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Abstract. We present an informal account on the relationship between vector-

valued Dirichlet series and Fourier series. We show that the Fourier type of a Banach

space X is equivalent to a summability property of the coefficients of certain X-valued

Dirichlet series. To do this, we give a simplified approach to Bohr’s original ideas,

which he used to study absolute convergence of ordinary Dirichlet series. In order

to keep things simple, we restrict most of our results to Dirichlet polynomials (i.e.,

finite Dirichlet series).

Introduction

The aim of this note is to present the relationship between the concept of Fourier type

of a Banach space and the convergence of vector-valued Dirichlet series. Rather than

giving the sharpest results, we prefer to emphasize on the connections between the

different concepts involved, giving a rather informal treatment of the subject.

In the beginnings of the 20th century, the great Danish mathematician and football

player (great in both activities) Harald Bohr gave important steps in the understanding

of Dirichlet series and their regions of convergence, uniform convergence and absolute

convergence [4, 5]. Problems of this kind attracted the attention of many important

mathematics of the time, as Landau, Toeplitz, Hardy, Littlewood, Hille and, of course,

Bohr.

One of the problems Bohr was interested in, named afterwards as the Bohr’s absolute

convergence problem, can be loosely stated as follows: to establish the maximum size of

the region where a Dirichlet series converges uniformly but not absolutely. Among his

many deep contributions, a brilliant (and beautiful) idea was to connect the problem

of convergence of Dirichlet series to a question of convergence of holomorphic functions

in infinitely many variables. Considering that in those years Banach space theory had

not made their entrance yet, to attack a one variable problem by translating it to a

infinite dimensional one was a courageous idea. And the most important: it proved to

be a very useful one, and many years later it regained importance for its applications

to different problems in functional analysis, harmonic analysis and number theory.

In recent years, the study of vector-valued Dirichlet series have attracted the inter-

est of many researchers, as well as vector-valued holomorphic functions on infinite
1
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dimensional Banach spaces. Variants of Bohr’s absolute convergence problem have

been studied in different spaces of Dirichlet series and the original ideas of Bohr were

adapted to these new frameworks [6, 7, 9, 11, 12].

We present here a simplified approach to the convergence of vector-valued Dirichlet

series, which makes no use of the theory of holomorphic functions in infinitely many

variables nor Banach space theory. Instead, we will relate Dirichlet polynomials (i.e.,

finite Dirichlet series) with trigonometric polynomials in finitely many variables. Since

we will use only some basic theory, some of the presented results will be weaker than

what can be obtained with tools from local theory of Banach spaces, infinite dimen-

sional complex analysis, etc. In this way, we can present some self contained results

and, most important, we can highlight the relationship between Dirichlet series and

Fourier series (or trigonometric polynomials) in many variables, which our main goal.

In Section 1 we give a very brief introduction to Dirichlet series and Bohr’s absolute

convergence problem. Section 2 intends to be a motivation to the study of vector-

valued Hausdorff-Young inequalities as a tool to understand the absolute convergence

of Dirichlet series with coefficients in a Banach space. In Section 3 we recall two versions

of Hausdorff-Young inequalities and define Fourier type as a way to extend these ideas

to the study of Fourier series with coefficients in Banach spaces. In Section 4 we define

some Hardy spaces of Dirichlet series and show that Fourier type is equivalent to some

summability property of the coefficients of Dirichlet series belonging to these families.

A deep and complete treatment of Fourier type and vector-valued Hausdorff-Young

inequalities can be found in [13]. We refer the reader to [2] for a nice survey on Bohr’s

work on Dirichlet series and to [8] for an account of results on their convergence for

both the scalar and vector-valued case. Finally, the forthcoming book [10] will be a

fundamental reference for the subject.

1. Some words on the convergence of Dirichlet series

A (scalar valued) Dirichlet series is a formal series D = D(s) of the form

D =
∑
n

an
1

ns

with coefficients an ∈ C and variable s in some region of C. Of course, the most famous

Dirichlet series is the Riemann zeta function ζ(s) =
∑

n
1
ns

.

The convergence of power series is a very well understood issue and is part of the

background knowledge of every mathematitian. If a power series converges (or con-

verges absolutely) at some z0 ∈ C, then it converges absolutely for every z ∈ C with

|z| < |z0|. Then the natural domains for convergence of power series are disks, and it

makes sense to think of radius of convergence and radius of absolute convergence. As
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we know, these two radii coincide, and it turns out to be the supremum of all radii

of uniform convergence. Moreover, in the open disk of convergence the power series

defines a holomorphic function which is bounded in any smaller disk (since it is the

uniform limit of polynomials).

The situation for Dirichlet series turns out to be quite different. If a Dirichlet series

D converges (or converges absolutely) at some s0 ∈ C, then it converges (or converges

absolutely) at every s ∈ C with Re s > Re s0. This means that, while disk are the

regions of convergence of power series, half-planes of the form

[Re s > σ] := {s ∈ C : Re s > σ}

are the regions of convergence of Dirichlet series. Another important difference with

power series is that the regions of convergence and absolute convergence do not nec-

essarily coincide: consider D =
∑

n(−1)n 1
ns

. The largest open half-plane where D

converges absolutely is [Re s > 1] while, by Leibniz’s criterion for alternate series, the

series converges in [Re s > 0]. Then, for this series, the region of non-absolute conver-

gence is a vertial strip of width 1. We can show that this is the extreme case: indeed,

if
∑

n an
1
ns

converges at some s0 then, necessarily, the sequence |an|
nRe s0

→ 0 is bounded

(it actually goes to 0). Then we have∑
n

|an|
|ns0+1+ε|

=
∑
n

|an|
nRe s0

1

n1+ε
<∞.

Hence, if D converges in [Re s > σ], it must converge absolutely in [Re s > σ + 1 + ε].

Since this holds for any ε > 0, we conclude that the maximum width of the strip where

a Dirichlet series converges but does not converge absolutely is 1.

On its region of convergence, a Dirichlet series D defines a holomorphic function. The

main interest of Bohr was to be able to determine the region of uniform convergence

of D (which, in general, is different to both regions of convergence and absolute con-

vergence) from the analytic properties of this function [4, 5].

Bohr showed that the width of the strip where a Dirichlet series converges uniformly

but not converges absolutely was at most 1/2, and Bohnenblust and Hille [3] showed

that this width can be attained. As a consequence, 1/2 is the maximum width of the

strip of uniform but not absolute convergence for Dirichlet series.

Bohr was able to reformulate the problem on uniform, non absolute convergence of

Dirichlet series into a problem of a more functional analytic flavor. Let H∞ be the

vector space of all Dirichlet series D =
∑

n ann
−s that converge in [Re s > 0] and that

define a bounded function there. It can be seen that H∞ is a Banach space with the

supremum norm given by∥∥∥∑
n

ann
−s
∥∥∥
H∞

= sup
Re s>0

∣∣∣ ∞∑
n=1

an
1

ns

∣∣∣ .
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What Bohr showed is that finding the maximum width of the strip of uniform but

not absolute convergence for Dirichlet series is equivalent to finding the least number

S such that D converges absolutely on [Re s > S] for every D ∈ H∞. Then, Bohr,

Bonhenblust and Hille showed was that S = 1/2.

We remark the following: to say that every D ∈ H∞ converges absolutely in [Re s >

1/2] is equivalent to say that, for every D =
∑

n ann
−s ∈ H∞ we have

(1)
∞∑
n=1

|an|
1

n1/2+ε
<∞.

Using Hölder inequality (see, for example, (2) below), one can easily obtain (1) for any

Dirichlet series whose coefficients satisfy
∞∑
n=1

|an|q <∞

for every q > 2. This kind of questions which we will investigate in the vector-valued

case: if we know that a series belongs to a certain class, what can we say about the

summability of its coefficients?

2. From Dirichlet series to Hausdorff-Young inequalities

The expression of a Dirichlet series

D =
∑
n

an
1

ns

makes sense if we take the coefficients (an)n in a Banach space, as well as different

questions about convergence. Let us consider a family D(X) of Dirichlet series with

coefficients in the Banach space X, defined on the right half-plane

[Re s > 0] = {s ∈ C : Re(s) > 0}.

One may wonder which is the largest half-plane (if it exists) where every series in

D(X) converges absolutely. A very important case is when we take D(X) = H∞(X),

the space of all Dirichlet series defining a bounded function on [Re z > 0]. The space

H∞(X) is a Banach space with the supremum norm.

We then want to find σ > 0 such that every D ∈ D(X) converges absolutely in

[Re z > σ]. A first approach, which does not work in general but motivates what

comes next), is the following: take D =
∑

n an
1
ns

. Then, for p, q conjugate exponents

(i.e., 1
q

+ 1
p

= 1), we have

∑
n

∥∥∥an 1

ns

∥∥∥ =
∑
n

‖an‖
1

nRe s

Hölder

≤

(∑
n

‖an‖q
)1/q(∑

n

1

npRe s

)1/p

.(2)

The last series converges if and only if Re s > 1/p. Therefore, a result like
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The coefficients of any Dirichlet series in D(X) are q-summable

would imply that every series in D(X) converges absolutely in [Re s > 1/p]. Note that,

if D(X) is a Banach space with some norm ‖ · ‖D(X), such a result is usually equivalent

to the existence of a constant C > 0 such that

(3)

(∑
n

‖an‖q
)1/q

≤ C ‖D‖D(X),

for every D =
∑

n an
1
ns
∈ D(X).

We consider the space H∞(X) whith the norm

‖D‖H∞(X) = sup
Re s>0

‖D(s)‖.

It can be seen (using the maximum modulus principle in a tricky way, see [10, Lemma

2.7]) that if D =
∑

n an
1
ns

is a finite sum, then we actually have

‖D‖H∞(X) = sup
Re s>0

‖D(s)‖ = sup
Re s=0

‖D(s)‖ = sup
t∈R

∥∥∑
n

an
1

nit
∥∥.

Given a sequence (xk)k ⊂ X, we define for each N ∈ N the Dirichlet series DN with

coefficients

an =

xk if n = 2k for 1 ≤ k ≤ N

0 otherwise
.

If inequality (3) holds for D(X) = H∞(X), then we have(
N∑
k=1

‖xk‖q
)1/q

=

(∑
n

‖an‖q
)1/q

≤ C ‖D‖H∞(X) = sup
t∈R

∥∥∑
n

an
1

nit
∥∥

= sup
t∈R

∥∥ N∑
k=1

xk
1

2ikt
∥∥ = sup

t∈R

∥∥ N∑
k=1

xke
−i log(2)kt∥∥

= sup
t∈R

∥∥ N∑
k=1

xk e
2πikt

∥∥,
where in the last step we used that, as t goes over R, both − log(2)t and 2πt cover R.

Since the last expression is clearly 1-periodic, what we get is

(4)

(
N∑
k=1

‖xk‖q
)1/q

≤ C
∥∥ N∑
k=1

xk e
2πikt

∥∥
L∞([0,1],X)

,

where L∞([0, 1], X) stands the space of essentially bounded functions on [0, 1] with

values in X. This resembles a vector-valued version of the Hausdorf-Young inequality

(see next section):

(5)

(
N∑
k=1

‖xk‖q
)1/q

≤ C
∥∥ N∑
k=1

xk e
2πikt

∥∥
Lp([0,1],X)

,
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where 1
p

+ 1
q

= 1 and 1 ≤ p ≤ 2. In opposition to the scalar-valued version, the vector-

valued Hausdorff-Young inequality (5) does not necessarily hold for a Banach space X

if p 6= 1. Banach spaces satisfying it (i.e., that there exists some C for which (5) holds

for every N and every sequence (xk)k ⊂ X) are those of Fourier type p, which we will

define in next section. Of course, if a Banach space satisfies (5), then it satisfies (4).

What is not so obvious is that a Banach space satisfies (4) if and only if it satisfies (3)

with D(X) = H∞(X). This means that the validity of Hausdorff-Young inequalities

in a Banach space X will give us information about the sumability of the coefficients

of Dirichlet series in H∞(X) and, as a consequence, about the absolute convergence of

these series.

3. Fourier type of Banach spaces

Let us recall a version of the Hausdorff-Young inequality. In the sequel, `p = `p(Z) will

stand for the Banach space of sequences a = (ak)k∈Z such that

‖a‖`p :=

(∑
k∈Z

|ak|p
)1/p

<∞.

For f ∈ Lp[0, 1] and k ∈ Z we define the kth Fourier coefficient of f as

f̂(k) =

∫
[0,1]

f(t)e−2πikt dt.

Note that, if f belongs to L1[0, 1], then for each k we have

|f̂(k)| ≤
∫
[0,1]

|f(t)e−2πikt| dt =

∫
[0,1]

|f(t)| dt = ‖f‖L1 .

As a consequence, we have

(6) ‖(f̂(k))k∈Z‖`∞ ≤ ‖f‖L1 .

On the other hand, Parseval’s identity gives

(7) ‖(f̂(k))k∈Z‖`2 =

(∑
k

|〈f, e2πik·〉|2
)1/2

= ‖f‖L2 .

By the Riesz-Thorin interpolation theorem, we obtain from (6) and (7)

(8) ‖(f̂(k))k∈Z‖`q ≤ ‖f‖Lp

for 1 ≤ p ≤ 2 where, as before, 1
p

+ 1
q

= 1. If we take a sequence (ck)k∈Z with only

finite nonzero entries, then the function f(t) =
∑

k cke
2πikt belongs to Lp[0, 1], we have

f̂(k) = ck and, in this case, (8) reads as

(9)

(∑
k∈Z

|ck|q
)1/q

≤

(∫
[0,1]

∣∣∣∣∣∑
k

cke
2πikt

∣∣∣∣∣
p

dt

)1/p

,
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with the usual modification if p = 1 and q = ∞. Note that (9) is a scalar-valued

version of (5). While (9) holds for 1 ≤ p ≤ 2, the validity (5) for some p is a property

of the Banach space X, the name of which is given in Definition 1.

A similar reasoning leads to another Hausdoff-Young inequality. Given (ck)k∈Z ∈ `1,
the series

∑
k cke

2πikt converges absolute and uniformly and∥∥∥∥∥∑
k

cke
2πikt

∥∥∥∥∥
L∞([0,1])

≤ ‖ck‖`1 .

From this and Parseval’s identity (7), we obtain by interpolation:

(10)

(∫
[0,1]

∣∣∣∣∣∑
k

cke
2πikt

∣∣∣∣∣
q

dt

)1/q

≤

(∑
k∈Z

|ck|p
)1/p

for every sequence (ck)k∈Z with only finite nonzero entries and 1 ≤ p ≤ 2.

It follows from (9) that, if the series
∑

k cke
2πikt converges in Lp([0, 1]), then the coef-

ficients (ck)k∈Z must belong to `q. Indeed, we apply (9) to see that, if( ∑
−m≤k≤n

cke
2πikt

)
m,n

is a Cauchy bi-indexed sequence in Lp([0, 1]), then
(
(
∑

−m≤k≤n

|ck|q)1/q
)
m,n

is also a

Cauchy sequence (in R). Then, (ck)k∈Z belongs to `q.

Analogously, we can see that (10) implies that, if (ck)k belongs to `p, then the series∑
k cke

2πikt converges in Lq([0, 1]).

In the vector-valued case (i.e., when we take (xk)k∈Z in some Banach space instead

(ck)k∈Z ⊂ C), inequalities like (9) and (10) do not necessarily hold. But it is interesting

that one of them holds (with some appropriate constant) for some Banach space X

and some 1 ≤ p ≤ 2 if and only the other holds (for the same X and p) [13].

Definition 1. For 1 ≤ p ≤ 2, we say that the Banach space has Fourier type p if there

exists a constant B > 0 such that, for any finite sequence (xk)k∈Z) ⊂ X we have

(11)

(∫
[0,1]

∥∥∥∥∥∑
k

xke
2πikt

∥∥∥∥∥
q

dt

)1/q

≤ B

(∑
k∈Z

‖xk‖p
)1/p

.

Equivalently, X has Fourier type p if there exists a constant C > 0 such that, for any

finite sequence (xk)k∈Z) ⊂ X we have

(12)

(∑
k∈Z

‖xk‖q
)1/q

≤ C

(∫
[0,1]

∥∥∥∥∥∑
k

xke
2πikt

∥∥∥∥∥
p

dt

)1/p

.
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We will not see the equivalence between these two definitions. For most part of these

notes, we can just take (12) as the definition of Fourier type. Let us mention that

Peetre’s original definition of Fourier type was neither (11) nor (12): a Banach space

X has Fourier type p if the X-valued Fourier transform defines a bounded operator from

Lp(R, X) to Lq(R, X) [18]. The definition of the vector-valued Fourier transform uses

integration in Banach spaces (namely, the Bochner integral) and will not be treated

here. We just mention that to show the equivalence between (11) and (12) one must

go through the definition of Fourier type by Fourier transform.

It is easy to see that every Banach space has Fourier type 1. Using a vector-valued

version of the Riesz-Thorin interpolation theorem, it can be shown that if X has Fourier

type p0, then it has Fourier type p for 1 ≤ p ≤ p0. The Hausdorff-Young inequality (9)

shows that C has Fourier type 2. Moreover, it is not hard to see that Hilbert spaces

have also Fourier type 2. The converse is much harder: a very deep result of Kwapien

[16] asserts that a Banach spaces with Fourier type 2 is isomorphic to a Hilbert space.

This means that Hilbert spaces and Banach spaces isomorphic to them are precisely the

Banach spaces where vector-valued Hausdorff-Young inequalities hold for 1 ≤ p ≤ 2.

Note that, in particular, finite dimensional Banach spaces have Fourier type 2.

If a Banach space has Fourier type p, then so does all of its subspaces. More interesting:

a Banach space has Fourier type p if and only if its dual has Fourier type p [13].

It is a nice exercise to show that `r has Fourier type p if and only if 1 ≤ p ≤ min(r, r′).

In fat, this holds for every infinite dimensional Lr(Ω,Σ, µ) (with essentially the same

proof). This means, for example, that L1 and L∞ spaces have only Fourier type 1 (we

say that they have only trivial Fourier type). It is known that Schatten classes Sp have

the same Fourier type as the spaces Lp (see [14, Theorem 1.6] or [15, Theroem 6.8]).

In the previous section, we have seen how a Dirichlet series whose only non-zero coef-

ficients correspond to powers of 2 was related to a Fourier series. In next section we

will see that an arbitrary (finite) Dirichlet series is related to a Fourier series in many

variables. This means that we will need inequalities similar to (5) or (12) for multi-

variate Fourier series. For this, we will consider multi-indexed families (xα)α∈NN0 ⊂ X.

Note that each α ∈ NN
0 is a multi-index of the form

α = (α1, . . . , αN), with αj ∈ N ∪ {0}.

Proposition 2. A Banach space X has Fourier type p if and only if there exists C > 0

such that for every N ∈ N and every finite family (xα)α∈NN0 we have

(13)

(∑
α

‖xα‖q
)1/q

≤ C

(∫
[0,1]N

∥∥∥∑
α

xαe
2πiα1t1 · · · e2πiαN tN

∥∥∥pdt1 . . . dtN)1/p

.
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Proof. If X satisfies (13), then taking N = 1 we almost have that X has Fourier type

p: we obtain (12) only for sums with nonnegative indexes, and Fourier type demands it

for sums with arbitrary integer indexes. Fixing this problem is left as an easy exercise

for the reader.

For the reverse implication, let m be the maximum of all αj’s such that xα is not zero.

Since the exponentials involved in the integral are 1-periodic, fixed t1 ∈ [0, 1] we have:∫
[0,1]N−1

∥∥∥∑
α

xαe
2πiα1t1e2πiα2t2 · · · e2πiαN tN

∥∥∥pdt2 · · · dtN
=

∫
[0,1]N−1

∥∥∥∑
α

xαe
2πiα1t1e2πiα2(t2+(m+1)t1 · · · e2πiαN tN+(m+1)N+1t1

∥∥∥pdt2 · · · dtN
=

∫
[0,1]N−1

∥∥∥∑
α

xαe
2πit1(α1+(m+1)α2+···+(m+1)N−1αN )e2πiα2t2 · · · e2πiαN tN

∥∥∥pdt2 · · · dtN .
As a consequence, a change in the order of integration gives∫

[0,1]N

∥∥∥∑
α

xαe
2πiα1t1 · · · e2πiαN tN

∥∥∥pdt1 . . . dtN

=

∫
[0,1]N−1

(∫
[0,1]

∥∥∥∑
α

(
xαe

2πiα2t2 · · · e2πiαN tN
)
e2πit1(α1+(m+1)α2+···+(m+1)N−1αN )

∥∥∥pdt1) dt2 · · · dtN .
(14)

For every α for which xα is not zero we have 0 ≤ αj ≤ m, j = 1, . . . , N . Also, if a

multi index β satisfies 0 ≤ βj ≤ m, j = 1, . . . , N and

α1 + (m+ 1)α2 + · · ·+ (m+ 1)N−1αN = β1 + (m+ 1)β2 + · · ·+ (m+ 1)N−1βN ,

then we must have α = β (this is just the uniqueness of the expansion of a natural

number in base m+1). Therefore, the integer multiples of 2πit1 in (14) are all different.

We can then apply (12) to the inner integral in the right-hand side of (14) for each

fixed t2, . . . , tN . This gives that the whole expression in (14) is bounded from below by

1

Cp

∫
TN−1

(∑
α

∥∥xαe2πiα2t2 · · · e2πiαN tN
∥∥q)p/q

dt2 · · · dtN =
1

Cp

(∑
α

‖xα‖q
)p/q

.

So (14) is bounded from below by this last expression, which is the result we were

looking for. �

It is clear that we could have used the equivalent definition of Fourier type (11) to

prove an analogous result: a Banach space X has Fourier type p if and only if there

exists a constant B > 0 such that for every N ∈ N and every finite family (xα)α∈NN0 we

have

(15)

(∫
[0,1]N

∥∥∥∑
α

xαe
2πiα1t1 · · · e2πiαN tN

∥∥∥qdt1 . . . dtN)1/q

≤ B

(∑
α

‖xα‖p
)1/p

.
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4. Hardy spaces of Dirichlet series

Let p = (p1, p2, p3 . . . ) be the sequence of prime numbers. For each multi-index α =

(α1, . . . , αN , 0 , . . . ) ∈ N(N)
0 we set

pα = pα1
1 × · · · × p

αN
N .

We have a one-to-one correspondence

α ∈ N(N)
0 !n ∈ N where pα = n .

For n ∈ N we write α(n) for the (unique) multi-index such that pα(n) = n.

Recall that we have defined H∞(X) as the space of all Dirichlet series defining a

bounded function on [Re z > 0], which is a Banach space with the supremum norm.

Now we describe a great idea of Bohr, adapted to our notation. Fix n and take

α = α(n). Then we can write

1

ns
=

1

pαs
=

1

pα1s
1

· · · 1

pαNs1

.

In particular, if s = it, we have

1

nit
=

1

piα1t
1

· · · 1

piαN t1

= e− log(p1)α1t · · · e− log(pN )αN t.

For D =
∑M

n=1 an
1
ns

a finite Dirichlet series, take N such that for each n = 1, . . . ,M

we can write

n = pα1
1 · · · p

αN
N

for some α ∈ NN
0 . In other words, we take N such that all primes involved in the

factorization of all of thesse n’s are contained in the set {p1, . . . , pN}. A not so direct

consequence of the maximum modulus principle (see [10, Lemma 2.7]) gives

‖D‖H∞(X) = sup
t∈R

∥∥ M∑
n=1

an
1

nit
∥∥.

By the the previous remarks we have

‖D‖H∞(X) = sup
t∈R

∥∥ M∑
n=1

an
1

nit
∥∥

= sup
t∈R

∥∥ ∑
α∈NN0

apαe
− log(p1)α1t · · · e− log(pN )αN t

∥∥
= sup

t∈R

∥∥ ∑
α∈NN0

apα(e− log(p1)t)α1 · · · (elog(pN )t)αN
∥∥(16)

By a classical result of Kronecker, the set

{(e− log(p1)t, . . . , e− log(pN )t) : t ∈ R}
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is dense in the N -th dimensional torus

{(e2πit1 , . . . , e2πitN ) : t1, . . . , tN ∈ R} = {(e2πit1 , . . . , e2πitN ) : t1, . . . , tN ∈ [0, 1]} .

Combining this with (16) we obtain

‖D‖H∞(X) = sup
(t1,...,tN )∈[0,1]N

∥∥ ∑
α∈NN0

apα(e2πit1)α1 · · · (e2πitN )αN
∥∥

= sup
(t1,...,tN )∈[0,1]N

∥∥ ∑
α∈NN0

apαe
2πiα1t1 · · · e2πiαN tN

∥∥
=

∥∥ ∑
α∈NN0

apαe
2πiα1t1 · · · e2πiαN tN

∥∥
L∞([0,1]N ,X)

.

We have obtained the following (weak) version of a fundamental theorem of Bohr [5]

(see also [17])

Theorem 3. Let D =
∑M

n=1 an
1
ns

be a Dirichlet polynomial with coefficients in X and

let N be as before. Then

(17) ‖D‖H∞(X) =
∥∥ ∑
α∈NN0

apαe
2πiα1t1 · · · e2πiαN tN

∥∥
L∞([0,1]N ,X)

.

We can apply the previous theorem to scalar-valued Dirichlet polynomials. Take D =∑M
n=1 an

1
ns

with complex coefficients. Observe that the exponentials {e2πiα1t1 . . . e2πiαN tN}α∈NN0
form an orthonormal family in L2([0, 1]N . Then, we have(

M∑
n=1

|an|2
)1/2

=

∑
α∈NN0

|apα|2
1/2

=
∥∥ ∑
α∈NN0

apαe
2πiα1t1 · · · e2πiαN tN

∥∥
L2([0,1]N )

≤
∥∥ ∑
α∈NN0

apαe
2πiα1t1 · · · e2πiαN tN

∥∥
L∞([0,1]N )

= ‖D‖H∞(C) ,

where the first step is just a rearrangement of the sum, in the second we use orthog-

onality, the third is the relationship between L2- and L∞-norms and the last follows

from Theorem 3. It is an exercise to check that the same holds if we take Dirichlet

polynomials with coefficients in a Hilbert space, which gives the following.

Corollary 4. Let D =
∑M

n=1 an
1
ns

be a Dirichlet polynomial with coefficients in a

Hilbert space H. Then, (
M∑
n=1

‖an‖2
)1/2

≤ ‖D‖H∞(H).
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Some comments on Bohr’s transform. We have seen that the subspace of H∞(X)

consisting of Dirichlet polynomials of length M is isometrically isomorphic to a sub-

space of L∞([0, 1]N , X), the space of essentially bounded X-valued functions on [0, 1]N .

The isomorphism is based in the one to one correspondence

(18) α ∈ N(N)
0 !n ∈ N where pα = n .

Given a sequence t = (t1, t2, t3, . . . ) ∈ [0, 1]N and a multi-index α ∈ N(N)
0 we can write

e2πiαt = e2πiα1t1 · · · e2πiαN tN ,

where N is the length of α.

We denote by DP the set of all Dirichlet polynomials and by TP the set of all trigonomet-

ric polynomials in any number of variables. Then the relation (18) defines a mapping

B1 : DP −−−−−−−→ TP∑
n an

1
ns

cα=apα−−−−−→
∑

α cαe
2πiαt

.

The image of this mapping is the set T +
P of trigonometric polynomials whose coefficients

cα are nonzero only for those α’s whose coordinates are nonnegative. Since all αj’s in

every term in the above sum are nonnegative, they actually define polynomials in many

variables: for a sequence of complex numbers z = (z1, z2, z3, . . . ) and a multi-index

α ∈ N(N)
0 we write

zα = zα1
1 × · · · × z

αN
N .

Then, ∑
α

cαe
2πiαt ←→

∑
α

cαz
α

is a one-to-one correspondence between T +
P and the set of all polynomials of arbitrary

number of variables. What Bohr actually showed is that the space H∞(C) is in fact

isometrically isomorphic to a Banach space of holomorphic functions in infinitely many

variables. The so-called Bohr transform is the one-to-one mapping

B : P −−−−−−−→ D∑
α cαz

α
cα=apα−−−−−→

∑
n an

1
ns

where P is the set of all formal power series and D is the set of all formal Dirichlet series

(here we are not assuming any kind of convergence whatosever). This is a beautiful

connection between two theories, which have regained interest in the last years. We

will not go deeper in these questions, and will keep our focus in Dirichlet polynomials

and Fourier series in many (but not infinitely many) variables. Note that B and B1

are in some sense inverse to each other.

A last comment: if we consider the infinite product [0, 1]N with the product mea-

sure, it can be seen that B1 extends to an isometry from H∞(X) to a subspace of

L∞([0, 1]N, X).
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Definition of Hardy spaces of Dirichlet series. Let us now define, for 1 ≤ p <

∞, the Hardy space Hp(X) of X-valued Dirichlet series. For a Dirichlet polynomial

D =
∑M

n=1 akn
−s, we define its Hp(X)-norm as:

‖D‖Hp(X) = lim
T→∞

( 1

2T

∫ T

−T

∥∥∥ M∑
n=1

an
1

nit

∥∥∥pdt)1/p.
This definition does not look very natural, but the Birkhoff-Khinchine ergodic theorem,

together with the prime factorization performed above, give that

lim
T→∞

( 1

2T

∫ T

−T

∥∥∥ M∑
n=1

an
1

nit

∥∥∥pdt)1/p =
(∫

[0,1]N

∥∥∥ ∑
α∈NN0

apαe
2πiα1t1 . . . e2πiαN tN

∥∥∥pdt)1/p.
See e.g. Bayart [1] for the scalar case, the vector-valued case follows exactly the same

way. Equivalently, we have

(19) ‖D‖Hp(X) =
∥∥ ∑
α∈NN0

apαe
2πiα1t1 . . . e2πiαN tN

∥∥
Lp([0,1]N ,X)

In fact, we can take (19) as the definition of the Hp(X)-norm, as most authors do.

Note that (17) corresponds to the case p =∞ in (19). The completion of the space of

Dirichlet polynomials with this norm is, by definition, the Hardy spaceHp(X). We now

state as a theorem the relation between Fourier type and summability of coefficients

of Dirichlet series.

Theorem 5. For a Banach space X and 1 ≤ p ≤ 2, the following are equivalent.

(i) The Banach space X has Fourier type p.

(ii) There exists C > 0 such that for any M and any a1, . . . , aM ⊂ X we have

(20)

(
M∑
n=1

‖an‖q
)1/q

≤ C
∥∥∥ M∑
n=1

an
1

nit

∥∥∥
Hp(X)

.

(iii) There exists B > 0 such that for any M and any a1, . . . , aM ⊂ X we have∥∥∥ M∑
n=1

an
1

nit

∥∥∥
Hq(X)

≤ B

(
M∑
n=1

‖an‖p
)1/p

.

Proof. We have done almost all the work. With the previous notation, we have∥∥∥ M∑
n=1

an
1

nit

∥∥∥
Hp(X)

=
∥∥∥ ∑
α∈NN0

apαe
2πiα1t1 . . . e2πiαN tN

∥∥∥
Lp([0,1]N ,X)

.

On the other hand, we clearly have(
N∑
n=1

‖an‖q
)1/q

=

∑
α∈NN0

‖apα‖q
1/q

,
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since we are just rearranging the sum. Therefore, the equivalence between (i) and

(ii) follows from Proposition 2. The equivalence between (i) with (iii) follows follows

analogously, using (11) and (15). �

If X has Fourier type p and the series
∑∞

n=1 an
1
nit

converges in Hp(X), we deduce from

Theorem 5 that (
∞∑
n=1

‖an‖q
)1/q

<∞.

This follows as we did in Section 3 for Fourier series, just applying (20) to differences

of partial sums. We can, then, proceed as in the first section (see (2)) to get that every

such Dirichlet series converges absolutely in the half-plane [Re s > 1/p]. Note also

that, if p ≤ r ≤ ∞, then Hr(X) ⊂ Hp(X) continuously. As a consequence, we obtain

the following result (which is weaker that what is known, see the comments below, but

which demands no work to prove at this point).

Corollary 6. If X has Fourier type p, then for every r ≥ p, every Dirichlet series

converging in Hr(X), converges absolutely in the half-plane [Re s > 1/p].

We mention that this last result holds under much more general assumptions: if X have

cotype q, then every Dirichlet series in Hr(X) converges absolutely in the half-plane

[Re s > 1/p] for every 1 ≤ r ≤ ∞ (see [9] for the case r = ∞ and [6] for 1 ≤ r < ∞).

This involves concepts and results from Banach space theory and infinite dimensional

holomorphy.
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