γ1ut = 0, (1)

ρ1φtt − k(φx + ψ)x + λ(φ− u) + γ2φt = 0, (2)

ρ2ψtt − bψxx + k(φx + ψ) + γ3ψt = 0. (3)

The equations above are considering that the deck has negligible transversal section dimensions compared to the

length (span of the bridge), it is modeled in Timoshenko’s theory as a one-dimensional extensible beam of length L,

see [5]. As in [3], where we are denoting by φ = φ(x, t) the displacement of the cross-section on the point x ∈ (0, L),

by ψ = ψ(x, t) the rotation angle of the cross-section and the suspender cables are assumed to be linear elastic

springs with standard stiffness λ > 0. The constant α > 0 is the elastic modulus of the string (holding the main

cable to the deck). The positive coefficients ρ1 and ρ2 are the mass density and the moment of mass inertia of the

beam, respectively. Moreover, b represents the cross section’s rigidity coefficient, and k represents the elasticity’s

shear modulus. Finally, the constants γ1, γ2, γ3 > 0 are the coefficients of the damping force.

System (1)-(3) is subject to initial data and Dirichlet boundary conditions
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L),

φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ (0, L),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ (0, L),

(4)


u(0, t) = u(L, t) = 0, t ≥ 0,

φ(0, t) = φ(L, t) = 0, t ≥ 0,

ψ(0, t) = ψ(L, t) = 0, t ≥ 0.

(5)

We introduce the Hibert Space

H = H1
0 (0, L)× L2(0, L)×H1

0 (0, L)× L2(0, L)×H1
0 (0, L)× L2(0, L)

endowed with the following inner product,

⟨U, Ũ⟩H =

∫ L

0

vṽdx+ α

∫ L

0

uxũxdx+ ρ1

∫ L

0

ww̃dx+ ρ2

∫ L

0

zz̃dx+ b

∫ L

0

ψxψ̃x

+ λ

∫ L

0

(φ− u)(φ̃− ũ)dx+ k

∫ L

0

(φx + ψ)(φ̃x + ψ̃)dx,
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being U = (u, v, φ, w, ψ, z)T and Ũ = (ũ, ṽ, φ̃, w̃, ψ̃, z̃)T , with ut = v, φt = w and ψt = z. With this notation, we

rewrite (1) - (3) as the following first-order Cauchy problem{
Ut −AU = 0,

U(0) = U0,
(6)

where

A : D(A) ⊂ H → H, with D(A) = [H1
0 (0, L) ∩H2(0, L)×H1

0 (0, L)]
3

is defined by (6).

For existence of solution, the main idea is to use the well-known Lummer-Phillips Theorem (see [2]). As D(A)

is dense in H, to get that A is the infinitesimal generator of S(t) = eAt, a C0-semigroup of contractions on H, we

prove that A is dissipative and that 0 ∈ ρ(A) the resolvent set of A. We prove the following theorem.

Theorem 1.1. Let U0 ∈ H, then there exists a unique weak solution U of problem (6) satisfying U ∈
C0([0,+∞);H). Moreover, if U0 ∈ D(A), then U ∈ C0([0,+∞);D(A)) ∩ C1([0,+∞);H).

2 Analiticity (Main Results)

The main result is the analiticity of semigroup associated. We prove that iR ⊂ ρ(A) and that

lim
|β|→∞

∥β(iβI −A)−1∥L(H) <∞, (7)

so, by theorem 1.3.3, p. 5 of [2], we get

Theorem 2.1. The semigroup S(t) = eAt, t ≥ 0, generated by A is analytic.

As directly consequence, by using Geahart-Prüss-Greiner, see theorem 1.11, p. 302 of [1], we deduce,

Corollary 2.1. The C0-semigroup of contractions S(t) = eAt, t ≥ 0, generated by A is exponentially stable.
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UFAL - Universidade Federal de Alagoas
XVI ENAMA - Novembro 2023 237–238

STRONG STABILIZATION FOR A TIMOSHENKO BEAM SYSTEM WITH INTERNAL

FRACTIONAL DAMPING

RAFAEL O. DE JESUS1,†, CARLOS A. RAPOSO2,‡ & OCTAVIO V. VILLAGRAN3,§

Mathematics Collegiate, UPE, PE, Brasil1, Departament of Mathematics, UFBA, BA, Brazil2,

Department of Mathematics, University of Tarapacá, Arica, Chile3
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Abstract

In this article, we consider the system with Timoshenko beam system with internal fractional damping in a

bounded domain. We study the strong stabilization, and the well posed for a Timoshenko beam system with

different dissipations of the type fractional integro-differential operators with weight exponential.

1 Introduction

We consider the system

ρ1ϕtt(x, t)− k (ϕx(x, t) + ψ(x, t))x + a∂α,ηt ϕ(x, t) = 0 in (0, L)× (0,+∞) (1)

ρ2ψtt(x, t)− bψxx(x, t) + k (ϕx(x, t) + ψ(x, t)) + c∂β,ζt ψ(x, t) = 0 in (0, L)× (0,+∞) (2)

where η, ζ ≥ 0, 0 < α < 1, 0 < β < 1 and ρ1, ρ2, k, a, b, c positive real constants.

The dampers used are of the type fractional integro-differential operators with exponential weight, i.e.

∂ω,ξt f(t) =
1

Γ(1− ω)

∫ t

0

(t− s)−ωe−ξ(t−s)f ′(s) ds,

where 0 < ω < 1, ξ ≥ 0 and f ∈ W ([0, L);X). For to prove the well posed we write the equations as augmented

system: where γ1 = a sinαπ
π = a

Γ(α)Γ(1−α) , p(y) = |y| 2α−1
2 , γ2 = c sin βπ

π = c
Γ(β)Γ(1−β) and q(y) = |y|

2β−1
2 .

We introduce the functions u = ϕt, v = ψt, and transform the initial boundary value problem (??)-(??) into an

abstract problem {
Ut = AU ; t > 0,

U(0) = U0.
(3)

on Hilbert space H = [H1
0 (0, L)]

2 × [L2(0, L)]2 × [L2(R;L2(0, L))]2, where U0 = (ϕ0, ψ0, ϕ1, ψ1, 0, 0)T and

A : D(A) ⊂ H → H

is the linear operator defined by

AU =



u

v

1
ρ1

[
k (ϕx + ψ)x − γ1

∫
R
p(y)φ1(y) dy

]
1
ρ2

[
bψxx − k (ϕx + ψ)− γ2

∫
R
q(y)φ2(y) dy

]
−
(
|y|2 + η

)
φ1(y) + p(y)u

−
(
|y|2 + ζ

)
φ2(y) + q(y)v


. (4)
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2 Main Results

Theorem 2.1. If U0 ∈ H, the Cauchy problem (3) admits a unique weak solution

U ∈ C0 ([0,+∞);H) ,

given by U(t) = etAU0.

If U0 ∈ D(A), then the solution obtained is a strong solution with the following regularity

U ∈ C0 ([0,+∞);D (A)) ∩ C1 ([0,+∞);H) .

Theorem 2.2. The C0-semigroup of contraction
(
etA
)
t≥0

is strongly stable on H, i.e.

lim
t→+∞

∥∥etAU0
∥∥
H = 0; ∀ U0 ∈ H.
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Paris, First edition, (1969).

[2] sobolev, s. i. - Applications de analyse functionnelle aux équations de la physique mathématique, Léningrad,
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Abstract

This work deals with a von Kármán system with internal damping. For the solution’s existence, we use

nonlinear semigroup theory tools. We construct an evolution system by nonlinear Lipschitz perturbation of

a semigroup of contractions. We apply the energy method for the asymptotic behavior, which uses suitable

multipliers to construct a Lyapunov functional that leads to exponential decay.

1 Introduction

In this paper, we study the existence of solution and asymptotic behavior for the initial boundary value problem

of the von Kármán beam system of the type
ρAwtt − EA

[(
ux +

1

2
w2
x

)
wx

]
x

+ EIwxxxx = 0 in (0, L)× (0, T ),

ρAutt − EA

[
ux +

1

2
w2
x

]
x

= 0 in (0, L)× (0, T ).
(1)

where w(x, t) is the transverse displacement of a generic point, u(x, t) the longitudinal displacement, (0, L) is the

segment occupied by the beam, and T is a given positive time. The physical parameters represent the properties

of the material being E the Young’s modulus, A the cross-sectional area of the beam, L the beam length, ρA the

weight per unit length and EI the beam stiffness or flexural rigidity. The model (1) was proposed by J. E. Lagnese

and J. L. Lions, see [3, 4].

Here we are interested in studying the existence of solution and asymptotic behavior, considering frictional

damping, which is a natural problem, given by
wtt − b1

[(
ux +

1

2
w2
x

)
wx

]
x

+ b2wxxxx + a1wt = 0 in (0, L)× (0, T ),

utt − b1

[
ux +

1

2
w2
x

]
x

+ a2ut = 0 in (0, L)× (0, T ).
(2)

We consider the initial data and boundary conditions, respectively{
w(x, 0) = w0(x), wt(x, 0) = w1(x),

u(x, 0) = u0(x), ut(x, 0) = u1(x),
(3)


u(0, t) = u(L, t) = 0,

w(0, t) = w(L, t) = 0,

wx(0, t) = wx(L, t) = 0.

(4)

Now, we introduce the Hilbert space

H = H2
0 (0, L)× L2(0, L)×H1

0 (0, L)× L2(0, L),

equipped with the inner product given by

⟨U, Ũ⟩H = b2

∫ L

0

wxxw̃xxdx+

∫ L

0

φφ̃dx+ b1

∫ L

0

uxũxdx+

∫ L

0

ψψ̃dx, (5)
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where U = (w, φ, u, ψ)T , Ũ = (w̃, φ̃, ũ, ψ̃)T , we introduce the functions φ = wt and ψ = ut. We now wish to

transform the initial boundary value problem (2)-(4) to an abstract problem in the Hilbert space H. Rewrite the

system (2)-(4) as the following initial value problem{
Ut = AU + F(U),

U(0) = (w0, φ0, u0, ψ0)
T , ,∀ t > 0,

(6)

The domain of operator A : D(A) ⊂ H → H is given by

D(A) = H4(0, L) ∩H2
0 (0, L)×H2

0 (0, L)×H2(0, L) ∩H1
0 (0, L)×H1

0 (0, L).

The main idea is to consider the nonlinear evolution system (6) as a locally Lipschitz perturbation F of a linear

contraction semigroup S(t) = eAt on H. Since the nonlinear term F is locally Lipschitz, then abstract results

(see [2], Chap. 6 and [5],Theorem 7.1) on the generation of nonlinear semigroups apply in order to conclude the

existence of a nonlinear semigroup on H. Nonlinear semigroup theory also implies that for initial data taken from

the domain of the generator, the corresponding solutions are continuous in time with the values in D(A). For an

outline of the proof, see [[6], Appendix]. Thus strong solutions possesses the property ∈ C([0, T ),H).

To get S(t) = eAt on H, we will use the well known the Lumer-Phillips theorem (see [2]) and F is locally

Lipschitz we adapt the idea as in [1], Lemma 3.

Our solution existence result is given by

Theorem 1.1. If U0 ∈ H, then problem (6) has a unique mild solution U(t) = eAtU0 +

∫ t

0

eA(t−s)F(U(s))ds,

U ∈ C([0, ∞) : H), with U(0) = U0. Moreover, if U0 ∈ D(A) the mild solution is a strong solution globally defined.

2 Asymptotic behaviour (Main result)

Theorem 2.1. Let (w, u) be a solution of (2) where the initial data are given in D(A). Then, the energy E(t)
satisfies E(t) ≤ CE(0)e−αt, α, C > 0, for all t > 0.
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