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Abstract

In this work, we discuss some of the main results of [1], where the authors have proven sufficient, and in

some cases also necessary, conditions to obtain optimal convergence rates for the Primal Hybrid Method (PHM)

on meshes of general convex quadrilaterals. These results were obtained by combining the original analysis of

[2] for the PHM on affine meshes with approximation results for finite element spaces on general quadrilateral

meshes discussed in [3]. Numerical results are presented to illustrate the application of the theoretical findings

when Serendipity based approximation spaces are used.

1 Introduction

Let Ω ⊂ R2 be a bounded and convex domain with a Lipschitz continuous boundary ∂Ω. The Darcy problem

consists of finding the pressure p ∈ H1(Ω) in the flow of an incompressible fluid in a rigid saturated porous medium

such that

−div(K∇p) = f in Ω (1a)

p = g on ∂Ω, (1b)

where f ∈ L2(Ω) is a given source/sink function and g ∈ H1/2(∂Ω) describes the Dirichlet boundary conditions on

∂Ω.

The symmetric and uniformly positive definite tensor K = K(x) represents the permeability of the porous matrix

divided by the fluid viscosity [1].

Finite element methods to solve problem (1a) involve the construction of finite-dimensional spaces Xh, where

the approximate pressure ph is sought. To construct such spaces, we first need a mesh for Ω, i.e., a subdivision

Th of Ω into non-overlapping sub-domains K, called elements. Each element K ∈ Th is described as the image of

an isomorphism FK acting over a reference element K̂. The usual construction of Xh begins by defining a finite-

dimensional subspace X̂ ⊂ H1(K̂), which is then mapped to local spaces XK ⊂ H1(K) through the isomorphisms

FK . The spaces XK are then tied together to construct the global approximation space Xh.

For the case of meshes of parallelograms, K̂ is usually the unitary square [0, 1] × [0, 1], and in this case, the

isomorphisms FK are bilinear and affine transformations. If we enable general convex elements in our meshes,

the transformations FK will remain bilinear but no longer affine. In [3], the authors analyze the approximation

properties of finite element spaces generated through non-affine bilinear transformations. Those properties are used

in [1] to expand the analysis of the PHM, developed for affine meshes in [2], to general quadrilateral meshes. Here

we use the theory of [1] to discuss the use of Serendipity based spaces in the PHM.

9
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2 The Primal Hybrid Method

For r ≥ 2, let Sr(K̂) denote the Serendipity spaces in two dimensions as defined in [4], and S+
r (K̂) the space

spanned by the polynomials of Sr(K̂) plus a function v0, as defined in [2]. Denote by Em(∂K̂) the space of all

functions defined over ∂K̂ whose restrictions to any edge are polynomials of degree less or equal m ≥ 0.

In addition to the approximation space Xh, the PHM also needs an auxiliary space Mh. When Serendipity

spaces are used, those spaces are defined as

Xr
h = {v ∈ L2(Ω) : ∀K ∈ Th , v|K ∈ XK}, (2)

Mm
h =

{
µ ∈

∏
K∈Th

ΛK : µ|∂K1
+ µ|∂K2

= 0 on K1 ∩K2 , for every pair of adjacent elements K1,K2 ∈ Th

}
, (3)

with XK and ΛK being local spaces given by

XK = {v ∈ H1(K) : v = v̂ ◦ F−1
K , v̂ ∈ S+

r (K̂)} and ΛK = {µ ∈ L2(∂K) : µ = µ̂ ◦ F−1
K , µ̂ ∈ Em(∂K̂)}. (4)

The PHM with Serendipity based spaces is then defined as: Find the pair (ph, λh) ∈ Xh ×Mh such that∑
K∈Th

∫
K

(K∇ph) · ∇v dx +
∑
K∈Th

∫
∂K

vλh ds =

∫
Ω

fv dx ∀ v ∈ Xr
h (5a)

∑
K∈Th

∫
∂K

phµds =
∑
e∈ε∂Ω

∫
e

gµds ∀µ ∈Mm
h , (5b)

where ε∂Ω denotes the set of all edges e on the boundary of Ω. It follows from the analysis of [2] that, if r ≥ m+1,

the problem (5) always admit a unique solution (ph, λh).

3 Convergence results for Serendipity based spaces

Now, we present our main result, concerning the convergence of the variable ph on affine and non-affine quadrilateral

meshes. This result, summarized in Theorem 6, is a direct application of the analysis developed in [1].

Theorem 3.1. Consider Th a regular quadrilateral mesh for Ω according to [3]. Let Xr
h and Mm

h be the spaces

constructed in Section 2 satisfying r ≥ m+ 1, and ph be the solution for the discrete problem 5. Assuming that the

exact solution p is regular enough, there is a constant C independent of the mesh parameter h such that

∥p− ph∥0,Ω ≤ Chs|p|r+1,Ω, (6)

where s = min{r,m+ 1}+ 1 for affine meshes and s = min{⌊r/2⌋,m+ 1}+ 1 for non-affine ones.

Theorem 3.1 indicates that the Serendipity based PHM achieves optimal convergence orders on affine meshes,

but only sub-optimal orders on non-affine ones. These theoretical estimates are confirmed by numerical experiments.
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Abstract

In many practical situations, stochastic vibration systems subject to random excitations should be integrated

over very long time intervals. In this circumstance conventional methods usually show exploding behavior or

their implementation is computationally demanding. In this work we propose and analyze a simplified weak

simulation method for the integration of nonlinear vibration systems with adjustable stiffness under random

excitations. We prove that it reproduces the same statistical properties that characterize the exact solution

to the linearized equation associated to the underlying system. Computational simulations are carried out to

illustrate its practical performance.

1 Introduction

In many situations of direct engineering interest, structures are subject to random excitations with a mixture

of different intensities of external noisy forces (e.g., structures under earthquake, wind or sea wave excitations).

This randomness has an important impact on the vibratory behavior of mechanical and structural systems [2], [4],

[5], [6]. To study these systems deterministic models are not adequate. Thus, physics-based modeling through

stochastic differential equations is one of the approaches commonly used for the proper mathematical description of

the phenomena. A relevant mathematical model for studying nonlinear random vibration problems is the nonlinear

stochastic systems [3].

u′′(t) + ηu′(t) + f(u(t)) + αY (t) = cξ(t), (1)

Y ′(t) + βY (t) = u′(t),

where u(t) represents the displacement response, f is a nonlinear stiffness function, α, β, η are parameters, vector

c ∈ R1×m is the amplitude of the random forcing, and ξ(t) = (ξ1(t), . . . , ξm(t))⊺ is a vector of zero mean Gaussian

white noise excitations with E(ξi(t1)ξj(t2)) = Qijδ(t1 − t2), where Q = [Qij ] is the (m ×m)-matrix of excitation

intensities and δ(·) is the Dira’s delta function. Several approximate techniques have been systematically developed

over the years to evaluate the stochastic responses of (1). However, there are limitations in the practical applications

of these techniques, especially for the response analysis over long time intervals. Hence, the search for alternative

efficient simulation methods is currently of great interest.

In this work we propose a numerical simulation method for (1). We devise the integrator regarding its efficiency

and capability to preserve meaningful statistical features of the system. We carry out the construction based on

the weak approximation approach which gives us much more freedom as to the generation of the necessary random

variables. With respect to its long-term behavior, it is notable that for any value of the step-size of integration, the

approximate solution obtained by the proposed method shares the same statistical properties that characterize the

exact solution to the linearized system corresponding to the underlying system (1). As revealed by our studies, the

method is valuable for evaluating late-time statistics of nonlinear vibration systems.

11
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2 The proposed simplified weak method and main results

Let Z(t) = (u(t), Y (t), u′(t))⊺, then starting from Z0 = Z(0), we construct the approximations {Zn} to Z(tn)

(n = 1, . . . , N) as follows. For each time interval [tn tn+1] we rewrite (1) in the semilinear formdZ(t) = AZ(t)dt+ g(Z(t))dt+

m∑
j=1

bjdW
j
t ,


where W j

t are uncorrelated standard Wiener processes and bj are those values corresponding to the excitation

intensities matrix Q of the white noise process ξ(t). The proposed method is

Zn+1 = eAhZn +
h

2
(g(Zn) + g(eAhZn + U) +AU) +

√
h

m∑
j=1

bjζ
j
n, U = g(Zn)h+

√
h

m∑
j=1

bjζ
j
n,

where ζjn is a three-point distributed random variable [1] satisfying

P(ζjn =
√
3) =

1

6
; P(ζjn = −

√
3) =

1

6
; P(ζjn = 0) =

2

3
.

We have the following results concerning the rate of weak convergence and the long time behavior of the method:

Theorem 2.1. The weak order of accuracy of the method is 2. That is,

max
1≤n≤N

|E(ϕ(Z(tn)))− E((ϕ(Zn))| = O(h2)

where ϕ : R3 → R ∈ CkP (R3,R)

Theorem 2.2. For any step-size h, the numerical realization given by the proposed integrator replicates the long time

properties that characterize the exact solution to the linearized equation corresponding to the underlying continuous

system (1). That is, for any step-size h there exist a unique matrix Dh such that the numerical sample trajectory

{Zn}n=0,... satisfies

lim
n→∞

E((Zn) = 0; lim
n→∞

Cov(Zn) = Dh
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Abstract

In this work, error estimates are shown for the stabilized hybrid finite element methods studied in [6] for the

Helmholtz equation with Robin’s Boundary Condition. These methods use Lagrange multipliers associated with

the pressure trace and they are introduced to weakly enforce continuity on the finite element interfaces. The

choice of the Lagrange multiplier in this way allows the use of the static condensation technique, which consists

of solving local problems in each element, resulting in a global system that involves only the degrees of freedom

associated with the multipliers of Lagrange. Assuming that the exact value of the Lagrange multiplier is known,

we present a numerical analysis of the problems local, obtaining the sub-optimal convergence rate in the energy

norm and optimal in the L2 norm. Next, we determine the estimate of the global error in the L2 norm.

1 Introduction

We will study the Helmholtz equation

−∆p− κ2p = f, em Ω (1)

−∇p · n+ iκp = g, em ∂Ω (2)

To derive the method, we first define a Helmholtz equation (1) at each K mesh element Th with the interface

conditions defined on the interior edges: [|p|]|e = 0 and [|∇p|]|e = 0, ∀e ∈ E0
h, and the Robin condition defined

on the edges of the boundary. We obtain the weak formulation of the local problem and introduce the multiplier

de Lagrange (λh) defined as the trace of the pressure. We include a symmetrization term and a stabilization term

on ∂K and formulate the following local problems about each K element:

Local Problems: For each K ∈ Th, find ph ∈ Sl (K) [= Pl (K) or Ql (K)], such that

(∇ph,∇q̄h)K − κ2 (ph, q̄h)K − ⟨∇ph · n, q̄h⟩∂K − ⟨∇q̄h · n, ph − λh⟩∂K
+β ⟨ph − λh, q̄h⟩∂K = (f, q̄h)K , ∀q̄h ∈ Sl (K) . (3)

To complete the system above, we add a global equation relative to the multiplier and Robin’s condition:

Global Problem: Find λh ∈ Ms
h =

{
λ ∈M : λ|e = Ps (e) ,∀e ∈ E0

h

}
, such that

⟨∇ph · n, µ̄h⟩∂Th
− iκ ⟨λh, µ̄h⟩∂Ω + β ⟨λh − ph, µ̄h⟩∂Th

= −⟨g, µ̄h⟩∂Ω, ∀µ̄h ∈ Sl (K) (4)

In the equation (4) the first term weakly imposes the continuity of the normal flow component and the third term

concerns the stabilization of the Lagrange multiplier related to the pressure trace.

13
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2 Main Results

For the numerical analysis we first use the local projection of the primal variable, defined inside each element, to

the exact multiplier λ. To formally introduce the problem associated with λ, we define the operators AK (Ph, qh),

BK (λ, qh) and the linear functional FK (qh) from (3) such that

AK (Ph, qh) := (∇Ph,∇q̄h)K − κ2 (Ph, q̄h)K − ⟨∇Ph · n, q̄h⟩∂K − ⟨∇q̄h · n, Ph⟩∂K + β ⟨Ph, q̄h⟩∂K (1)

GK (qh) := FK (qh)− BK (λ, qh) = (f, q̄h)K − ⟨∇q̄h · n, λ⟩∂K + β ⟨λ, q̄h⟩∂K (2)

Thus, the problem corresponding to the exact value of the multiplier is given by:

For given λ, find Ph ∈ Sl (K) such that

AK (Ph, qh) = GK (qh) , ∀qh ∈ Sl (K) . (3)

Theorem 2.1. 1 If Ph ∈ Sl (K) is the approximate solution of the problem (3) obtained by the LDGl method when

the Lagrange multiplier λ is given and the exact solution p of the problem (1)-(2) belongs to H l+1 (K) then we have

the errors in the energy norm and in the norm L2:

∥|p− Ph|∥LDGl ≤ C (K,αlc, αle)h
l |p|Hl+1(K) and ∥p− Ph∥K ≤ Ĉ (K,αlc, αle)κh

l+1 |p|Hl+1(K) , (4)

respectively, where C (K,αlc, αle) and Ĉ (K,αlc, αle) are constants that depend of the finite element K, αlc and αle.

Theorem 2.2. 2 If [ph, λh] ∈ W l
h × Ms

h is the approximate solution of the problem (3)-(4), Ph ∈ Sl (K) is the

approximate solution of the problem (3) obtained by LDGl method when the Lagrange multiplier λ is given and the

exact solution p of the problem (1)-(2) belongs to H l+1 (Th) then we have the following estimate:

∥p− ph∥Th
≤
√
2M1ρ∗κh

l+1 |p|Hl+1(Th)
+
√

2hM2ρ∗δ ∥λ− λh∥∂Th

where W l
h =

{
p ∈ L2 (Th) : p |K ∈ Sl (K) ,∀K ∈ Th

}
, M1 = max

{
Ĉ2 (K,αlc, αle) ,K ∈ Th

}
, M2 =

max

{
C1(K)

α2
le

,K ∈ Th
}

and ρ∗ is the number of finite elements K.
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DYSON’S SPLIT ACTION FORMULA FOR TRANSPORT OPERATORS
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Abstract

Dyson’s formula is presented. Its proof stems from the Lax-Richtmyer stability of convergent discretizations,

which is the “principle of uniform boundedness” of Numerical Analysis. Among its applications is a method

for the dynamical stabilization (i.e. initial value sensitivity reduction) of a non-hydrostatic cloud-resolving

atmospheric model.

Lemma: (Dyson’s formula for matrices) Let M(k) be the set of real square matrices of order k. If A,B ∈ M(k)

and x0 ∈ Rk, then et(A+B)x0 = etAx0 +
∫ t
0
e(t−s)(A+B)BesAx0 ds.

proof: Let x(t) = et(A+B)x0 − etAx0. Taking the derivative of x(t), one obtains the initial value problem

x′(t) = (A + B)x(t) + BetAx0, t ∈ R, (1)

x(0) = 0 (2)

Eq. 3 is a non-homogeneous linear ordinary differential equation with constant coefficient. Duhamel’s formula for

the solution of problem 3-2 is x(t) =
∫ t
0
e(t−s)(A+B)BesAx0 ds. Thus et(A+B)x0 − etAx0 =

∫ t
0
e(t−s)(A+B)BesAx0 ds.

Theorem: (Dyson’s formula for transport operators) If

1. Ω is an bounded open set in Rn with volume V;

2. a, b : Ω → Rn are {C1
b(Ω)}n vector fields with flow functions defined for all t ≥ 0;

3. S(t) : C1
b(Ω) → C1

b(Ω), t ≥ 0, is the solution operator of

∂tu(t, x) = a(x) · ∇u(t, x) with S(0)u0 = u0;

4. T(t) : C0
b(Ω) → C0

b(Ω), t ≥ 0, is the solution operator of

∂tw(t, x) = (a(x) + b(x)) · ∇w(t, x) with T(0)w0 = w0;

then

T(t)u0 = S(t)u0 +

∫ t

0

T(t− s) B S(s)u0 ds,

for all u0 ∈ C1
b(Ω), where C0

b(Ω) is the space of bounded continuous functions on Ω and C1
b(Ω) is the space of

bounded continuous functions with bounded continuous partial derivatives on Ω, and B = b(x) ·∇ : C1
b(Ω) → C0

b(Ω).

proof: Let Ak,Bk : Rp(k) → Rp(k) be convergent discretizations of A and B with uniform mesh width ∆x, where

k = V/(∆x)n is the number of grid cells and p(k) is the number of grid points. Let N/∆x, N > 0, be a bound

to the infinite operator norm of Bk, so that ||Bk [v]||k ≤ (N/∆x) ||[v]||k for all v ∈ C1
b(Ω), where [f ] denotes a

grid vector and ||[f ]||k = maxi=1,...,p(k) |[f ]i| for [f ] ∈ Rp(k) (so that ||[f ]||k → ||f || as k → +∞ upon ∆x → 0,
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for any bounded f : Ω → R, where || · || is the sup norm). Let also Tk(t),Sk(t) : Rp(k) → Rp(k) be convergent

discretizations of T(t) and S(t) with uniform time step ∆t and uniform mesh width ∆x associated to Ak and

Bk, which converge as k → +∞ upon ∆x → 0 and ∆t → 0 provided ∆t ≤ M∆x for some M > 0. Then:

||Tk(t− s) Bk Sk(s)[u0]− [T(t− s) B S(s)u0]||k
= ||Tk(t− s) Bk Sk(s)[u0]± Tk(t− s) [B S(s)u0]± Tk(t− s) Bk [S(s)u0]− [T(t− s) B S(s)u0]||k
= ||Tk(t− s)

(
Bk (Sk(s)[u0]− [S(s)u0]) + (Bk[S(s)u0]− [BS(s)u0])

)
+
(
Tk(t− s) [BS(s)u0]− [T(t− s)BS(s)u0]

)
||k

≤ |||Tk(t− s)|||k
(
||Bk (Sk(s)[u0]− [S(s)u0])||k + ||Bk[v0(s)]− [Bv0(s)]||k

)
+ ||Tk(t− s)[w0(s)]− [T(t− s)w0(s)]||k,

where v0(s) = S(s)u0, w0(s) = BS(s)u0 and |||Tk(t)|||k = sup {||Tk(t)[w]||k : [w] ∈ Rp(k), ||[w]||k = 1}. Since,

according to Lax’s Equivalence Theorem [1], Tk(t) is Lax-Richtmyer stable provided ∆t ≤ M∆x, i.e. the set

{|||Tk(t)|||k : k ∈ N∗, ∆x = n
√
V/k, ∆t ≤ M∆x} is bounded, and since ||Bk vk(s)||k ≤ (N/∆x) ||vk(s)||k → 0

if ||vk(s)||k = Ø(∆x), which is the case for vk(s) = Sk(s)[u0] − [S(s)u0] if Sk(s) is first order accurate in space,

one concludes that Tk(t − s) Bk Sk(s)[u0] → T(t − s) B S(s)u0 as k → +∞ upon ∆x → 0 and ∆t → 0, provided

∆t ≤ M∆x. Hence Tk(t)[u0]−Sk(t)[u0]−Rm(t)[u0] → T(t)u0−S(t)u0−
∫ t
0
T(t−s) B S(s)u0 ds as k,m→ +∞ upon

∆x → 0 and ∆t → 0, provided ∆t ≤ M∆x, where Rm[u0] =
∑m
i=0(Tk(t − si) Bk Sk(si)[u0])∆t, m = t/∆t, si =

si−1 +∆t, s0 = 0. But Tk(t)[u0]− Sk(t)[u0]−Rm(t)[u0] → et(Ak+Bk)[u0]− etAk [u0] +
∫ t
0
e(t−s)(Ak+Bk)Bke

sAk [u0] ds

as m → +∞ upon ∆t → 0 with k and ∆x fixed, and this limit value vanishes according to the above Lemma.

Therefore T(t)u0 − S(t)u0 −
∫ t
0
T(t− s) B S(s)u0 ds = 0.

Among the applications of Dyson’s formula is a method, named IBM, for the dynamical stabilization (i.e. initial

value sensitivity reduction) of a non-hydrostatic cloud-resolving atmospheric model, named CRM, both presented

in [2]. Figure (1) shows some prediction error profiles obtained with the CRM under three different prediction

schemes. The error profiles obtained with the IBM method are stable.
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Figure 1: Prediction error profiles obtained without model initialization (black), with model initialization (blue)

and with model initialization & use of the IBM method (red) for the grid vertical velocity (frame (1,1)), subgrid

vertical velocity (frame (1,2)), condensation rate (frame (2,1)) and temperature (frame (2,2)). The atmospheric

truth was generated by the CRM.
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Abstract

For a set Γ, we denote by l∞(Γ) the Banach space of all bounded families (aγ)γ∈Γ endowed with the sup

norm. Let c0(Γ) be the closed subspace of l∞(Γ) such that for each ε > 0 the set {γ ∈ Γ : |aγ | ≥ ε} is finite.

Also let l1(Γ) be the Banach space of all summable families (aγ)γ∈Γ endowed with the usual l1−norm. When Γ

is countable, we denote c0(Γ) and l1(Γ) by c0 and l1 respectively. In this talk we show the results obtained in

[4] about the corresponding lattice version of James distortion theorems for c0(Γ) and l1(Γ) : if a Banach lattice

contains lattice copy of c0(Γ) (l1(Γ) respectively), then it contains lattice-almost isometric copies of c0(Γ) (l1(Γ)

respectively).

1 Introduction

Let X and Y be Banach spaces. We say that Y contains a copy of X if there is an isomorphism from X into Y .

We also say that X and Y are almost-isometric if for each ε > 0 there exists a linear isomorphism Tε : X → Y such

that ∥Tε∥∥T−1
ε ∥ ≤ 1 + ε. Finally, we say Y contains almost-isometric copies of X, if for each ε > 0 there exists a

subspace Zε of Y which is almost-isometric to X.

A classical result of James establishes that if a Banach space X contains a copy of c0 (respectively l1), then

X contains almost isometric copies of c0 (respectively l1). This is so called James distortion theorem for c0 and

l1 (see [3, Lemma 2.1 and 2.2]). Now, in real Banach lattices we say that Y contains a lattice copy of X if X

is Banach-lattice isomorphic to a sub-lattice of Y ; we also say that Y contains lattice-almost isometric copies of

X if for each ε > 0 there exist a sub-lattice Zε of Y and a Banach-lattice isomorphism Tε : X → Y such that

∥Tε∥∥T−1
ε ∥ ≤ 1 + ε.

Meanwhile, Chen in [1, Theorem 2] and [2, Theorem 1] proved that if a Banach lattice contains a lattice copy

of c0 (respectively l1), then it contains lattice-almost copies of c0 (respectively l1). The aim of the talk is to prove

a version for c0(Γ) (respectively l1(Γ)).

To give a proof, is necessary to fix some notations: If A is a set, and τ is an ordinal, then |A| and [A]
<τ

denote,

respectively, the cardinality of A and the family of all subsets of A with cardinality less than τ. We denote by ω

the first infinite ordinal. If X is a Banach lattice, BX , X+ and B+
X denote respectively the closed united ball of X,

the positive cone of X and the set BX ∩X+.

2 Main Results

Theorem 2.1 (Main theorem). Let X be a Banach lattice. If X contains a lattice copy of c0(Γ) (respectively

l1(Γ)), then X contains lattice-almost isometric copies of c0(Γ) (respectively l1(Γ)).

To give a proof for this result, we need some lemmas:

Lemma 2.1. Let X be a Banach lattice. Then X contains a lattice copy of c0(Γ) iff there exists a disjoint family

(xγ)γ∈Γ in X+ satisfying inf {||x|| : γ ∈ Γ} > 0 and sup
{∣∣∣∣∣∣∑γ∈Γ xγ

∣∣∣∣∣∣ : F ∈ [Γ]
<ω
}
<∞.
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Lemma 2.2. Let X be a Banach lattice containing a lattice copy of c0(Γ). Then for each 0 < δ < 1, there exists a

disjoint family (uγ)γ∈Γ in B+
X such that for each F ∈ [Γ]

<ω
and any set of scalars {aγ : γ ∈ F} we have

(1− δ)max
γ∈F

|aγ | ≤

∥∥∥∥∥∥
∑
γ∈F

aγuγ

∥∥∥∥∥∥ ≤ max
γ∈F

|aγ |.

Lemma 2.3. Let X be a Banach lattice. Then X contains a lattice copy of l1(Γ) iff there exists a disjoint family

(xγ)γ∈Γ in X+ and two positive constants m,M such that

m
∑
γ∈F

|aγ | ≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
γ∈F

aγxγ

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤M

∑
γ∈F

|aγ |

for all F ∈ [Γ]
<ω

and every family of scalars {aγ : γ ∈ F} .

Lemma 2.4. Let X be a Banach lattice containing a lattice copy of l1(Γ). Then for each δ > 0, there exists a

disjoint family (uγ)γ∈Γ in B+
X such that for each F ∈ [Γ]

<ω
and any set of scalars {aγ : γ ∈ F} we have

(1− δ)max
γ∈F

|aγ | ≤

∥∥∥∥∥∥
∑
γ∈F

aγuγ

∥∥∥∥∥∥ ≤ max
γ∈F

|aγ |.

Corollary 2.1 (Main theorem). Let X be a Banach space containing a copy of c0(Γ). Then X contains almost

isometric copies of c0(Γ).

Proof. Let ε > 0 be given and choose 0 < δ < 1 such that 1
1+ε < 1− δ. By Lemma 2.2, there exists (uγ)γ∈Γ in B+

X

such that for each F ∈ [Γ]
<ω

and any set of scalars {aγ : γ ∈ F} we have

(1− δ)max
γ∈F

|aγ | ≤

∥∥∥∥∥∥
∑
γ∈F

aγuγ

∥∥∥∥∥∥ ≤ max
γ∈F

|aγ |.

Let Tε : c0(Γ) → X be defined as Tε((xγ)γ∈Γ) =
∑
γ∈Γ xγuγ , for (xγ)γ∈Γ ∈ c0(Γ). Then Tε is a Banach-lattice

isomorphism from c0(Γ) to X with ∥Tε∥∥T−1
ε ∥ ≤ 1 + ε.

Corollary 2.2 (Main theorem). Let X be a Banach space containing a copy of l1(Γ). Then X contains almost

isometric copies of l1(Γ).

Proof. The proof follows the same lines of the proof of Corollary 2.1, with l1(Γ) instead of c0(Γ).
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A COMPOSITION OPERATOR APPROACH TO THE INVARIANT SUBSPACE PROBLEM
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Abstract

Let H be a complex Hilbert space. An operator U ∈ B(H) is called universal for H (in the sense of Rota)

if for every operator T ∈ B(H) there exists a scalar α ∈ C, an invariant subspace M of U and an isomorphism

S :M → H such that αT = S ◦ U|M ◦ S−1. The concept of universal operator provides an alternative approach

to the Invariant Subspace Problem (ISP). In this work we use recent results due to Carmo and Noor [1] and

study the composition operator Cϕa ∈ B(H2) with symbol given by ϕa = az + 1 − a for 0 < a < 1. The main

objective is to characterize the minimal invariant subspaces of Cϕa and make progress towards the ISP. Here,

we shall discuss some recent results and advances in this direction. This work is in collaboration with Waleed

Noor and João R. Carmo.

1 Introduction

The Invariant Subspace Problem (ISP) is one of the most important open problems in operator theory: given a

complex, infinite dimensional and separable Hilbert space H, does every bounded linear operator have a non-trivial

invariant subspace? By a non-trivial invariant subspace of T we mean a closed subspace {0} ⊂ N ⊂ H such that

T (N) ⊆ N .

There exists a lot of approaches and remarkable results about this question; one of these approaches is based on

the notion of Universal Operators developed by Rota in [2]. Given a universal operator U , it is possible to prove

that the ISP is true if, and only if, every minimal invariant subspace of U has dimension 1. Recently, Carmo and

Noor [1] found a new class of universal composition operators on the Hardy-Hilbert space.

The Hardy-Hilbert space of the disk is denoted by H2(D) or simply H2 and defined as:

H2(D) := {f ∈ Hol(D) | f(z) =
∞∑
n=0

anz
n with

∞∑
n=0

|an|2 <∞}.

It is not difficult to see that H2 becomes a separable and infinite dimensional Hilbert space when we consider the

inner product given by ⟨f, g⟩ =
∞∑
n=0

anbn. A special class of bounded linear operators in H2 are the composition

operators: given a holomorphic function ϕ : D → D, the composition operator with symbol ϕ is defined in H2

and given by Cϕ(f) = f ◦ ϕ for every f ∈ H2. In this direction a special type of symbols play a central role: the

hyperbolic maps. A linear fractional map ϕ : D → D is called hyperbolic if it has two distinct fixed points outside

D.

2 Main Results

Our starting point is the following theorem proved in [1]:

Theorem 2.1. If ϕ is a linear fractional self-map of D then Cϕ − λ is universal in H2(D) for some λ ∈ C if, and

only if, ϕ is hyperbolic.
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Our approach to ISP consists in understanding the minimal invariant subspaces of Cϕa
where ϕa (0 < a < 1) is

the hyperbolic map given by ϕa(z) = az + 1− a. More clearly, we have the following equivalence:

Corollary 2.1. Let 0 < a < 1 and consider ϕa as defined above. Then the ISP has a positive solution if, and only

if, every minimal invariant subspace of Cϕa has dimension 1.

If M is a minimal invariant subspace of the operator Cϕa
we see that

M = Kf := span{f, Cϕa
f, C2

ϕa
f, . . .}

for every f ∈ M with f ̸= 0, so we can study these subspaces in relation to the function-theoretic properties of f .

In [1] Carmo and Noor initiated this approach and obtained many results about these minimal invariant subspaces.

Recently, we achieved a partial solution supposing some additional properties of f . Given f ∈ H2 we consider three

cases.

1. lim
n→∞

f(1− an) = L ̸= 0

2. lim
n→∞

f(1− an) = 0

3. lim
n→∞

f(1− an) does not exists.

Our main Theorem ensures that with an additional hypothesis, the cases 1. and 3. are well understood.

Theorem 2.2. Let f ∈ H2 such that f ′ ∈ H2. Suppose that lim
n→∞

f(1 − an) exists and isn’t 0 or lim
n→∞

f(1 − an)

doesn’t exists. If Kf is minimal then Kf has dimension 1.

Supposing that f, f ′ ∈ H2, the only open case for understand Kf is the case 2; in fact if we suppose that f is

analytic at 1 or if f(1− an) goes to 0 slowly enough then the conclusion of Theorem 2.2 also holds.
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DENSITY AND ORTHOGONALITY IN H2 AND ZETA ZEROS
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Abstract

Báez-Duarte’s criterion asserts that the Riemann hypothesis (RH) is equivalent to the density of the linear

span of a particular sequence in L2([0, 1]). This work deals with a unitarily equivalent version of this result

in the Hardy space H2 of the unit disk. It poses density and orthogonality questions arising naturally from

this criterion, leading to weak versions of RH. Furthermore, a sufficient conditions for obtaining zero free half-

planes for the zeta function is given. This is a joint work with Waleed Noor (IMECC/Unicamp), A. Ghosh and

K. Kremnitzer (Oxford University, UK).

1 Introduction

Let ζ be defined initially as ζ(s) =
∑∞
n=1 n

−s for complex s such that Re s > 1. It can be analytically extended

to the whole plane, except for a simple pole at s = 1. Consider the half-planes Ωr = {s ∈ C : Re s > r}. An

old problem, still open, is to determine whether ζ does not vanish in Ωr for some 1/2 ≤ r < 1. The case r = 1/2

corresponds to the Riemann hypothesis. Nyman [5] obtained a criterion in terms of density and approximation in

L2([0, 1]), generalized later by Beurling [3] to the Lp context and refined – in the L2 case – by Báez-Duarte [1] (see

[2]). In [4], Báez-Duarte criterion is brought to H2 by means of a unitary isomorphism. Given p > 0, Hp is the

Hardy space of exponent p in the unit disc D:

Hp =

{
f : D → C : f is holomorphic and ∥f∥p :=

(
sup

0<r<1

1

2π

∫ 2π

0

|f(reiθ)|p
)1/p

< ∞

}
.

Each Hp is an F -space not locally convex if p < 1, and a Banach space if p ≥ 1. In particular, H2 is a separable

Hilbert space.

Theorem 1.1 (4, Theorem 8). Let N be the linear span of {hk}∞k=2, where

hk(z) =
1

1− z
log

(
1 + z + · · ·+ zk−1

k

)
, z ∈ D, k ≥ 2 .

The Riemann hypothesis is true if and only if N is dense in H2.

This work concerns with two problems directly related to the criterion above.

� The density problem: find topologies in H2, weaker than the one generated by the norm, with respect to

which N is dense.

� The orthogonality problem: find classes of functions V ⊂ H2, as large as possible, satisfying N⊥ ∩ V = {0}.

Partial answers to these questions provide weak versions of RH, i.e., assertions implied by RH but proven

unconditionally.

2 Main results

Proposition 2.1. For any 0 < p < 1, N is dense in Hp.
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Proof There are two main steps in this proof: (i) The linear span of {gk}∞k=2 is dense in Hr for any r > 0, where

gk(z) = (1− z)hk(z). (ii) Given p ∈ (0, 1), there exists r > 0 large enough such that the operator of multiplication

by 1/(1− z) is continuous from Hr to Hp.

Given s ∈ C, consider the linear functional defined initially in the space of analytic polynomials as

Λ(s)(1) = −1

s
and Λ(s)(zk) = −1

s

[
(k + 1)1−s − k−s

]
, k ≥ 2 .

Proposition 2.2. Given p ∈ (0, 2] and s ∈ Ω1/p, Λ
(s) is bounded on Hp and satisfies Λ(s)(hk) = − ζ(s)

s (k−s−k−1).

Corollary 2.1. If N is dense in Hp then ζ does not have zeros in Ω1/p.

Proof Under the hypothesis above, the constant 1 is the Hp-limit of a sequence {fn} ⊂ N . If ζ(s) = 0 then

Λ(s)(fn) = 0 for all n, contradicting the fact that Λ(s)(1) ̸= 0.

Therefore, if one proves the density of N in Hp for any p > 1, a consequence we will be a previously unknown

zeta zero free half-plane, which would be a huge achievement from the arithmetical viewpoint. The proven result

for p < 1 furnishes the already known half-plane Ω1.

Proposition 2.3. Given α > 1/2, span{(1− z)αhk : k ≥ 2} is dense in H2.

Proposition 2.4. Given α ∈ (1/2, 1], the equality N⊥ ∩ V = {0} holds for

V = (1− z)αH2 + C .

Proof In [6], the space V above is identified as a de Branges-Rovnyak space, which in its turn is proven in [7]

to be the domain of the adjoint of the (unbounded) multiplication operator of symbol (1 − z)−α. Finally, it is an

elementary verification that the intersection of this domain with N⊥ is trivial using Proposition 2.3.
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Abstract

Combinatorial spaces are Banach spaces whose norm is induced by families of finite subsets of some index

set. Inspired by the classical Banach-Stone theorem, we investigate the impact of the properties of the family

to the collection of isometries of the corresponding Banach space. We characterize the isometries as signed

permutations of the canonical basis and try to determine which permutations induce isometries.

1 Introduction

Rigid objects in mathematics are objects with few automorphisms. In the context of Banach spaces, there are

classical results on rigidity, where the automorphisms are linear isometries. Given a Banach space X, let Iso(X)

be the collection of all linear isometric bijections T : X → X.

If K is a compact space, let C(K) be the Banach space of all scalar valued continuous functions defined on K,

with the supremum norm. Given a homeomorphism φ : K → K and g ∈ C(K) such that |g(x)| = 1 for every

x ∈ K, the map Tφ,g : C(K) → C(K) given by Tφ,g(f) = g · (f ◦ φ) is an isometry. Hence,

Iso(C(K)) ⊇ {Tφ,g : φ : K → K homeomorphism g ∈ C(K) such that |g(x)| = 1}.

Theorem 1.1 (Banach-Stone). Given compact Hausdorff spaces K and L, T : C(K) → C(L) is an isometry iff

there are a homeomorphism φ : L→ K and g ∈ C(L) such that |g(y)| = 1 for every y ∈ L and T = Tφ,g. Therefore,

Iso(C(K)) = {Tφ,g : φ : K → K homeomorphism g ∈ C(K) such that |g(x)| = 1}.

Turning to the classical sequence spaces c0 or ℓp’s, we have that given a bijection π : N → N and a sequence

θ̄ = (θn)n such that |θn| = 1 for every n ∈ N, the map Tπ,θ̄ : X → X given by Tπ,θ̄(en) = θneπ(n) is an isometry, if

X = c0 or x = ℓp for some 1 ≤ p <∞. Hence,

Iso(X) ⊇ {Tπ,θ̄ : π : N → N bijection, θ̄ = (θn)n such that |θn| = 1}.

Theorem 1.2 (folklore). For X = c0 or X = ℓp, 1 ≤ p < ∞, p ̸= 2, given an isometry T : X → X, there are a

bijection π : N → N and a sequence (θn)n such that |θn| = 1 for every n ∈ N and T (en) = θneπ(n) for every n ∈ N.
Therefore,

Iso(X) = {Tπ,θ̄ : π : N → N bijection, θ̄ = (θn)n such that |θn| = 1}.

Similar results also exist for the Tsirelson space or for nonseparable versions of c0 and ℓp. In this work, we

discuss results in the same direction for the so called combinatorial Banach spaces.

23



24

2 Main Results

Given a family F of finite subsets of N containing all singletons, we can define a norm on c00 = {(λn)n : {n ∈ N :

λn ̸= 0} is finite} as follows:

∥(λn)n∥F = sup{
∑
n∈s

|λn| : s ∈ F}.

The completion of c00 is called the combinatorial space induced by F and is denoted by XF . Notice that c0 and

ℓ1 can be seen as the combinatorial spaces of the families of all singletons and that of all finite subsets of N,
respectively.

Without loss of generality, the family F can be assumed to be closed under subsets and F can be embedded

in the Cantor space, by identifying each element to its characteristic function. Combinatorial and topological

properties of F imply geometrical properties of XF . For example, if F is compact, the Schauder basis (en)n is

shrinking.

In [1] investigate the rigidity properties of XF and prove the following result:

Theorem 2.1. For every regular families F and G, given an isometry T : XF → XG, there are a bijection π : N → N
and a sequence (θn)n such that |θn| = 1 for every n ∈ N and T (en) = θneπ(n). Therefore,

Iso(XF ) ⊆ {Tπ,θ̄ : π : N → N bijection, θ̄ = (θn)n such that |θn| = 1}.

Our main purpose is to present the techniques involved in the proof, as well as generalizations of this result

published in [2].
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Abstract

In this talk we present a new approach to atoms and molecules on Goldberg’s local Hardy spaces hp(Rn),

0 < p ≤ 1, assuming an appropriate cancellation condition. As applications, we prove improved continuity

results for inhomogeneous Calderón-Zygmund operators on these spaces. Joint work with Galia Dafni and Chun

Ho Lau (Concordia University).

1 Introduction

It is well known that the homogeneous Hardy spaces Hp(Rn), defined for 0 < p < ∞ represents, in certain

aspects, a good substitute for Lp(Rn) when 0 < p ≤ 1. However, this breaks down in certain aspects; for instance,

Hp(Rn) are not closed under multiplication by test functions, since this may destroy the global vanishing moment

conditions; they do not contain S(Rn), the Schwartz space; they are not well defined in manifolds and in general

pseudodifferential operators are not bounded on Hp(Rn). For this reason, Goldberg in [3] introduced the local (or

inhomogeneous) version of Hardy spaces, which he called local Hardy spaces and denoted by hp(Rn). These spaces

contains Hp(Rn), are equal to Lp(Rn) when p > 1, and satisfies the desired properties, in particular if φ ∈ C∞
c (Rn)

and f ∈ hp(Rn) then φf ∈ hp(Rn).
From the comparison between Hp(Rn) and hp(Rn), a natural atomic decomposition for hp(Rn) arises, which

allows to write any tempered distribution f ∈ hp(Rn) as an infinite linear combination
∑
j λjaj of atoms aj , with

∥f∥hp ≈ inf (
∑

|λj |p)1/p over all such decompositions. An atom is a function supported in a ball which satisfies a

size condition relative to that ball, and vanishing moment conditions when the atom is supported in small balls,

that is ∫
a(x)xαdx = 0, for all |α| ≤ Np := n(1/p− 1) if supp (a) ⊂ B(x0, r) with r < 1.

Several properties and applications of hp(Rn) follow from this important decomposition. For instance, if

T : S ′(Rn) → S ′(Rn) is a linear and continuous operator, then its extension and continuity on hp(Rn) can be

established by just verifying that ∥Taj∥Hp ≤ C uniformly. For the homogeneous case Hp(Rn), we can also derive

a more general decomposition in terms of molecules, usually denoted by M , in which we do not require compact

support.

In contrast to Hp(Rn), the molecular theory of hp(Rn) for 0 < p ≤ 1 is still not completely established. Komori

[4], defined molecules for n/(n + 1) < p < 1, assuming a uniform control of the zeroth moment of the molecule,

that is ∣∣∣∣∫ M(x)dx

∣∣∣∣ ≤ C.

This estimate holds trivially for the case p = 1 and is therefore not sufficient to characterize h1(Rn).
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2 Main Results

We established in [1] a new atomic and molecular characterization of hp(Rn), for all 0 < p ≤ 1, and apply it to

show improved continuity results for inhomogeneous Calderón-Zygmund operators, that includes pseudodifferential

operators in the class OpS0
1,0(Rn), on hp(Rn). The key is to introduce inhomogeneous cancellation conditions

on both the operators and the atoms and molecules. In particular, we extend Komori’s molecular approach to

p ≤ n/(n + 1) and p = 1, by giving different cancellation properties when p = n/(n + k) for k ∈ Z+, compared

to n/(n + k + 1) < p < n/(n + k). In fact, we call M an approximate molecule if it satisfies the standard size

conditions, relative to the ball B(x0, r) ⊂ Rn, and the following cancellation condition∣∣∣∣∫
Rn

M(x)(x− x0)
αdx

∣∣∣∣ ≤ C, if |α| < n(1/p− 1) (1)

and ∣∣∣∣∫
Rn

M(x)(x− x0)
αdx

∣∣∣∣ ≤ [log(1 + C

r

)]−1/p

if |α| = Np = n(1/p− 1). (2)

An atomic decomposition of hp(Rn) in terms of approximate atoms with analogous cancellation conditions (1) and

(2) were also established.

As an application of the approximate atomic and molecular decomposition developed, we showed the following

improved continuity result for inhomogeneous Calderón-Zygmund operators, extending results of [2].

Theorem 2.1. Let 0 < p ≤ 1 and T be an (δ, µ) inhomogeneous Calderón-Zygmund with δ, µ > 0. Then T can be

extended to a bounded operator from hp(Rn) to itself provided that min{µ, δ} > n(1/p − 1) and there exists C > 0

such that for any ball B(x0, r) ⊂ Rn with r < 1 and α ∈ Zn+ with |α| ≤ Np,

f = T ∗[(· − x0)
α] satisfies

(
1

|B|

∫
B

|f(y)− P
Np

B (f)(y)|2dy
)1/2

≤ C Ψp,α(r), (3)

where P
Np

B (f) is the polynomial of degree ≤ Np that has the same moments as f over B up to order Np, and

Ψp,α(t) :=


tn(1/p−1) if |α| < n(1/p− 1),

tn(1/p−1)

[
log

(
1 + C

r

)]−1/p

if |α| = n(1/p− 1) = Np.

One can also replace (3) by the stronger condition that f ∈ Λ̇n(1/p−1)(Rn) if |α| < n(1/p−1) and f ∈ L
2,Ψp,α

Np
(Rn),

the generalized Campanato space, if n(1/p− 1) ∈ Z and |α| = n(1/p− 1).
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COHERENCE OF IDEALS OF GENERALIZED SUMMING MULTILINEAR OPERATORS BY

BLOCKS

GERALDO BOTELHO1 & DAVIDSON FREITAS2
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Abstract

We prove downward coherence and coincidence results for the ideals of generalized summing multilinear

operators by blocks introduced in [2].

1 Introduction

Coherence and coincidence results are classical topics in the study ideals of multilinear operators between Banach

spaces (multi-ideals). Coherence is the issue that conncects multi-ideals with polynomial ideals and to holomorphy

types (see, e.g., [3]). In this work we address these issues to the multi-ideals of (BI ;X1, . . . , Xd;Y1, . . . , Yk)-summing

multilinear operators, introduced in [2], which we describe next.

Henceforth, d and k are natural numbers with d ≥ 2 and 1 ≤ k ≤ d, and E1, . . . , Ed, F are Banach

spaces. The symbol [ r. . .] means that the r-th coordinate has been omitted. Given a continuous d-linear operator

A : E1 × · · · × Ed −→, for r = 1, . . . , d and xr ∈ Er, the map Axr : E1 × [ r. . .] × Ed −→ F , Axr (x1, [ r. . .], xd) =

A(x1, . . . , xd), is a continuous (d− 1)-linear operator and ∥Axr∥ ≤ ∥A∥ · ∥xr∥.
By X we mean a sequence class according to [1], that is, to each Banach space E corresponds a Banach space

X(E) of E-valued sequences such that c00(E) ⊂ X(E)
1
↪→ ℓ∞(E) and ∥ej∥X(K) = 1 for every j ∈ N, where the ej-s

are the canonical vectors of scalar-valued sequence spaces. From now on, X1, . . . , Xd, Y1, . . . , Yk stand for sequence

classes.

By I = {I1, . . . , Ik} we denote a partition of {1, . . . , d} formed by pairwise disjoint subsets {1, . . . , d} whose

union is {1, . . . , d}. By x ∗ ej we mean the d-tuple (0, . . . , 0, x, 0, . . . , 0), where x appears at the j-th coordinate,

either x belonging to a Banach space or being a natural number.

Definition 1.1. Fixed a partition I = {I1, . . . , Ik} and d sequences of natural numbers (jrn)
∞
n=1, r = 1, . . . , d, such

that the correspondence (n1, . . . , nk) ∈ Nk 7−→
k∑
s=1

∑
r∈Is

jrns
∗er is injective, the block of Nd associated to the partition

I and to the sequences (jrn)
∞
n=1, r = 1, . . . , d, is the set

BI =

{
k∑
s=1

∑
r∈Is

jrns
∗ er ∈ Nd : n1, . . . , nk ∈ N

}
.

When the partition is the trivial one, that is, It = {{1, 2, , . . . , d}}, we say that this is isotropic case. Since N is

countable, there are sequences (jrn)
∞
n=1, r = 1, . . . , d such that BIt

= Nd. All the other cases are called anisotropic.

At the opposite side, we have Nd = {(n1, . . . , nd) : ni ∈ N} = BId
, where Id = {{r} : r = 1, . . . , d} is the discrete

partition and (jrn)
∞
n=1 = (n)∞n=1, r = 1, . . . , d. In order to get one degree of multilinearity lower, it is necessary to

obtain of block of Nd−1 by fixing one coordinate of the block Nd. This is why we are going to consider the block

Nd associated to the partitions above, where we can assure that Nd−1 is a block associated to the partitions by

omitting one coordinate. Of course, the space Y1(Y2(F )) if formed by all Y2(F )-valued sequences belonging to Y1.

Repeating the process we can consider the space Y1(· · ·Yk(F ) · · · ).
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Definition 1.2. A d-linear operator A : E1 × · · · × Ed −→ F is partially (BI ;X1, . . . , Xd;Y1, . . . , Yk)-summing if· · ·

(
A

(
k∑
s=1

∑
r∈Is

xrjrns
∗ er

))∞

nk=1

. . .

∞

n1=1

∈ Y1(· · ·Yk(F ) · · · )

whenever (xrj)
∞
j=1 ∈ Xr(Er), r = 1, . . . , d. The space of such operators is denoted by

LBI
X1,...,Xd;Y1,...,Yk

(E1, . . . , Ed;F ).
2 Main Results

A sequence class X is 0-invariant if, regardless of the Banach space E and the sequence (xj)
∞
j=1 in E, it holds

(xj)
∞
j=1 ∈ X(E) ⇐⇒ (x0j )

∞
j=1 ∈ X(E) and ∥(xj)∞j=1∥X(E) = ∥(x0j )∞j=1∥X(E), where (x0j )

∞
j=1 is the zero-free version

of (xj)
∞
j=1, meaning that x0j is the j-th nonzero coordinate of (xj)

∞
j=1 if it exists, or zero otherwise.

Proposition 2.1. Let 1 ≤ m ≤ d and am ∈ Em. If Y is 0-invariant and A ∈ LNd

X1,...,Xd;Y
(E1, . . . , Ed;F ), then

Aam ∈ LNd−1

X1,[m...],Xd;Y
(E1, [ m. . .], Ed;F ) e ∥Aam∥Nd−1;X1,[m...],Xd;Y ≤ ∥A∥Nd;X1,...,Xd;Y · ∥am∥.

Corollary 2.1. If Y is 0-invariant and LNd

X1,...,Xd;Y
(E1, . . . , Ed;F ) = L(E1, . . . , Ed;F ), then LNd−1

X1,[m...],Xd;Y
(E1, [ m. . .

], Ed;F ) = L(E1, [ m. . .], Ed;F ) para todo m = 1, . . . , d.

Corollary 2.2. Let X1, . . . , Xd, Y be sequence classes and suppose that Y is 0-invariant. If L(E1, . . . , Ed;F ) =

LNd

X1,...,Xd;Y
(E1, . . . , Ed;F ), then L(Er;F ) = LXr;Y (Er;F ) for every r = 1, . . . , d.

Corollary 2.3. [4, Corollay 3.4] Let q, p1, . . . , pd ≥ 1 be given and let E1, . . . , Ed, F be Banach spaces such that

L(E1, . . . , Ed;F ) = LNd

ℓwp1
(·),...,ℓwpd (·);ℓq(·)

(E1, . . . , Ed;F ). Then Πq;pr (Er;F ) = L(Er;F ) for all r = 1, . . . , d.

Proposition 2.2. If Y is a linearly stable sequence class, a ∈ E1 and A ∈ LNd

X1,...,Xd;dY
(E1, . . . , Ed;F ), then

Aa ∈ LNd−1

X2,...,Xd;d−1Y (E2, . . . , Ed;F ) and ∥Aa∥Nd−1;X2,...,Xd;d−1Y ≤ ∥A∥Nd;X1,...,Xd;dY · ∥a∥.

Corollary 2.4. Let X and Y be sequence classes with Y linearly stable, a ∈ E and m ∈ {1, . . . , d}. If

A ∈ LNd

dX;dY (
dE;F ) symmetric, then Ama ∈ LNd−1

d−1X;d−1Y (
d−1E;F ) and ∥Ama ∥Nd−1;d−1X;d−1Y ≤ ∥A∥Nd;dX;dY · ∥a∥.

Proposition 2.3. Let X1, . . . , Xd, Y be sequence classes with Y linearly stable and let E1, . . . , Ed, F be Banach

spaces. If L(E1, . . . , Ed;F ) = LNd

X1,...,Xd;dY
(E1, . . . , Ed;F ), then L(E2, . . . , Ed;F ) = LNd−1

X2,...,Xd;d−1Y (E2, . . . , Ed;F ).

Corollary 2.5. Let X,Y be sequence classes with Y linearly stable and let E,F be Banach spaces. If L(dE;F ) =

LNd

dX;dY (
dE;F ) for some d ∈ N, then L(E;F ) = LX;Y (E;F ).
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Abstract

In this work, we present a generalization of the concept of G−space, introduced in [1], to the case in which

G is a topological group and, then, we show how to adapt results from [1] on G−spaces to the more general

context of G−topological spaces. This research will serve as a basis for the elaboration of a PhD thesis.

1 Introduction

This work has two main goals: firstly, we present a generalization of the concept of G−space, introduced in [1], to the

case in which G is a topological group; then, we show how to adapt results from Castillo and Ferenczi on G−spaces

to the more general context of G−topological spaces. From this point onwards, we are supposing, implicitly, that

G is a topological group, that τG is the topology of G, and that V is the collection of the neighborhoods of the

identity element of G.

2 G−topological spaces

We start this section recalling two preliminary definitions. Then, we introduce the concept of G−topological space.

Definition 2.1. A bounded linear left action of a group H (with identity element eH) on a normed space X

is a map u from H into the set B(X) of the continuous linear maps from X into X such that: i) u(eH) = idX ; ii)

for every (g, h) ∈ H ×H, u(g · h) = u(g) ◦ u(h); and iii) ||u|| := sup
{
||u(g)||B(X) : g ∈ H

}
< +∞.

Definition 2.2. If H is a group, then a H−space (respectively, a H−Banach space) is, by definition, a triple

(H,X, u), where X is a normed space (respectively, a Banach space), and u is a bounded linear left action of H on

X.

Definition 2.3. We say that a G−space (G,X, u) is a G−topological space if the action u is, moreover,(
τG, τ

SOT
B(X)

)
−continuous (where τSOTB(X) is the strong operator topology on B(X)). If (G,X, u) is a G−topological

space, and if X is a Banach space, then we call (G,X, u) a G−topological Banach space.

Remark 2.1. Note that, if τG is the discrete topology, then every G−space is also a G−topological space. Therefore,

we say that the concept of G−topological space in fact generalizes the notion of G−space.

Example 2.1. Let us consider the topological group (H, · , τH), where H := {−1, 1}N, · is the usual product, and τH

is the product topology (with each copy of {−1, 1} being equipped with the discrete topology). Under these conditions,

it is not difficult to show that, if p ∈ [1,+∞[, and u : H → B(ℓp) is such that, for each (εn)n∈N ∈ H and each

(xn)n∈N ∈ ℓp,
[
u
(
(εn)n∈N

)](
(xn)n∈N

)
= (εn · xn)n∈N, then (H, ℓp, u) is a H−topological Banach space.

Next, we recall the notion of G−equivariant map (as presented in [1]).

Definition 2.4. Given G−spaces (G,X, u) and (G, Y, v), we say that a map T : X → Y is G−equivariant if , for

every g ∈ G and every x ∈ X, T
([
u(g)

]
(x)
)
=
[
v(g)

](
T (x)

)
. If, in addition, T is also linear and continuous, we

say that T is a G−operator.
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The category of G−spaces is the category that has G−spaces as objects and G−operators as morphisms. The

category of G−topological spaces, in turn, is a full subcategory of the category of G−spaces.

3 Topological amenability, G−operators and G−centralizers

As mentioned in the introduction, one of the objectives of this work is to adapt results from [1] on G−spaces to the

more general context of topological G−spaces. In this section, we state, as an example, a topological version of a

particular case of Proposition 3.10 of [1]. To do so, however, we firstly recall preliminary concepts and definitions.

Definition 3.1. Given a normed space X, we say that a map f : G→ X is (UR, || · ||X)−uniformly continuous

if, for every ε > 0, there exists a V ∈ V such that, for any (g, h) ∈ G×G,

h · g−1 ∈ V ⇒ ||f(g)− f(h)||X < ε. (1)

Furthermore, we say that a map σ : G → B(X) is (UR,B(X)SOT )−uniformly continuous if, for all n ∈ N, all
(x1, . . . , xn) ∈ Xn and all ε > 0, there exists a V ∈ V such that, for any (g, h) ∈ G×G,

h · g−1 ∈ V ⇒ ∀ j ∈ {1, . . . , n},
∣∣∣∣[σ(g)](xj)− [σ(h)](xj)∣∣∣∣X < ε. (2)

We will denote by UCBR(G) the set of (UR, | · |)−uniformly continuous and bounded maps from G into K
(where, as usual, K = R or K = C). The map from G into K which takes the value 1 at all points of G, in turn,

will be denoted by 1G.

Definition 3.2. We say that a G−space (respectively, a G−Banach space) is a G−topological space (respectively,

a G−topological Banach space) if u is, moreover,
(
τG, τ

SOT
B(X)

)
−continuous (where τSOTB(X) is the strong operator

topology on B(X)).

Definition 3.3. Let ⋆ : G × UCBR(G) → UCBR(G) be the left action (in the usual sense) that, to every pair

(g, φ) ∈ G × UCBR(G), associates the function φg which maps each x in G to φ(x · g). We say that G is

topologically amenable if there exists a (G, ⋆)−invariant mean on UCBR(G) (that is, if there exists a mean M

on UCBR(G) such that M(φg) =M(φ) for any g ∈ G and any φ ∈ UCBR(G)).

We are now almost ready to state a topological version of a particular case of proposition 3.10 of [1]. Before

that, however, we advise readers who are not familiar with the concepts of quasilinear map, trivial quasilinear map,

G−centralizer and G−ultrasummand to look for these definitions in [1]. With that said, we can finally state the

promised result.

Proposition 3.1. Let (G, Y, v) be a G−Banach space, and let (G,X, u) be a G−ultrasummand. Suppose further that

G is topologically amenable, that v is (UR,B(Y )SOT )−uniformly continuous, and that u is (τG, τ|| · ||B(X)
)−continuous

(where τ|| · ||B(X)
is the topology induced on B(X) by || · ||B(X)). Then, given a G−centralizer Ω: ∆ ⊆ Y → X such

that, for each y ∈ ∆, the restriction of Ω to the set
{[
v(g)

]
(y) : g ∈ G

}
is uniformly continuous, there exists a

G−equivariant map ω : ∆ → X such that Ω − ω is a quasilinear bounded map. Furthermore, if Ω is also trivial,

then ω can be chosen to be linear.
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Abstract

For a Banach lattice E, we prove that some subsets of the Banach lattice ℓ∞(E) formed by sequences with

distinguished properties contain a closed infinite dimensional sublattice.

1 Introduction

A subset A of a topological vector space E is spaceable (see [1]) if there exists a closed infinite dimensional subspace

of E all of whose elements but the origin belong to A. Recently, Oikhberg [7] coined the following terms:

Definition 1.1. A subset A of a Banach lattice is latticeable (completely latticeable) if there exists a (closed) infinite

dimensional sublattice of E all of whose elements but the origin belong to A (see also [8]).

A number of results on latticeability in spaces of vector-valued sequences appear in [2]. To state some of these

results we need a few definitions.

Definition 1.2. (i) A Banach lattice E has the positive Schur property if positive – or, equivalently, disjoint –

weakly null sequences in E are norm null.

(ii) A sequence (xj)
∞
j=1 in a Banach lattice E is regular-polynomially null if P (xj) −→ 0 for every scalar-valued

regular homogeneous polynomial P on E. A Banach lattice E is positively polynomially Schur if positive regular-

polynomially null E-valued sequences are norm null.

(iii) A sequence (xj)
∞
j=1 in a Banach space E is polynomially null if P (xj) −→ 0 for every scalar-valued continuous

homogeneous polynomial P on E. A Banach space E is polynomially Schur if every polynomially null E-valued

sequence is norm null.

The literature on the positive Schur property is vast. The class of Banach lattices in (ii) was introduced in [3].

The class of Banach spaces in (iii) was introduced by Carne, Cole and Gamelin [4] and have been developed by

several authors.

2 Main Results

Recall that ℓ∞(E), the space of bounded E-valued sequences with the sup norm, is a Banach lattice with the

coordinatewise order whenever E is a Banach lattice, and that cw0 (E), the space of weakly null E-valued sequences,

is a closed subspace of ℓ∞(E) whenever E is a Banach space.

The next result was inspired by Jiménez-Rodŕıguez [6].

Theorem 2.1. (a) Let E be a non-polynomially Schur Banach space. Then the set of E-valued non-norm null

polynomially null sequences is spaceable in cw0 (E).

(b) Let E be a Banach lattice failing the positive Schur property. Then the set of E-valued disjoint non-norm null

weakly null sequences is completely latticeable in ℓ∞(E).

(c) Let E be a non-positively polynomially Schur Banach lattice. Then the set of E-valued disjoint non-norm null

regular-polynomially null sequences is completely latticeable in ℓ∞(E).
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In general, the closed sublattices of ℓ∞(E) obtained in the proofs of (b) and (c) above are not ideals in ℓ∞(E).

Remark 2.1. (i) We cannot use cw0 (E) instead of ℓ∞(E) in Theorem 2.1(b) and (c) because cw0 (E) is not always a

sublattice of ℓ∞(E). For instance, for 1 ≤ p < ∞, cw0 (Lp[0, 1]) is not a Riesz space due to the fact that the lattice

operations in Lp[0, 1] are not weakly sequentially continuous. But the proof makes clear that the sublattices of

ℓ∞(E) created in Theorem 2.1(b) and (c) are contained in cw0 (E). Sometimes cw0 (E) is a Banach lattice, for instante

when E is either an AM-space or an atomic Banach lattice with order continuous norm. In these cases, ℓ∞(E) can

be replaced with cw0 (E) in Theorem 2.1(b) and (c).

(ii) Castillo, Garćıa and Gonzalo in [5, Theorem 5.5] proved that the sum of two polynomially null sequences is not

necessarily polynomially null. This is why we cannot pass to a space smaller than cw0 (E) in Theorem 2.1(a).

(iii) We have already explained why cw0 (E) cannot be used in general in Theorem 2.1(c). But one might wonder

if we could have gone to a smaller space, formed by regular-polynomially null sequences. In order to see that we

cannot, next we show that the counterxample given in [5, Theorem 5.5] is good enough to show that the sum of

two regular-polynomially null sequences may fail to be regular-polynomially null.

Proposition 2.1. The sum of two regular-polynomially null sequences in a Banach lattice is not necessarily regular-

polynomially null.

Now it is easy to see that, for every Banach space E, the set PN of polynomially null E-valued sequences is

spaceable in cw0 (E): if E is not polynomially Schur, in Theorem 2.1(a) we proved that a set much smaller than PN

is spaceable; if E is polynomially Schur, it is easy to check that PN = c0(E), the closed subspace of cw0 (E) formed

by norm null sequences.

The lattice setting gives room to several questions that are senseless in the environment of Banach spaces. Our

last result is typical:

Proposition 2.2. For every infinite dimensional Banach lattice E, the set of E-valued disjoint norm null sequences

is completely latticeable in c0(E).
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Abstract

First we give a counterexample showing that recent results on separate order continuity of Arens extensions

of multilinear operators cannot be improved to get separate order continuity on the product of the whole of the

biduals. Then we establish conditions on the operators and/or on the underlying Riesz spaces/Banach lattices

so that the separate order continuity holds on the product of the whole biduals. We also prove that all Arens

extensions of any regular multilinear operator is order continuous in at least one variable.

1 Introduction

Bidual extensions of multilinear operators have been studied since Arens’ seminal paper [1]. By E∼ we denote the

order dual of a Riesz space E, hence E∼∼ = (E∼)∼. For a Banach lattice E,E∗ denotes is topological dual, hence

E∗∗ stands for its bidual. A net (xα)α∈Ω in a Riesz space E is order convergent to x ∈ E, denoted xα
o−→ x, if there

are a net (yα)α∈Ω in E and α0 ∈ Ω such that |xα − x| ≤ yα ↓ 0 for every α ≥ α0. A linear operator T : E −→ F

is order continuous if xα
o−→ x in E implies T (xα)

o−→ x in F . The symbols (E∼)∼n and (E∗)∗n stand for the

corresponding subspaces formed by the order continuous functionals. The results that motivated our research are

the following:

• Buskes and Roberts (2019) [3, Theorem 3.4]: If A : E1×· · ·×Em −→ F is an m-linear operator of order bounded

variation between Riesz spaces, then its Arens extension A[m+1]∗ : E∼∼
1 × · · · × E∼∼

m −→ F∼∼ is separately order

continuous on (E∼
1 )∼n × · · · × (E∼

m)∼n .

• Boyd, Ryan and Snigireva (2021) [2, Theorem 1]: If A : E1 × · · · × Em −→ F is a regular m-linear operator

between Banach lattices, with F Dedekind complete, then its Arens extension A[m+1]∗ : E∗∗
1 × · · · ×E∗∗

m −→ F ∗∗ is

separately order continuous on (E∗
1 )

∗
n × · · · × (E∗

m)∗n.

In this work we investigate the possibility (or not) to get, in the results above, separate order continuity on the

product of the whole of the biduals.

2 Main Results

By JE : E −→ E∼∼ we denote the canonical operator (JE(x)(x
′′) = x′′(x)), which happens to be a Riesz

homomorphism. Given Riesz spaces E1, . . . , Em, F , the space of regular m-linear operators from E1 × · · · ×Em to

F is denoted by Lr(E1, . . . , Em;F ). When F is the scalar field we write Lr(E1, . . . , Em). Sm stands for the set of

permutations of {1, . . . ,m}.
Given a permutation ρ ∈ Sm and a regular m-linear operator A : E1 × · · · × Em −→ F , the Arens extension of

A with respect to ρ is the operator

ARρm(A) : E∼∼
1 × · · · × E∼∼

m −→ F∼∼

as defined in [4]. In this fashion, ARρm(A) is a regular m-linear operator that extends A in the sense that

ARρm(A) ◦ (JE1
, . . . , JEm

) = JF ◦A and ARρm(A) is positive for positive A (see [4, Theorem 2.2]).
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The extension A[m+1]∗ from [2,3] is recovered by considering the permutation θ(m) = 1, θ(m−1) = 2, . . . , θ(2) =

m− 1, θ(1) = m, that is, ARθm(A) = A∗[m+1]. In particular, ARθ2(A) = A∗∗∗ in the bilinear case m = 2.

The counterexample. Consider the positive bilinear form given by the duality c∗0 = ℓ1:

A : ℓ1 × c0 −→ R , A ((xn)
∞
n=1, (yn)

∞
n=1) =

∞∑
n=1

xnyn.

With the help of some technical claims we prove that the Aron-Berner extension A∗∗∗ is order continuous in the first

variable but not in the second one, while the other Aron-Berner extension ARid2 (A) is separately order continuous.

This shows that the two results stated in the Introduction cannot be improved, in general, to get separate order

continuity on the product of the whole of the biduals.

The results we obtained where the order continuity on the whole of the biduals is achieved are the following.

Proposition 2.1. All Arens extensions of a multilinear operator of finite type bettween Riesz spaces coincide, are

of finite type and are separately order continuous.

Theorem 2.1. Let E1, . . . , Em, F be Riesz spaces, ρ ∈ Sm and A ∈ Lr(E1, . . . , Em;F ).

(a) For all j ∈ {1, . . . ,m}, x′′ρ(i) ∈ E∼∼
ρ(i), i = 1, . . . , j − 1, and x′′ρ(i) ∈ (E∼

ρ(i))
∼
n , i = j + 1, . . . ,m, the operator

x′′ρ(j) ∈ E∼∼
ρ(j) 7→ ARρm(A)(x′′1 , . . . , x

′′
ρ(j), . . . , x

′′
m) ∈ F∼∼ is order continuous on E∼∼

ρ(j).

(b) ARρm(A) is separately order continuous on (E∼
1 )∼n × · · · × (E∼

m)∼n .

(c) ARρm(A) is order continuous in the ρ(m)-th variable on the whole of E∼∼
ρ(m).

Theorem 2.2. Let m ≥ 2 and E1, . . . , Em be Banach lattices such that:

(i) For j = 2, . . . ,m− 1, and i = 1, . . . ,m− j, every regular linear operator from Ej to E∗
j+i is weakly compact;

(ii) For all k = 2, . . . ,m, x∗∗1 ∈ E∗∗
1 and T ∈ Lr(E1;E

∗
k), the functional T ∗∗(x∗∗1 ) is order continuous on E∗∗∗

k .

Then, for every Banach lattice F and any A ∈ Lr(E1, . . . , Em;F ), the Arens extension A∗[m+1] is separately

order continuous on E∗∗
1 × · · · × E∗∗

m .

Recall that a Banach space E is Arens regular if every bounded linear operator from E to E∗ is weakly compact

(see, e.g., [5]). The Banach lattices c0, ℓ∞ and C(K), whereK is a compact Hausdorff space, in particular AM-spaces

with order unit, are Arens regular.

Corollary 2.1. Let E be an Arens regular Banach lattice. Then, for every Banach lattice F , the Arens extension

A∗[m+1] of any regular m-linear operator A : Em −→ F is separately order continuous on (E∗∗)m.
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Abstract

In these notes, we present a characterization for complex symmetric Toeplitz operator over the Hardy space

of the disk. As a consequence, we get examples of complex symmetry of Toeplitz operators when the symbol is

a rational function.

1 Introduction

A conjugation C on a separable complex Hilbert space H is an antilinear operator C : H → H such that:

(a) C is isometric: ⟨Cf,Cg⟩ = ⟨g, f⟩, ∀f, g ∈ H.

(b) C is involutive: C2 = I.

A bounded linear operator T on H is said to be complex symmetric if there exists a conjugation C on H such

that CT = T ∗C. We will often say that T is C-symmetric. Equivalently, T is C-symmetric if there exists an

orthonormal basis {en} of H with respect to which T has a symmetric matrix representation.

The concept of complex symmetric operators on separable Hilbert spaces in a natural generalization of complex

symmetric matrices and their general study was initiated by Garcia, Putinar and Wogen [2,3,4,5]. The class of

complex symmetric operators includes other basic classes of operators such as normal, Hankel, compressed Toeplitz

and some Volterra operators.

In these notes, we assume that T is the boundary of the open unit disk D in the complex plane C. Let L2(T)
be the space of square integrable functions on T with the inner product defined by

⟨u, v⟩ =
∫
T
uvds.

Let H2(T) denote the classical Hardy space associated to D which is the space of holomorphic functions on D
with L2(T)-boundary values in T. Since the set of monomials

{
1√
2π
zn : n = 0, 1, 2, . . .

}
is an orthonormal basis for

H2(T), we have that f ∈ H2(T) if and only if

f(z) =

∞∑
n=0

an
1√
2π
zn where

∞∑
n=0

|an|2 <∞.

Let L∞(T) be the space of essentially bounded measurable functions on T and let φ be in L∞(T). The Toeplitz

operator Tφ : H2(T) → H2(T), with symbol φ, is defined by

Tφf = P (φf),

for all f ∈ H2(T), where P : L2(T) → H2(T) is the orthogonal projection.

The purpose of this lecture is to present a characterization for complex symmetric Toeplitz operators finding

an orthonormal basis for H2(T) so that the Toeplitz operator Tφ has a symmetric matrix representation. As a

consequence we provide an example of complex symmetric Toeplitz operator Tφ with non-trigonometric symbol.
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2 Main Results

Let p ∈ D. For each non-negative integer n, considering the rational function Rn given by

Rn =

√
1− |p|2

2π

(z − p)n

(1− pz)n+1
,

we have that B = {Rn : n = 0, 1, 2, . . .} is an orthonormal basis for H2(T) (see [1] for more details). Thus, we get

the following:

Lemma 2.1. Let J : H2(T) → H2(T) be defined by

J

( ∞∑
n=0

an
(z − p)n

(1− pz)n+1

)
=

∞∑
n=0

an
(z − p)n

(1− pz)n+1
. (1)

Then J is a conjugation on H2(T).

Below we present our main result:

Theorem 2.1. Let φ(z) =
∑∞
n=−∞ φ̂(n)zn ∈ L∞(T) and p ∈ D. The following statements are equivalent:

(i) Tφ is J-symmetric.

(ii) For all non-negative integer k, holds

φ̂(k) = φ̂(−k) + p {φ̂(−k − 1)− φ̂(k − 1)} .

(iii) φ(z) = φ(z)
(1 + pz)

1 + pz
.

It follows from the previous theorem that there is no complex symmetric Toeplitz operator Tφ with conjugation

J given by (1) with finite symbol φ.

Corollary 2.1. Let p ∈ D nonzero. If φ(z) =
∑N
n=−M φ̂(n)zn where N ≥ M > 0 with nonzero φ̂(−M), φ̂(N),

then Tφ is not J-symmetric.

As a particular case of Theorem 2.1, we get examples of Toeplitz operators J-symmetric with non-trigonometric

symbols.

Corollary 2.2. Let p ∈ (−1, 1) a real number. If φ(z) =
1 + pz

|1 + pz|
, then Tφ is J-symmetric.
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Abstract

We prove a Fixed Point Theorem for internal sets of finite diameter. This generalizes the Fixed Point

Theorems proved by Juriaans-Oliveira and Juriaans-Oliveira-Queiroz in two recent papers. It opens a wide

range for applications in non-linear PDE’s. In particular, it can be used to prove existence results for PDE’s in

the context of Hilbert C̃−modules.

1 Introduction

Schwartz’s Theory is a linear theory and hence no products are allowed. Attempts to create a non-linear theory

are due to J.F. Colombeau and E.E. Rosinger. In this paper we focus on Colombeau’s proposal of a Theory of

Generalized Functions. Colombeau’s proposal still did not have a natural domain of the new functions and a

derivations defined by variation of some variable of which these new functions depend. The remedy for this started

in the seminal paper of Kunzinger-Obberggenberger which assigned to a Colombeau generalized function a natural

domain, thus becoming a function whose values belong to a ring. Since latter is not a field, it was highly unlikely

to be a good candidate to replace R or C as the basic underlying algebraic and topologic milieu. This ring, the

ring of Colombeau generalized numbers K, had to be better understood if it were to become the basic underlying

milieu of a Generalized Calculus. This meant that its algebraic and topological properties had to be studied and

very well understood. One of the first results of algebraic nature in the Theory of Colombeau Generalized functions

can be traced back to M. Kunzinger. Aragona-Juriaans started a systematic study of this ring thus bridging

algebra, analysis and topology in the field. The Biagioni-Scarpalézos topology, the sharp topology, was revisited

by Aragona-Fernandez-Juriaans to make it algebraically more suitable. Together with the crucial idea of point

value introduced by Kuzinger-Obberguggenberger, this let to a proposal of a Generalized Differential Calculus by

Aragona-Fernandez-Juriaans being the ring of Colombeau generalized numbers, K with K ∈ {R,C}, the basic

underlying milieu. At first, it might look odd that a calculus developed in a non-arquimedian environment can

be a perfect match with classical calculus. However, this turned out to be the case as proved in the Embedding

Theorem of Aragona-Fernandez-Juriaans (see [3,4]). As already stated, the idea of generalized points goes back

to the seminal paper of Kunzinger-Oberguggenberger. Their idea was generalized by Aragona-Fernadnes-Juriaans-

Oberguggenberger and the notion of a membranes was introduced. Subsequently, the notion of membranes was

generalized by Vernaeve-Oberguggenberger who introduced the notion of internal sets of a locally convex spaces.

One of the first compactness type results proved in Generalized Calculus, and thus in the context of Colombeau

Generalized Function, was proved by Aragona-Fernandez-Juriaans. Vernaeve-Oberguggenberger generalized this

result, proving the Saturation Principal. This Principal is an important tool to prove existence theorems for PDE’s

involving non-linearities. Topological Fixed Point Theorems where recently proved in [1,2]. Here we prove a Fixed

Point Theorem for internal sets which generalized these two results, thus becoming one more tool in the Generalized

Calculus. The Fixed Point Theorem of the present paper can also be applied in the context of Hilbert C̃−modules.
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2 A Fixed Point Theorem for Internal Sets of a Locally Convex Space

We refer the reader to [1,2] for the definition of an internal set of a locally convex space E. In this section, all

internal sets are defined on E.

Definition 2.1. Let M be an internal set and and F : M −→ M . We say that F is an internal Lipschitz

function if F (M) is an internal set and t here exists λ ∈ R such that |F (x) − F (y)| ≤ λ|x − y|, ∀ x, y ∈ M . If

λ ∈ B1(0) then F is said to be an internal contraction on M . In this case, the sequence (λn)n∈N converges to

zero in K.

Let M be a sharply bounded internal set, i.e., there exists r ∈ R such that for x, y ∈ M we have that

∥x − y∥ ≤ αr, where α is the natural gauge of this milieu. In this case we say that M has finite diameter,

denoted by µ(M) <∞. The Saturation Principal guarantees that given a sequence of internal sets with the finite

intersection property such that any finite intersection of elements of this sequence has finite diameter then the

intersection of the elements of this sequence is non-empty. In the context of membranes, it suffices to use a result

of Aragona-Fernandez-Juriaans, since a membrane, by definition, is an internal set with finite diameter.

Theorem 2.1. Let M be a sharply bounded internal set and F : M −→ M an internal contraction. Then there

exists a unique x0 ∈M such that F (x0) = x0, i.e., F has a unique fixed point in M .

Corollary 2.1. Let (Tε) be a net of Lipschitz functions defined on an internal set M = (Mε), n = (nε) a hyper

natural number and T = (Tnε
ε ). If T is a an internal contraction then it has a fixed point in M .

3 Supports of Functions and Points

Let Ω ⊂ K, x ∈ Ω̃c and f ∈ G(Ω). In [1] we introduced the notion of the support of a point in Kn. The definition

of the support, supp(f), of f is well known. As proved in [1], we may write x =
∑
e
e · xe where the e’s appearing

in the summation form a complete set of orthogonal idempotents in the boolean algebra B(K). Using this, we have

that f(x) =
∑
e
e · f(xe).

Theorem 3.1. Let f ∈ G(Ω) and x ∈ Ω̃c. If supp(x) ∩ supp(f) = ∅ then f(x) = 0.

Consider the classical definition of the notion of the support of the function f defined in Ω̃c and write this

support as Supp(f). If f = δ is the Dirac function, then Supp(δ) ⊂ {x ∈ R̃c : ∃ e ∈ B(R) such that e · x ∈ K0}.
Hence, Supp(δ) is contained in the set consisting of those points whose interleaving contains at least one element

of K0.

Lemma 3.1. Let f ∈ G(Ω). Then Supp(f) ⊂ {x ∈ R̃c : ∃ e ∈ B(R) and r > 0, such that e · x ≈ y ∈ supp(f)}.
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1Faculdade de Matemática, UFU, MG, Brasil, botelho@ufu.br,
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Abstract

We develop a new technique, based on the concept of sequence classes introduced in [2], to create new

examples of hyper-ideals of multilinear operators between Banach spaces, as well as of polynomial hyper-ideals

and polynomial two-sided ideals.

1 Introduction

Throughout the text n is a natural number, E,E1, . . . , En, F,G,H are Banach spaces over K = R or C, the Banach
space of continuous n-linear operators from E1 × · · · × En to F is denoted by L(E1, . . . , En;F ) .

A first attempt to treat ideals of multilinear operators through the transformation os vector-valued sequence

classes was made in [2]. A more effective approach appeared in [2] using the concept of sequence classes.

A sequence class is a rule E 7→ X(E) that assigns to each Banach space E a Banach space X(E) formed by

E-valued sequences such that c00(E) ⊆ X(E)
1
↪→ ℓ∞(E) and ∥ej∥X(K) = 1 for every j ∈ N.

Sequence classes that are linearly stable and multilinearly stable are defined in [2].

Definition 1.1. Given n ∈ N, sequence classes X,Y and Banach spaces E1, . . . , En, F , an n-linear operator

A ∈ L(E1, . . . , En;F ) is said to be (X;Y )-summing if (A(x1j , . . . , x
n
j ))

∞
j=1 ∈ Y (F ) whenever (xmj )∞j=1 ∈ X(Em),

m = 1, . . . , n. In this case, the induced n-linear operator

Ã : X(E1)× · · · ×X(En) −→ Y (F ) , A
(
(x1j )

∞
j=1, . . . , (x

n
j )

∞
j=1

)
= (A(x1j , . . . , x

n
j ))

∞
j=1,

is continuous and we define ∥A∥X1,...,Xn;Y = ∥Ã∥.
The space of all such operator is denoted by LX1,...,Xn;Y (E1, . . . , En;F ). If X1 = · · · = Xn = X we simply write

LX;Y .

Theorem 1.1. [2] If X1, . . . , Xn, Y are linearly stable sequence classes and X(K)
1
↪→ Y (K), then (LX1,...,Xn;Y , ∥ ·

∥X1,...,Xn;Y ) is a Banach ideal of multilinear operators.

2 Main Results

The results we describe in this section will appear in [5].

A hyper-ideal of multilinear operators (see [3]) is an ideal of multilinear operators that is stable with respect to

the composition with multilinear operators in the left-hand side. Our first result reads as follows.

Theorem 2.1. Let X and Y be sequence classes with X multilinearly stable, Y linearly stable and X(K)n ↪→ Y (K)

for every n ∈ N. Then (LX;Y , ∥ · ∥X;Y ) is a Banach hyper-ideal of multilinear operators.

Classes of polynomials defined by the transformation of vector-valued sequences were first treated in [1]. By

P(nE;F ) we denote the Banach space of continuous n-homogeneous polynomials from E to F . By Â we mean the

n-homogeneous polynomial defined by the n-linear operator A and by P̌ the symmetric n-linear operator associated

to the n-homogeneous polynomial P .
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Theorem 2.2. Let X and Y be sequence classes. The following are equivalent for a polynomial P ∈ P(nE;F ):

(a) P̌ ∈ LX;Y (
nE;F ).

(b) There exists A ∈ LX;Y (
nE;F ) such that Â = P .

(c) (P (xj))
∞
j=1 ∈ Y (F ) whenever (xj)

∞
j=1 ∈ X(E).

(d) The induced operator P̃ : X(E) −→ Y (F ) , P̃ ((xj)
∞
j=1) = (P (xj))

∞
j=1, is a well defined continuous n-

homogeneous polynomial. If the conditions above hold, then

∥P̃∥ ≤ ∥P̌∥X;Y = inf{∥A∥X;Y : A ∈ LX;Y e Â = P} ≤ nn

n!
∥P̃∥.

The theorem above leads us to define the class of (X;Y )-summing n-homogeneous polynomials.

Definition 2.1. Given sequence classes X and Y , we say that a polynomial P ∈ P(nE;F ) is (X;Y )-summing, in

symbols P ∈ PX;Y (
nE;F ), if the equivalent conditions of the previous theorem hold for P . In this case we define

∥P∥X;Y ;1 = ∥P̃∥ and ∥P∥X;Y ;2 = ∥P̌∥X;Y .

Polynomial hyper-ideals and two-sided ideals were define in [4].

Theorem 2.3. Let X and Y be sequence classes such that X(K)n ↪→ Y (K) for every n ∈ N. Then

(a) If X is multilinearly stable and Y linearly stable, then (PX;Y , ∥ · ∥X;Y ;1) and (PX;Y , ∥ · ∥X;Y ;2) are
(
nn

n!

)∞
n=1

-

polynomial Banach hyper-ideals.

(b) If X and Y are multilinearly stable, then (PX;Y , ∥ · ∥X;Y ;2) is a
(
nn

n! ,
nn

n!

)∞
n=1

-polynomial Banach two-sided ideal.

Definition 2.2. A sequence class X is polinomially stable if, regardless of the n ∈ N, the Banach spaces E and

F and P ∈ P(nE;F ), (P (xj))
∞
j=1 ∈ X(F ) whenever (xj)

∞
j=1 ∈ X(E) and, denoting by P̃ : X(E) −→ X(F ) the

induced n-homogeneous polynomial, it holds ∥P̃∥ = ∥P∥.

Theorem 2.4. Let X and Y sequence classes such that X(K)n ↪→ Y (K) for every n ∈ N. Then

(a) If X is polinomially stable and Y linearly stable, then (PX;Y , ∥ · ∥X;Y ;1) is a polynomial Banach hyper-ideal.

(b) If X is polinomially stable and Y multilinearly stable, then (PX;Y , ∥ ·∥X;Y ;1) is a
(
1, n

n

n!

)∞
n=1

-polynomial Banach

two-sided ideal.

(c) If X and Y are polinomially stable, then (PX;Y , ∥ · ∥X;Y ;1) is a Banach polynomial two-sided ideal.
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1Instituto de Ciências Matemáticas e de Computação (ICMC), USP, SP, Brasil, tjordao@icmc.usp.br

Abstract

The function spaces of generalized smoothness (generalized Besov/Lipschitz spaces) will be defined in terms

of majorant functions and the fractional modulus of smoothness. The well definition of these spaces, embedding

theorems between them and applications will be discussed.

1 Introduction

A majorant function is a nondecreasing measurable function φ : (0,∞) −→ R+, such that φ(t) → 0 as t→ 0+, and

satisfying ∫ t

0

φ(u)

u
du ≲ φ(t) for all t > 0. (1)

The notation A(t) ≲ B(t) means that A(t) ≤ cB(t), for some constant c > 0, not depending upon t. We denote by

M the collection of all majorant functions. For β > 0, we define the following

Ωβ :=

{
φ ∈ M :

∫ ∞

t

φ(u)

uβ+1
du ≲

φ(t)

tβ
, t > 0

}
. (2)

Several examples of functions in Ωβ , including the usual power function φ(t) = tα (it belongs to Ωβ if and only if

0 < α < β) employed in the definition of the standard Besov/ Lipschitz spaces, can be considered in terms of the

regularly varying concept of Karamata ([2]).

For d ≥ 1 the Fourier transform f̂ of a function f , in the Schwartz class S(Rd), is given by

f̂(ξ) =

∫
Rd

f(x)eiξ·xdx, ξ ∈ Rd.

For 1 ≤ p ≤ ∞ we write Lp(Rd) := (Lp(Rd), ∥ · ∥p) for the usual Banach spaces of p-integrable functions. The

fractional moduli of smoothness, for γ > 0, is given ([3]) in terms of the fractional difference as follows

ωγ(f, t)p := sup
|h|<t

{∥∆γ
hf∥p} , t > 0, 1 < p <∞, with ∆γ

hf( · ) :=
∞∑
j=0

(−1)j
(
γ

j

)
f( · + jh), f ∈ Lp(Rd).

For 0 < q, γ <∞, the generalized Besov space is defined in terms of the following set of majorant functions,

Ωqγ :=

{
φ ∈ Ωγ :

∫ 1

0

1

[φ(t−1)]q
dt

t
<∞

}
.

Definition 1.1. For 0 < q <∞ and φ ∈ Ωq2β the generalized Besov space is

Bφp,q(Rd) =
{
f ∈ Lp(Rd) : |f |Bφ

p,q
:=

∫ 1

0

(
ωβ(f, t)p
φ(t)

)q
dt

t
<∞

}
. (3)

For q = ∞ and φ ∈ Ωγ ,

Bφp,∞(Rd) :=
{
f ∈ Lp(Rd) : |f |Bφ

p,∞ := sup
t>0

{
ωβ(f, t)p
φ(t)

}
<∞

}
.

As usual, if q < ∞ we endow Bφp,q with the norm ∥ · ∥Bφ
p,q

:=
(
∥ · ∥qp + | · |Bφ

p,q

)1/q
, otherwise ∥ · ∥Bφ

p,∞ :=

∥ · ∥p + | · |Bφ
p,∞ . In particular, for q = ∞ these spaces are the generalized Lipschitz ones, denoted by Lip(p, β, φ).
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2 Main Results

The main results about embedding between the spaces of generalized smoothness are the following. The first one

is about the well definition of the generalized Besov spaces, and in the sequence the natural relation of this space

with the usual Besov space.

Theorem 2.1. Let 1 ≤ p, q <∞ and φ ∈ Ωγ . The space Bφp,q does not depend on γ.

The standard Lipschitz and Besov spaces are recovered by definition above by taking φ(t) = tα ∈ Ωγ , for

0 < α ≤ γ. In this case, we write Lip(p, α) and Bαp,q, respectively.

Proposition 2.1. For any 0 < α ≤ δ, the following holds

Lip(p, α) ⊂ Lip(p, δ, φ) and Bαp,q ⊂ Bδ,φp,q , for all φ ∈ Ωα. (1)

An interesting and non-trivial embedding is given by the next theorem.

Theorem 2.2. Consider 1 < p < q < q1/2 <∞, δ > 0, and 1/q = 1/p− δ/d. For φ ∈ Ωγ+δ, it holds

Bφp,q2 ⊂ Bϕq,q1 , (2)

for any ϕ ∈ Ωγ and q2 = q1q/(q1 − q).

The application of the spaces of generalized smoothness in the study of the decay of the Fourier transform is

the content of the next (Titchmarsh type) theorem ([1]).

Theorem 2.3. Let {Tt}t>0 be a β-admissible family of multipliers operators on Lp(Rd) and φ ∈ Ω2β.

(A) Let 1 < p ≤ 2 and p ≤ q ≤ p′. If f ∈ Lip (p, β, φ), then(∫
t≤|ξ|≤2t

[
|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
dξ

)1/q

= O
(
φ(t−1)

)
, as t→ ∞. (3)

(B) Let 2 ≤ p <∞, | · |d(1−1/p−1/q)f̂(·) ∈ Lq and p′ ≤ q ≤ p. If(∫
t≤|ξ|≤2t

[
|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
dξ

)1/q

= O
(
φ(t−1)

)
, as t→ ∞,

then f ∈ Lip (p, β, φ).

The Titchmarsh type theorem above for the generalized Besov spaces and applications of these results can be

found in ([1]), where a Riemann-Lebesgue type inequality is obtained as consequence.
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Abstract

In this talk we study the Bishop-Phelps-Bollobás theorem for operators defined on c0-sums of euclidean

spaces to uniformly convex spaces.

1 Introduction

Let X and Y be Banach spaces. The theory of norm-attaining operators is a recent field of research and started

with the classical Bishop-Phelps Theorem, in 1961. The theorem states that NA(X,K) is a dense set of X∗. In

general, is not true that NA(X,Y ) = L(X,Y ), for all Banach spaces X and Y . In [1], the authors defined a new

property for the pair of Banach spaces (X,Y ), called Bishop-Phelps-BollobÃ¡s property for operators (BPBp in

short). If (X,Y ) satisfies the BPBp then NA(X,Y ) = L(X,Y ), but the converse is not true. Considering Y a

uniformly convex Banach space, in [1] they proved that (ℓ∞, Y ) satisfies the BPBp for operators and left open the

question if (c0, Y ) satisfies this property. In [2], they answered this question in a positive way.

We prove that (c0(⊕∞
n=1ℓ

n
2 ), Y ) satisfies the BPBp for operators, whenever Y is a uniformly convex Banach

space. Considering the real case, when Y is strictly convex, whe show that if (c0(⊕∞
n=1ℓ

n
2 ), Y ) satisfies BPBp for

operators then Y is uniformly convex. These results are part of the paper [4].

2 Main Results

Definition 2.1. Let X and Y be Banach spaces. We say that the pair (X,Y ) has the Bishop-Phelps-Bollobás

property for operators (BPBp for operators, in short) if given ε > 0, there is η(ε) > 0 such that whenever

T ∈ SL(X,Y ) and x0 ∈ SX satisfy that ∥Tx0∥ > 1 − η(ε), then there exist a point u0 ∈ SX and an operator

S ∈ SL(X,Y ) satisfying the following conditions

∥Su0∥ = 1, ∥u0 − x0∥ < ε, and ∥S − T∥ < ε.

Theorem 2.1. Let c0
(
⊕∞
k=1ℓ

k
2

)
a real Banach space and Y a strictly convex real Banach space. If

(
c0
(
⊕∞
k=1ℓ

k
2

)
, Y
)

satisfies the BPBp, then Y is an uniformly convex Banach space.

Idea of the proof Suppose that Y is not uniformly convex Banach space. Then there exist ϵ > 0 and sequences

(yk), (zk) ⊂ SY such that

lim
k→∞

∥∥∥∥yk + zk
2

∥∥∥∥ = 1 and ∥yk − zk∥ > ϵ, ∀k ∈ N. (1)

Then it is possible to define a sequence of bounded linear operator Ti : c0
(
⊕∞
k=1ℓ

k
2

)
→ Y such that ||Ti0(e1)|| >

1− η
(
ϵ
2

)
, for some i0 ∈ N. As the pair

(
c0
(
⊕∞
k=1ℓ

k
2

)
, Y
)
satisfies the BPBp for operators, there exist an operator

R ∈ SL(c0(⊕∞
k=1ℓ

k
2),Y )

and a point u ∈ Sc0(⊕∞
k=1ℓ

k
2)

such that

∥R(u)∥ = 1, ∥R− Ti0∥ <
ϵ

2
, ∥u− e1∥ < 1.
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Therefore, ||yi0 − zi0 || < ϵ. It is a contradiction, so Y is a uniformly convex Banach space.

Proposition 2.1. If Y is an uniformly convex Banach space, then the pair
(
ℓ∞
(⊕n

k=1 ℓ
k
2

)
, Y
)
satisfies the Bishop-

Phelps-Bollobás for operators.

Theorem 2.2. If Y is an uniformly convex Banach space, then the pair (c0
(
⊕∞
k=1ℓ

k
2

)
, Y ) satisfies the Bishop-

Phelps-Bollobás for operators.

Idea of the proof Let T ∈ SL(c0(⊕∞
k=1ℓ

k
2),Y )

and x =
∑∞
n=1

∑
k∈I(n) xkek ∈ Sc0(⊕∞

k=1ℓ
k
2)

such that ∥T (x)∥ >
1 − δ(ϵ) + γ(ϵ), where δ(ϵ) > 0 is the modulus of convexity of Y, γ(ϵ) > 0 and limϵ→o γ(ϵ) = 0. Let

J : ℓ∞
(⊕n

k=1 ℓ
k
2

)
→ c0

(
⊕∞
k=1ℓ

k
2

)
be the map defined by

J(w) =

{
wi, se i ∈ A

0, se i ∈ N \A,

and Q : ℓ∞
(⊕n

k=1 ℓ
k
2

)
→ Y be the bounded linear operator defined by Q(w) = TPAJ

∥TPAJ∥ (w). Then is easy to

check that ∥Q∥ = 1 and almost attain its norm in some element z = (zi) ∈ ℓ∞
(⊕n

k=1 ℓ
k
2

)
. By Proposition 2.1,

Q and z can be approximated by a norm-attaining operator R̃ and a vector ũ, respectively. Finally, defining

R : c0
(
⊕∞
k=1ℓ

k
2

)
−→ Y be the bounded linear operator given by

R(y) =

∞∑
j=1

∑
i∈I(j)

yiR(ei),

where

R(ei) =

{
R̃(fi), if i ∈ A

0, if i ∈ N \A,

and the vector v = (vi)i ∈ c0
(
⊕∞
k=1ℓ

k
2

)
defined by

vi =

{
ũi, i ∈ A

xi, i ∈ N \A,

then ||R(v)|| = 1, ||R− T || < ϵ and ||v − x|| < ϵ.
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THE LINEARIZATION METHOD FOR IDEALS OF MULTIPOLYNOMIALS
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Abstract

We develop a method that generates an ideal of multipolynomials MP [I] starting with an operator ideal

I that encompasses, as particular cases, the well studied ideals of multilinear operators and of polynomials

generated by the linearization method. We prove that MP [I] inherits good properties from I. Some of the

results we prove are new even for multilinear operators and polynomials.

1 Introduction

The recent theory of multipolynomials, see [1,2,3,4,5,6,7], encompasses as particular cases the theories of multilinear

operators, homogeneous polynomials and many other nonlinear operators between Banach spaces. Ideals of

multipolynomials have already been treated in [1,2,3], but thus far the linearization method, which is a classical

method to generate ideals of multilinear operators and ideals of homogeneous polynomials, has not been developed

for multipolynomials. We developed the linearization method for multipolynomials. The main difficulty we faced

was that, while the tools to study the linearization method in the multilinear and polynomials cases have been

known for a long time, the basic results needed in the multipolynomial case are not available. In the construction

of the basic tools and in the development of the method, the arguments from the multilinear and polynomial cases

proved to be not good enough, new techniques are needed in this more general setting of multipolynomials. For the

basic theory of multipolynomials we refer to [4].

2 Main Results

Let E1, . . . , Em, F be Banach spaces and n1, . . . , nm ∈ N. A map P : E1 × · · · × Em −→ F is a continuous

(n1, . . . , nm)-homogeneous multipolynomial if, for every j ∈ {1, . . . ,m}, P is a continuous nj-homogeneous

polynomial in the j-th variable, that is, for fixed x1 ∈ E1, . . . , xj−1 ∈ Ej−1, xj+1 ∈ Ej+1, . . . , xn ∈ Em, the

map

P
j;x1,

[j]...,xm
: Ej −→ F , P

j;x1,
[j]...,xm

(xj) = P (x1, . . . , xm),

is a continuous nj-homogeneous polynomial. Of course, the notation
[j]

x1, . . . , xm means that the j-th term has been

omitted. We can consider its associated symmetric nj-linear operator (Pj;x1,
[j]...,xm

)∨ : E
nj

j −→ F .

Proposition 2.1. (a) Let P ∈ MP(n1E1, . . . ,
nm Em;F ), j ∈ {1, . . . , n} and xj ∈ Ej be given. Then

Tj(P )(xj) : E1 × · · · × Em −→ F , Tj(P )(xj)(y1, . . . , ym) = (P
j;y1,

[j]...,ym
)∨(xj , y

nj−1
j ),

is a continuous (n1, . . . , nj − 1, . . . , nm)-homogeneous multipolynomial.

(b) For j = 1, . . . , n, the operator

Tj : MP(n1E1, . . . ,
nm Em;F ) −→ L(Ej ;MP(n1E1, . . . ,

nj−1Ej , . . .
nm Em;F )),

where Tj(P ) is defined in (a), is an isomorphism into.
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Now we are ready to define the ideals of polynomials provided by the factorization method.

Definition 2.1. Let I be an operator ideal. A multipolynomial P ∈ MP(n1E1, . . . ,
nm Em;F ) belongs

to MP [I](
n1E1, . . . ,

nm E2;F ) if, for every j = 1, . . . ,m,

Tj(P ) ∈ I(Ej ;MP(n1E1, . . . ,
nj−1Ej , . . . ,

nm Em;F )).

Theorem 2.1. For every operator ideal I, MP [I] is an ideal of multipolynomials.

To study the injectivity of MP [I] we need the following lemma.

Lemma 2.1. Let n1, . . . , nm ∈ N, j ∈ {1, . . . ,m}, u ∈ L(E;F ) and φ ∈ E∗ with ∥φ∥ = 1 be given. Then:

(a) The map P j,u : Kj−1 × E ×Km−j −→ F given by

P j,u(λ1, . . . , λj−1, x, λj+1, . . . , λm) = λn1
1

[j]
· · · λnm

m φ(x)nj−1u(x),

is an (n1, . . . , nm)-homogeneous multipolynomial.

(b) If v ∈ L(F ;G), then P j,v◦u = v ◦ P j,u.
(c) The linear operator LjF : F −→ MP(n1K, . . . ,nj−1 K,nj−1E,nj+1 K, . . . ,nm K;F ),

LjF (y)(λ1, . . . , λnj−1
, x, λnj+1

, . . . , λm) = λn1
1

[j]
· · · λnm

nm
· φ(x)nj−1y,

is a metric injection.

(d) There exists a finite rank linear operator W : E1 −→ MP(n1K, . . . ,nj−1 K,nj−1E,nj+1 K, . . . ,nm K;F ) such that

njTj(P
j,u) = (LjF ◦ u) +W .

Theorem 2.2. The following statements are equivalent for an operator ideal I:
(a) The operator ideal I is injective.

(b) The ideal of multipolinomials MP [I] is injective.

(c) There are n1, . . . , nm ∈ N such that the ideal (MP [I])n1,...,nn
of (n1, . . . , nm)-homogeneous polynomials is

injective.
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FOURIER-JACOBI COEFFICIENTS
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Abstract

Positive definite functions on two-point homogeneous spaces were characterized by R. Gangolli some

forty years ago and are very useful for solving scattered data interpolation problems on the spaces. Such

characterization is related to the so called Fourier-Jacobi coefficients and can be found in [6]. This work provides

relations between these coefficients

1 Introduction

Let Md denote a d dimensional compact two-point homogeneous space. It is well known that spaces of this type

belong to one of the following categories ([7]): the unit spheres Sd, d = 1, 2, . . ., the real projective spaces

Pd(R), d = 2, 3, . . ., the complex projective spaces Pd(C), d = 4, 6, . . ., the quaternionic projective spaces Pd(H),

d = 8, 12, . . ., and the Cayley projective plane Pd(Cay), d = 16. In general this classification is decisive in analysis

of problemas involving the compact two-point homogeneous spaces, as can be seen in [2,3,5] and others mentioned

there.

A zonal kernel K on Md can be written in the form K(x, y) = Kd
r (cos |xy|/2), x, y ∈ Md, for some function

Kd
r : [−1, 1] → R, the radial or isotropic part of K. A result due to Gangolli ([6]) established that a continuous

zonal kernel K on Md is positive definite if and only if

Kd
r (t) =

∞∑
k=0

aα,βk Pα,βk (t), t ∈ [−1, 1], (1)

in which
∑∞
k=0 a

α,β
k Pα,βk (1) < ∞ and aα,βk ∈ [0,∞), k ∈ Z+. Here, α = (d − 2)/2 and β = (d − 2)/2,−1/2, 0, 1, 3,

depending on the respective category Md belongs to, among the five we have mentioned in the beginning of this

section. The symbol P
(d−2)/2,β
k stands for the Jacobi polynomial of degree k associated with the pair (α, β). The

coefficients aα,βk are given by

aα,βk :=

[
Pα,βk (1)

]2
(2k + α+ β + 1)Γ(k + 1)Γ(k + α+ β + 1)

2α+β+1 Γ(k + α+ 1)Γ(k + β + 1)

∫ 1

−1

f(t)R
(α,β)
k (t)(1− t)α(1 + t)βdt,

and they are called Fourier-Jacobi coefficients.

2 Main Results

The main results to be proved in this work are based on those presented in [4] and are described below.

Theorem 2.1 ([1). ] Let K be a continuous, isotropic and positive definite kernel on Md, and aα,βk the Fourier-

Jacobi coefficients presented in (1). Then

aα,βk =

∞∑
j=0

(
j∏
l=1

ωα,βk+l−1

)
γα,βk+j a

α+1,β
k+j =

∞∑
j=0

(
j∏
l=1

φα,βk+l−1

)
ξα,βk+j a

α,β+1
k+j
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in which,

ωα,βk =
(k + 1)(n+ β + 1)(2k + α+ β + 1)

(k + α+ 1)(k + α+ β + 1)(2k + α+ β + 3)

γα,βk =
(α+ 1)(2k + α+ β + 1)

(k + α+ 1)(k + α+ β + 1)

φα,βk =
2k + α+ β + 1

k + α+ β + 1

ξα,βk =
(k + 1)(2k + α+ β + 1)

(k + α+ β + 1)(2k + α+ β + 3)
.

We can obtain an application of previous result involving the positive definiteness and strictly positive

definiteness of a kernel on a two-point homogeneos space Md.

Theorem 2.2 ([1). ] Let d, d′ ≥ 2 be integers. If K is a positive definite kernel on a two-point homogeneous

space M2d and a strictly postive definite kernel on M2d′ , such that M2d and M2d′ belong to same category we have

mentioned in the beginning of previous section, then K is a strictly postive definite kernel on M2d.
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OPERATOR EXTENSION ON TOTALLY ORDERED COMPACTA
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Abstract

In this work we investigate versions of the classical theorem of Sobczyk and we discuss the problem of

extending operators defined on unital Banach subalgebras of C(K), when K is a compact ordered space and c0

is replaced by its non-separable version, c0(I). This is an article based on a joint work with Daniel V. Tausk.

1 Introduction

It follows from the Stone-Weierstrass theorem that the unital Banach subalgebras of C(K) are precisely the images

of composition operators φ∗(f) = f ◦ φ, induced by continuous surjective functions φ : K −→ L between compact

Hausdorff spaces. In [3] the problem of characterizing maps φ : K −→ L such that φ∗[C(L)] has the c0-EP in

C(K) was studied in the context of totally ordered spaces K and L, under the assumption that φ is increasing,

surjective and continuous. The case where φ is not an increasing function is far more complicated to analyse and

was considered in [2], only with L countable.

2 Main Results

In this article a compact ordered space is a totally ordered set (K,≤) that is bounded and Dedekind-complete,

M(K) denotes the space of signed σ-additive regular Borel measures in K and NBV(K) denotes the space of right-

continuous functions f : K −→ R of bounded variation. We assume the Riesz representation theorems for compact

ordered spaces, i.e. C(K)∗ ≡ M(K) ≡ NBV(K) and all of these spaces are endowed with the weak* topology

induced from C(K)∗ via isometry. For an infinite set I (frequently assumed to be uncountable) we denote:

c0(I) =
{
(xi)i∈I ∈ RI : xi

w∗

−−→ 0
}
,

where xi
w∗

−−→ 0 means: ∀ε > 0, {i ∈ I : |xi| ≥ ε} is finite. In this case we say that the family (xi)i∈I weak*-null.

We denote by φ : K
c.i.s.−−−→ L a continuous increasing surjective function between ordered compact spaces and

Q(φ) = {t ∈ L : |φ−1(t)| > 1}. Because bounded operators T : C(L) −→ c0(I) are associated with a weak*-null

family of (αi)i∈I in C(L)∗ we can analyse the problem of operator extension in terms of the coordinate functionals

αi. Because of the Riesz representation theorem and the measure push-forward φ∗ : M(K) −→ M(L) we define:

Definition 2.1. A bounded operator T : C(L) −→ c0(I) extends through φ∗ to C(K) iff there exists a weak*-null

family (Fi)i∈I ⊆ NBV(K) such that T ≡ (φ∗(Fi))i∈I .

In [3] the authors characterize extension of T : C(L) −→ c0, associated with a weak*-null family (Fn)n≥1 in

NBV(L), through φ : K
c.i.s.−−−→ L in therms of the set {t ∈ Q(φ) : Fn(t) −̸→ 0} being countable. Unfortunately this

characterization does not remains valid for c0(I)-valued operators:

Proposition 2.1. There exist K and L compact ordered spaces, φ : K
c.i.s.−−−→ L and a weak*-null family (Fi)i∈I in

C(L) that extends through φ∗ with {t ∈ Q(φ) : Fn(t)−̸→ 0} uncountable.
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The construction of K and L relies on the existence of compact ordered spaces K0 and L0, ψ : K0
c.i.s.−−−→ L0 and

an operator T : C(L) −→ c0 such that {t ∈ Q(ψ) : Fn(t) −̸→ 0} is non-empty. Then one needs to guarantee that

the lexicographic product of uncountable copies of these spaces have the desired properties. On the bright side, the

characterization given in [3] is not entirely lost: the converse is always true. If we want to characterize operator

extension in this more general context, we need to introduce different tools:

Definition 2.2. A family of real valued functions (Fi)i∈I is of type c0ℓ1 over a set Q if there exists a decomposition:

Fi(t) = ai,t + bi,t, ∀t ∈ Q,

where the families of real numbers (ai,t)i∈I,t∈Q and (bi,t)i∈I,t∈Q satisfies the following:

� (c0 component) For each t ∈ Q, lim
i∈I

ai,t = 0;

� (ℓ1 component) sup
i∈I

∑
t∈Q

|bi,t| < +∞.

In the above definition the set Q try to code a piece of L where one can define an extension of T : C(L) −→ c0(I)

that is viewed as a weak*-null family (Fi)i∈I in NBV(L). Notice that (Fi)i∈I is always of type c0ℓ1 over the set

{t ∈ Q : Fi(t) −→ 0}, so it is somewhat natural that we have the following characterization:

Theorem 2.1. Let φ : K
c.i.s.−−−→ L and a weak*-null family (Fi)i∈I ⊆ NBV(L). Are equivalent:

1. (Fi)i∈I extends through φ∗;

2. (Fi)i∈I is of type c0ℓ1 over Q(φ).

Moreover, if T extends through φ∗, there exists an extension T̃ with ∥T̃∥ ≤ 2∥T∥.

For a set I, we say that a Banach space X has the c0(I)-extension property (c0(I)-EP) if every operator defined

on a closed subspace T : Y −→ c0(I) admits an extension to X. It was already known that c0-EP and c0(I)-EP

were not the same. In [1] the authors present an a WCG space C(K) with non-complemented copy of c0(I), with

|I| ≥ ℶω and the space K in this example is an Eberlein compact. Because odered compact spaces are well behaved,

it is possible to construct an example of c0(I) valued operator without extension with |I| = ω1, the construction of

this operator is contained in [4] and it is carefully discussed in [5].
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Abstract

A wide new class of subsets of a Banach space X named coarse p-limited sets (1 ≤ p <∞) is introduced by

considering weak* p-summable sequences in X ′ instead of weak* null sequences. We study its basic properties

and compare it with the class of compact and weakly compact sets. Results concerning the relationship of coarse

p-limited sets with operators are obtained. This is a joint work with Pablo Galindo.

1 Introduction

Recall that a subset A of a Banach space X is said to be limited if weak*-null sequences in X ′ converge uniformly

to 0 on A. Or equivalently, if for every linear operator T : X → c0, T (A) is a relatively compact set. Notions alike

to limitedness have been considered in several contexts. For instance, the approximation properties, the p−limited

(1 ≤ p < ∞) sets were defined by Karn and Sinha [4] and then studied by Delgado and Piñeiro [2]. A subset A of

X is p-limited (1 ≤ p < ∞) if for every weak* p-summable sequence (x′n) ⊂ X ′, there is a = (an) ∈ ℓp such that

|x′n(x)| < an for all x ∈ A and n ∈ N.

It is natural to wander if the p-limited sets may be characterized by bounded operators with range in ℓp. In

particular, we proved the following result:

Proposition 1.1. If A is a p-limited set, 1 ≤ p <∞, then T (A) is relatively compact in ℓp for all T ∈ L(X; ℓp).

However, the converse of Proposition 1.1 is not true. Indeed, by Pitt’s theorem, every bounded operator

T : c0 → ℓp is compact, i.e. T (Bc0) is a compact set in ℓp for all T ∈ L(c0; ℓp). Nevertheless, Bc0 is not a p-limited

set. This fact, allows us to introduce the following definition:

Definition 1.1. Let 1 ≤ p <∞. We say that a subset A of X is a coarse p-limited set if T (A) ⊂ ℓp is a relatively

compact set for all T ∈ L(X; ℓp).

It follows from Proposition 1.1 that every p-limited set is coarse p-limited. However, in every infinite dimensional

Banach space X there are coarse p-limited sets that are not p-limited. This remarkable difference led us to choose

the word coarse in our definition.

A bunch of examples of this new class of sets were given. In particular, we have the following scheme:

limited or p-limited ⇒ coarse p-limited ⇏ limited nor p-limited.

As we pointed out, the classes of coarse p-limited and p-limited cannot coincide in infinite dimensional Banach

spaces. Nevertheless, in ℓp, for 1 ≤ p <∞, the classes of coarse p-limited and limited coincide.

2 Main Results

Bourgain and Diestel showed that every limited set is conditionally weakly compact [1]. It is natural to wonder if

every coarse p-limited set is conditionally weakly compact. In the next proposition, we give a positive answer in

the case 2 ≤ p <∞.
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Proposition 2.1. If 2 ≤ p <∞ and if A ⊂ X is a coarse p-limited set, then A is conditionally weakly compact.

The above result fails for p = 1. For example, the unit ball of C([0, 1]) is a coarse 1-limited set which is not

conditionally weakly compact.

Remark 2.1. In general, one cannot establish an inclusion relationship between the class of coarse p-limited sets

and the class of coarse q-limited sets for p ̸= q.

By comparing the class of coarse p-limited sets with the classes of compact and weakly compact sets, we defined

two new properties in the class of Banach spaces:

Definition 2.1. We say that a Banach space X has the

1. coarse p-DP* property if every relatively weakly compact set is coarse p-limited.

2. coarse p-Gelfand-Phillips property if every coarse p-limited subset of X is relatively compact.

We provided examples and compare these new properties with the already known properties DP* and Gelfand-

Phillips in Banach spaces. Besides, we proved the following results:

Theorem 2.1. A Banach space X has the coarse p-DP* property if and only if every bounded operator T : X → ℓp

is completely continuous.

Theorem 2.2. A Banach space X has the coarse p-DP* property if, and only if, every conditionally weakly compact

subset of X is coarse p-limited.

Theorem 2.3. If a Banach space X has the coarse p-Gelfand-Phillips property, then every weakly null coarse

p-limited sequence in X is norm null. The converse holds if 2 ≤ p <∞.

A class of associated operators is introduced in a natural way: a bounded linear operator T : X → Y is said to

be coarse p-limited if T (BX) is a coarse p-limited set in Y . This class of operators allowed us to prove the following

characterization:

Theorem 2.4. For a Banach space X, the following are equivalent:

1. X has the coarse p-DP* property .

2. Every weakly compact operator T : Z → X is coarse p-limited for any Banach space Z.

3. Every weakly compact operator T : ℓ1 → X is coarse p-limited.
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1Laboratório Nacional de Computação Cient́ıfica, LNCC, RJ, Brasil, andressa@lncc.br
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Abstract

This paper presents the topological derivative formula for damage identification in Kirchhoff bending plate

model.

1 Introduction

Let us consider a plate represented by a two-dimensional domain D ⊂ R2. We assume that the boundary of D,

denoted by ∂D, is a curvilinear polygon of class C1,1. The damage is represented by a variation in the plate thickness,

which is assumed to be given by a piecewise constant function of the form h(x) = h0, if x ∈ Ω and h(x) = h1, if

x ∈ ω where Ω = D \ ω and ω are used to represent the healthy and damaged regions of the plate, respectively.

We want to minimize a shape functional measuring the misfit between the available data (measurement) and the

solution computed from the model problem, with respect to the support ω of the damaged region. The shape

functional J (u, θ) is defined as

J (u, θ) =

N∑
i=1

∫
D

(|u− u∗|2 + ∥θ − θ∗∥2)δ(x− xi), (1)

where δ(x, xi) is the Dirac delta function with pole at xi ∈ D, u : D → R and θ = ∇u : D → R2 are the transverse

displacement and rotation vector field of the plate, respectively. The perturbed counterpart of the plate thickness

h is denoted as hε = γεh, where γ = γ(x) is used to denote the contrast in the plate thickness, namely

γε(x) :=

{
1, if x ∈ D \Bε(x̂),

γ, if x ∈ Bε(x̂).
γ(x) :=

{
h1/h0, if x ∈ Ω,

h0/h1, if x ∈ ω.
(2)

According to (2), the perturbed counterpart of the shape functional is given by

J (uε, θε) =

N∑
i=1

∫
D

(|uε − u∗|2 + ∥θε − θ∗∥2)δ(x− xi), (3)

for xi /∈ Bε(x̂), i = 1, · · · , N , where uε : D → R and θε = ∇uε : D → R2 are the transverse displacement and

rotation vector field of the plate, respectively, associated with the perturbed counterpart of the model problem. The

transverse displacement (or deflection) of the plate in the time harmonic regime written in the frequency domain

is solution to the following variational problem:

u ∈ U :

∫
D

h3M(u) · ∇∇η − k2
∫
D

huη =

∫
D

bη ∀η ∈ U , (4)

where k is the wave number defined as k2 = ρ(2πf)2, with f the working frequency and ρ the material density, h

is the plate thickness, b is the source-term, u : D → R is the transverse displacement and θ = ∇u is the rotation.

In addition, M(u) the moment tensor, namely

M(u) =
E

12(1− ν2)
[(1− ν)I+ νI⊗ I]∇∇u, (5)
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with I and I used to denote the second and fourth order identity tensors, respectively, whereas E is the Young

modulus and ν is the Poisson ratio. The set of kinematically admissible displacements U := {φ ∈ H2(D) : φ|∂D
= 0}.

According to (2), the perturbed counterpart of the variational problem (4) reads

uε ∈ U :

∫
D

h3εM(uε) · ∇∇η − k2
∫
D

hεuεη =

∫
D

bη ∀η ∈ U . (6)

Finally, let us introduce the following fourth-order polarization tensor associated with the plate bending model

Pγ = − 1− γ3

1 + γ3β

(
(1 + β)I+

1− γ3

2

α− β

1 + γ3α
I⊗ I

)
, (7)

where the symbols I and I are used to denote the second and fourth order identity tensor, respectively.

2 Main Results

The existence of the topological derivative is proved in [1] and the theory of the method is presented in [2]. By

setting the constants α and β in the definition of the polarization tensor (7) as follows

α =
1 + ν

1− ν
and β =

1− ν

3 + ν
, (8)

we can present the main result, namely:

Theorem 2.1. The topological derivative of the tracking-type shape functional J (u, θ) from (1), where θ = ∇u,
with respect to the nucleation of a small damage represented by a piecewise constant variation in the plate thickness,

is given by

T (x) = h3PγM(u) · ∇∇v(x) + k2(1− γ)huv(x), ∀x ∈ D \ {x1, · · · , xN}, (9)

where u is solution to (4), k is the wave number, h is the plate thickness and γ its contrast. The polarization tensor

Pγ is defined by (7) together with the coefficients α and β according to (8).

Proof See [1].

Corollary 2.1. For h = h0, the limit case γ → 0 (h1 → 0) in (9) is well defined and given by

T (x) = h30P0M(u) · ∇∇v(x) + k2h0uv(x), ∀x ∈ D \ {x1, · · · , xN}, (10)

where the polarization tensor P0 is written as

P0 =
−1

3 + ν

(
4I+

1 + 3ν

1− ν
I⊗ I

)
. (11)
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Abstract

We establish converse Lyapunov theorems for backward solutions of linear generalized ODEs with weakly

right-continuous operator.

1 Introduction

The aim of this presentation is to address a new kind of stability for linear generalized ODE which are known to

encompass several types of integral and differential equations. We are going to investigate linear generalized ODEs

of the form
dx

dτ
= D[A(t)x+ g(t)], (1)

where A : (−∞, t0] → L(X) is an operator taking values in the well-known space of linear bounded operators from

a Banach space X to itself and g : (−∞, t0] → X is a regulated function (i.e. g admits lateral limits). When g ≡ 0,

the linear generalized ODE (1) is called homogeneous, otherwise it is non-homogeneous.

We require that A is locally of bounded variation and weakly right-continuous and, contrary to what we encounter

in the literature, this is enough to ensure that the homogeneous linear generalized ODE (1) has a global backward

solution (see [3]). It is our will to investigate a kind of stability that evaluates the distance between any two solutions

using the usual supremum norm. In order to give the reader a rough idea of the kind of stability we are dealing

with, we point out that the usual (Lyapunov) uniform stability is equivalent to the notion of regular stability.

Our main goal is to prove that regular stability implies the existence of a Lyapunov functional satisfying very

weak conditions. Some of the necessary tools to explore regular stability are described next.

Definition 1.1 (Lyapunov Functional). Let B ⊆ O ⊆ X, where 0X ∈ O, t0 ∈ R. We say that V : (−∞, t0]×B → R
is a Lyapunov functional with respect to (1) if

LF1 For every x ∈ B, V (·, x) is right-continuous on (−∞, t0);

LF2 There exists a strictly increasing continuous function b : R+ → R+, such that

b(0) = 0 and V (t, x) ⩾ b(∥x∥), for (t, x) ∈ (−∞, t0]×B;

LF3 For every backward solution x : J ⊂ (−∞, t0] → X, for a given t ∈ J \ sup{J}, it is true that

D+V (t, x(t)) = lim sup
η→0+

[
V (t+ η, x(t+ η))− V (t, x(t))

η

]
⩾ 0.

Definition 1.2 (Regular stability). Let A : (−∞, t0] → L(X) be weakly right-continuous, g : (−∞, t0] → X be a

right-continuous function and x ≡ 0 the trivial solution of the linear generalized ODE (1). We say that x is
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� regular stable, if for every ϵ > 0, there exists δ > 0 such that for x : [α, β] ⊂ (−∞, t0] → X is a right-continuous

function which satisfies ∥x(β)∥ < δ and

sup
ζ∈[α,β]

{∥∥∥∥x(ζ)− x(β) +

∫ t0

ζ

d[A(τ)]x(τ)

∥∥∥∥} < δ,

then

∥x(t)∥ < ϵ, t ∈ [α, β];

� regular stable with respect to perturbations, if for every ϵ > 0, there exists δ > 0 such that if ∥x̃(β)∥ < ϵ, and

supζ∈[α,β]{∥g(ζ)− g(β)∥} < δ, then

∥x̃(t)∥ < ϵ, t ∈ [α, β],

where x̃ : [α, β] ⊂ (−∞, t0] → X is a backward solution of the non-homogeneous linear generalized ODE (1).

2 Main Results

Theorem 2.1. Let A : (−∞, t0] → L(X) be weakly right-continuous, g : (−∞, t0] → X be right-continuous, and

x ≡ 0 be the trivial solution of the linear generalized ODE (1). Then, x ≡ 0 is regularly stable if and only if it is

regularly stable with respect to perturbations.

Theorem 2.2. Let A : (−∞, t0] → L(X) be weakly right-continuous and g : (−∞, t0] → X be a regulated function.

If the trivial solution x ≡ 0 is regularly stable, then there exists a Lyapunov functional V : (−∞, t0] × X → R
satisfying

1. for all t ∈ (−∞, t0], V (t, 0) = 0 and there exists an increasing continuous function a : R+ → R+ satisfying

a(0) = 0 and a(∥x∥) ⩾ V (t, x), for x ∈ X;

2. the mapping t 7→ V (t, x(t)) is non-decreasing along global backward solutions of linear generalized ODE (1).
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Abstract

Our goal is to investigate the existence and uniqueness of a solution for a homogeneous and a nonhomogeneous

linear dynamic equations on time scales, whose integral forms contain Perron ∆-integrals defined in Banach

spaces. Since we work in the framework of Perron ∆-integrals, we can handle functions not only having

many discontinuities, but also being highly oscillating. Our results require weaker conditions than those in

the literature.

1 Introduction

Calculus on time scales, introduced in 1988 by Stefan Hilger, allows us to describe continuous, discrete and hybrid

systems which have several applications. One of the main concepts of the time scale theory is the delta derivative,

which is a generalization of the classical time derivative in the continuous time and the finite forward difference in the

discrete time. As a consequence, differential equations as well as difference equations are naturally accommodated

in this theory.

The best known results on the existence and uniqueness of a solution for a nonhomogeneous linear dynamic

equation of the form

x∆ = a(t)x+ f(t) (1)

and for its corresponding homogeneous equation

x∆ = a(t)x (2)

on a time scale T, take into account that a is a regressive and rd-continuous n × n-matrix-valued function and

f : T → Rn is rd-continuous. Moreover, the integrals appearing in the solutions of the dynamic equations (1) and

(2) are in the sense of the Riemann ∆-integral.

In the paper, we are interested in proving existence and uniqueness of a solution for linear homogeneous and

nonhomogeneous dynamic equations on time scales, where their integral forms contain Banach spaces-valued Perron

∆-integrals.

We emphasize that Lemma 2.1 in the sequel shows that every rd-continuous functions a and f satisfy all

the hypotheses of our results. Therefore, our results on the existence and uniqueness of a solution for a linear

nonhomogeneous dynamic equation and for a linear homogeneous dynamic equation generalize the results from the

classical theory of dynamic equations. Moreover, since we are considering Perron ∆-integrals instead of Riemann

∆-integrals, our integrands may be highly oscillating and have many discontinuities.
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2 Main Results

Let T be a time scale. Given t0 ∈ T, we define T0 = [t0,+∞)∩T and we denote by G0(T0, X) the vector space

of all regulated functions x : T0 → X such that

∥x∥T0
:= sup

s∈T0

e−(s−t0)∥x(s)∥ <∞.

Consider the nonhomogeneous linear dynamic equation (1) and its corresponding homogeneous equation (2),

where both functions a : T → L(X) and f : T → X satisfy the following conditions.

(A1) The Perron ∆-integrals ∫ t2

t1

f(s)∆s and

∫ t2

t1

a(s)y(s)∆s

exist for all t1, t2 ∈ T0, whenever y : T0 → X is regulated.

(A2) There is a locally Perron ∆-integrable function L : T0 → R such that∥∥∥∥∫ t2

t1

a(s)[z(s)− y(s)]∆s

∥∥∥∥ ≤ ∥z − y∥T0

∫ t2

t1

L(s)∆s,

for all z, y ∈ G0(T0, X) and all t1, t2 ∈ T0.

(A3) There is a locally Perron ∆-integrable function K : T0 → R such that∥∥∥∥∫ t2

t1

f(s)∆s

∥∥∥∥ ≤
∫ t2

t1

K(s)∆s,

for all t1, t2 ∈ T0.

Theorem 2.1. Assume that a : T → L(X) and f : T → X satisfy conditions (A1), (A2) and (A3). Then, the

dynamic equations (1) and (2) admit unique solutions.

Lemma 2.1. Let T be a time scale and T0 = [t0,+∞) ∩ T, with t0 ∈ T. If f : T → Rn and A : T → Rn×n are

rd-continuous, then conditions (A1), (A2), (A3) are satisfied.
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Abstract

Vector-borne diseases are a big cause of concern due to its high potential to invade new areas and habitats,

which occurs mainly as a result of climate changes and human mobility. Mathematical models applied to describe

infectious diseases like dengue, must couple the dynamics of hosts and vectors, whose parameters have different

time scales, mosquitoes have a life cycle of days while the human life cycle is years. In this work, we consider

a model described by a system of Ordinary Differential Equations (ODE). We show that taking into account

the difference of time-scale between hosts and vectors, it is possible to reduce the order of the model so the

mosquitoes equations do not appear explicitly in the system. Next, we set up the network dynamic, introducing

a diffusion operator. We show a formal expansion that reflects the general ODE singular perturbation results.

Finally, we estimate the parameters considering a simplified mobility network that represents the initial spread

of dengue in Rio de Janeiro state.

1 Introduction

We consider a SIRSmIm model, following the frequency-dependent structure of the well-known Ross-Macdonald

models. The total host population Nh is divided into susceptible S, infected I and recovered R and it is coupled

with the compartments of susceptible Sm and infected Im mosquitoes with total population given by Nm. The

interaction dynamics between the compartments is described through the ODE system:

dS/dt = µh(Nh − S)− βSIm/Nm

dI/dt = βSIm/Nm − (γ + µh)I

dR/dt = γI − µhR

dSm/dt = µm(Nm − Sm)− ΩSmI/Nh

dIm/dt = ΩSmI/Nh − µmIm

(1)

First, this system is reduced by considering the populations remain constant. Then, to describe the time scale

separation, we add the singular term 1/ε [1,2,3]. Defining µm = µm/ε and Ω := Ω/ε, with µm in the time scale of

µh, and setting up µm := µh, we obtain ε = µh/µm. The resulting system is given by:

dS/dt = µh(Nh − S)− βSIm/Nm

dI/dt = βSIm/Nm − (γ + µh)I

εdIm/dt = Ω(Nm − Im)I/Nh − µmIm

(2)

So, as in [1,3], we establish a system where the vector population dynamics is much faster than hosts one as ε ≈ 0.

At ε = 0, (convergence showed in [3]), Im(t) can be obtained as a function of I(t) at any time t. This give us a new

equivalent system with a nonlinear incidence rate without the mosquitoes equation. The limit system, named SI,

characterizes the dynamics of a disease within a population. If the purpose is to describe its transmission dynamics
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more realistically, it is necessary to consider a mobility network that includes interaction between populations. The

parameter drs corresponds to the mobility rate from the population r to s per unit time. The system is then given

by:

dSr
dt

= µh(Nhr − Sr)−
βrΩrIrSr

ΩrIr + µmrNhr
+
∑
r ̸=s

(dsrSs − drsSr)

dIr
dt

=
βrΩrIrSr

ΩrIr + µmrNhr
− (γ + µh)Ir +

∑
r ̸=s

(dsrIs − drsIr)

(3)

2 Main Results

We use power series expansion to analyse the asymptotic behavior with respect to parameter ε > 0 of the perturbed

System (2) including spatial dynamics. We conclude that the solutions S and I of the system can be approximated

by the solutions of the limit System (3). Indeed, it follows from our previous work [3] (also [1,2]) that the convergence

is uniform in finite time with order O(ε).

Regarding the numerical simulations, we made some considerations about the initial value of the parameters in

order to apply an algorithm to fit the model to dengue data of some pairs of cities in Rio de Janeiro state, which

were chosen due to previous evidence of human mobility acting as a virus spread factor. Our results (Fig 1) showed

that the reduced model is capable of properly reproducing the number of infected individuals for all pairs of cities.

The fit also obtained reasonable values for the parameters, including the ones simulating mobility. The model could

capture the real movement between the locations. The results give us an indication that human mobility actually

has influence on the spread of dengue and bring us perspectives for future studies combining more complex mobility

networks and asymptotic techniques.

Figure 1: Result of fitting the infected equations to dengue incidence data from Rio de Janeiro and Niterói.
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Abstract

We considered a modified version of a time-delay SEAIR (susceptible, exposed, asymptomatic, symptomatic,

and recuperated) model for COVID-19 spread adding the vaccination process. The modified version introduced

two main modifications in relation to the original model: we considered the vaccination and the possibility of

reinfection of the recuperated population.

1 Introduction

Over the past two years, several researchers have introduced mathematical models for the spread of the COVID-19

pandemic that considers the existence of a time delay between the exposition and the first symptoms. Basically, the

related works proposed modified versions of classical models for other diseases adding the discoveries of this new

infection as reported in [1] using delayed functional differential equation systems in your mathematical formulations.

Considering this scenario in this report we presented a modified version of the SEAIR model described in [1]

considering the vaccination process and the possibility of reinfection as related in the scientific literature.

2 Description of the Modified Model

Let be S, E, A, I, R, and V the number of susceptible, exposed, asymptomatic, symptomatic, recuperated, and

vaccinated individuals of COVID-19 in a specific population supposed constant of size N in the time t.

We introduced in the SEAIR model described in [1] a vaccinated compartment V , and beyond the original

assumptions, we supposed that (a) the susceptible population is vaccinated with a constant rate v and all individuals

in the recuperated compartment R can be reinfected after τ1 days and, for simplicity, the effect of the vaccination

is considered as instantaneous. In addition, we supposed that the vaccine presents an efficacy rate constant and

equal to ϵ > 0, and we did not distinguish between the different vaccines available.

The mathematical formulation of the model with these modifications is given by the System 1 where p, µ, β, α,

γas, γs, γa, ϵ, v, and ϵ are the fraction of population that is eligible to vaccination, the constant rate of death, the

force of the infection, the fraction of exposed that manifests the disease, the rate of conversion of asymptomatic

to symptomatic, the rate of recuperation of the asymptomatic, the rate of recuperation of the symptomatic, and

the efficacy rate of vaccines are positive parameters, respectively. As the population is supposed constant we have

Λ = (µ− p)N − vS.

A graphical illustration of the model can be shown in the Figure (1) where the dashed line indicates the

modifications. The constant delays τ and τ1 are the time (in days) of the disease incubation and, the necessary

interval for that recuperated individuals can be reinfected.
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Figure 1: Model SEAIR with modifications indicated to dashed lines.



S′ = Λ−R(t− τ1)− β ·
(
A+ I

N

)
· S − µ · S

V ′ = p ·N + v · S − β · (1− ϵ) ·
(
A+ I

N

)
· V − µ · V

E′ = β ·
(
A+ I

N

)
· S + β · (1− ϵ) ·

(
A+ I

N

)
· V − β · e−µτ ·

(
A(t− τ) + I(t− τ)

N

)
· S(t− τ)− µ · E

A′ = α · β · e−µτ ·
(
A(t− τ) + I(t− τ)

N

)
· S(t− τ)− (γas + γa + µ) ·A

I ′ = β · (1− α) · e−µτ ·
(
A(t− τ) + I(t− τ)

N

)
· S(t− τ)− (γs + µ) · I + γas ·A

R′ = γA ·A+ γS · I − µ ·R−R(t− τ1)

, (1)

3 Final Remarks

A qualitative analysis of the original model is presented in [1]. For the adapted model considering the new

assumptions described this analysis is in progress. Particularly we are investigating the theoretical implications of

the modifications that were introduced and are interested in numerical simulations considering the official data of

Brazil and São Paulo State.
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Abstract

In this work we study the existence of a bifurcation point with respect to the trivial solution of the Volterra-

Stieltjes functional integral equations. The tool used to obtain our result is the Leray-Schauder degree theory.

1 Introduction

This presentation is based on the work [1]. In this research we are interested in the following type of integral

equations {
x(t) = ϕ(0) +

∫ t
τ0
a(t, s)f(xs, s)dg(s), t ≥ τ0,

xτ0 = ϕ,
(1)

where the integral in the right-hand side is understood in the sense of Henstock-Kurzweil-Stieltjes, +∞ ≥ d > τ0 ≥
t0 ≥ 0, r > 0, ϕ ∈ G([−r, 0],Rn), f : G([−r, 0],Rn) × [t0, d) → Rn, xs : [−r, 0] → Rn is given by xs(θ) = x(s + θ)

for s ∈ [t0, d), and we assume the following conditions on the functions f , a and g:

(A1) The function g : [t0, d) → R is nondecreasing and left-continuous on (t0, d).

(A2) The function a : [t0, d)
2 → R is nondecreasing and continuous with respect to the first variable and regulated

with respect to the second variable.

(A3) The Henstock-Kurzweil-Stieltjes integral ∫ τ2

τ1

a(t, s)f(xs, s)dg(s)

exists for each compact interval [τ0, τ0 + σ] ⊂ [t0, d), all x ∈ G([τ0 − r, τ0 + σ],Rn), t ∈ [t0, d) and all

τ0 ≤ τ1 ≤ τ2 ≤ τ0 + σ.

(A4) There exists a locally Henstock-Kurzweil-Stieltjes integrable function M : [t0, d) → R+ with respect to g such

that for each compact interval [τ0, τ0 + σ] ⊂ [t0, d), we have∥∥∥∥∫ τ2

τ1

(c1a(τ2, s) + c2a(τ1, s))f(xs, s)dg(s)

∥∥∥∥ ≤
∫ τ2

τ1

|c1a(τ2, s) + c2a(τ1, s)|M(s)dg(s),

for all x ∈ G([τ0 − r, τ0 + σ],Rn), all c1, c2 ∈ R and all τ0 ≤ τ1 ≤ τ2 ≤ τ0 + σ. In particular, we have that∣∣∣∣∫ τ2

τ1

a(τ, s)f(x(s), s)dg(s)

∣∣∣∣ ≤ ∫ τ2

τ1

|a(τ, s)|M(s)dg(s),

and ∣∣∣∣∫ τ2

τ1

(a(τ2, s)− a(τ1, s))f(x(s), s)dg(s)

∣∣∣∣ ≤ ∫ τ2

τ1

|a(τ2, s)− a(τ1, s)|M(s)dg(s),

for all x ∈ G([τ0, τ0 + σ],R∖), and all τ, τ1, τ2 ∈ [τ0, τ0 + σ].
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(A5) There exists a locally regulated function L : [t0, d) → R+ such that for each compact interval [τ0, τ0+σ] ⊂ [t0, d)

we have ∥∥∥∥∫ τ2

τ1

a(τ2, s)[f(xs, s)− f(zs, s)]dg(s)

∥∥∥∥ ≤
∫ τ2

τ1

|a(τ2, s)|L(s)∥xs − zs∥∞dg(s),

for all x, z ∈ G([τ0, τ0 + σ],R) and all [τ1, τ2] ⊂ [τ0, τ0 + σ].

A branch point with respect to the trivial solution of problem (3) is given by the following definition.

Definition 1.1. A pair (λ0, 0) ∈ Λ × Ω̄ we say a bifurcation point of the equation Ψ(λ, x)(t) = 0, if every

neighborhood of (λ0, 0) ∈ Λ0 × Ω̄ contains a solution (λ, x) of the equation Ψ(λ, x)(t) = 0 such that x ̸= 0.,

where the Ψ operator is defined by Ψ(λ, x)(t) = x(t)− x(τ0 + T )− λ
∫ t
τ0
a(t, s)f(xs, s)dg(s).

2 Main Results

Our main results are the following.

Proposition 2.1. Suppose for each λ ∈ Λ0. Assume [λ1, λ2] ⊂ Λ0 contains no bifurcation point for equation

Ψ(λ, x) = 0. Then, there exists δ > 0 such that for each λ ∈ [λ1, λ2] and each x ∈ B(0, δ) ∩ Ω̄ if we have

x = N (λ, x)

then x = 0, with the operator N is defined by N (λ, x)(t) = x(τ0 + T ) + λ
∫ t
τ0
a(t, s)f(xs, s)dg(s), t ∈ [τ0, τ0 + T ].

Theorem 2.1. Let Ψ : Λ0 × Ω̄ → G and N : Λ0 × Ω̄ → G. If we have [λ1, λ2] ⊂ Λ0 and

indLS [I −N (λ1, ·), 0] ̸= indLS [I −N (λ2, ·), 0], (2)

then there exists λ0 ∈ [λ1, λ2] such that (λ0, 0) is a bifurcation point of equation Ψ(λ, x) = 0.
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Abstract

In this work, the existence of positive solution to the critical nonlocal elliptic system

(S)



(−∆)spu+ a(x)|u|p−2u+ c(x)|v|p−2v =
1

p∗s
Ku(u, v) in RN ,

(−∆)spv + c(x)|u|p−2u+ b(x)|v|p−2v =
1

p∗s
Kv(u, v) in RN ,

u, v > 0 in RN ,

u, v ∈ Ds,p(RN ), N > ps, s ∈ (0, 1),

is established. Here (−∆)sp denotes the fractional p−Laplacian, a, b and c are suitable functions and K is a

p∗s−homogeneous function, p∗s = pN
N−ps

, N > ps. One of the main tool is to apply the global compactness result

for the associated energy functional similar to that due to Struwe in [3] combined with some information on a

limit system of (S) with a = b = c = 0, the concentration compactness due to P. L. Lions [3] and the Brouwer

degree theory.

1 Introduction

Let R2
+ := [0,∞)× [0,∞). We state our main hypotheses on the function K ∈ C2(R2

+,R) as follows.

(K0) K is p∗s−homogeneous, that is,

K(λα, λβ) = λp
∗
sK(α, β) for each λ > 0, (α, β) ∈ R2

+;

(K1) there exists c1 > 0 such that

|Kα(α, β)|+ |Kβ(α, β)| ≤ c1

(
αp

∗
s−1 + βp

∗
s−1
)

for each (α, β) ∈ R2
+;

(K2) K(α, β) > 0 for each α, β > 0;

(K3) ∇K(0, 1) = ∇K(1, 0) = (0, 0);

(K4) Kα(α, β),Kβ(α, β) ≥ 0 for each (α, β) ∈ R2
+;

(K5) the 1−homogeneous function G : R2
+ → R given by G(αp

∗
s , βp

∗
s ) := K(α, β) is concave.

The hypotheses on the functions a, b, c : RN 7→ R+ are given by:

(A1) The functions a, b, c are positive in a same set of positive measure.

(A2) a, b, c ∈ Lq(RN ) for all q ∈ [p1, p2] with 1 < p1 <
N

ps
< p2 and p2 <

N(p− 1)

p2s−N
if N < p2s.

(A3) α
p
o|a|LN/ps(RN ) + βpo |b|LN/ps(RN ) + αp−1

o βo|c|LN/ps(RN ) + αoβ
p−1
o |c|LN/ps(RN ) < S̃K,s(p

ps/N − 1).
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2 Main Results

Theorem 2.1. Assume that (A1) − (A3) and (K0) − (K5) hold. Then, (S) has a positive solution (u0, v0) ∈
Ds,p(RN )×Ds,p(RN ) with

s

N
S̃
N/ps
K,s < I(u0, v0) <

ps

N
S̃
N/ps
K,s .
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Abstract

It is establish existence of weak solutions for nonlocal elliptic problems driven by the fractional Laplacian

where the nonlinearity is indefinite in sign. More specifically, we shall consider the following nonlocal elliptic

problem {
(−∆)su+ V (x)u = µa(x)|u|q−2u− λ|u|p−2u in RN ,

u ∈ Hs(RN ),

where s ∈ (0, 1), s < N/2, N ≥ 1 and µ, λ > 0. The potentials V, a : RN → R satisfy some extra assumptions.

The main feature is to find sharp parameters λ > 0 and µ > 0 where the Nehari method can be applied. In

order to do that we employ the nonlinear Rayleigh quotient together a fine analysis on the fibering maps.

1 Introduction

In the present work we shall consider nonlocal elliptic problems driven by the fractional Laplacian defined in the

whole space where the nonlinearity is superlinear at infinity and at the origin. Namely, we shall consider the

following nonlocal elliptic problem{
(−∆)su+ V (x)u = µa(x)|u|q−2u− λ|u|p−2u in RN ,

u ∈ Hs(RN ),
(1)

where s ∈ (0, 1), s < N/2, N ≥ 1. Furthermore, we assume that 2 < q < p < 2∗s = 2N/(N − 2s) and µ, λ > 0.

Assume also that V : RN → R is a continuous function and a : RN → R is nonnegative measurable function. It is

important to recall that the main difficult in order to consider weak solutions for Problem (3) comes from the fact

that the nonlinear term gλ,µ(x, t) = µa(x)|t|q−2t− λ|t|p−2t, x ∈ RN , t ∈ R is indefinite in sign.

2 Main Results

In the present work we shall consider existence and nonexistence of nontrivial weak solutions for the Problem (3)

looking for the parameters λ > 0 and µ > 0. Throughout this work we assume the following assumptions:

(Q) It holds µ, λ > 0 and 2 < q < p < 2∗s = 2N/(N − 2s);

(V0) The potential V : RN → R is continuous function and there exists a constant V0 > 0 such that

V (x) ≥ V0 for all x ∈ RN ;

(V1) For each M > 0 it holds that |{x ∈ RN : V (x) ≤M}| < +∞.

(a0) It holds that a ∈ L∞(RN ) where a(x) > 0 a. e. in x ∈ RN .
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It is important to mention that the working space X is a Hilbert space. It is worthwhile to emphasize that that

the energy functional Eλ,µ : X → R associated to Problem (3) is given by

Eλ,µ(u) =
1

2
||u||2 − µ

q
∥u∥qq,a +

λ

p
∥u∥pp, u ∈ X, (1)

where ∥u∥qq,a =

∫
RN

a(x)|u|qdx and ∥u∥pp =

∫
RN

|u|pdx, u ∈ X. Recall that a function u ∈ X is a critical point for

the functional Eλ,µ if and only if u is a weak solution to the elliptic Problem (3). Now, by using the same ideas

introduced in [1, 2, 3], we shall consider the Nehari method for our main Problem (3) as follows

Nλ,µ :=

{
u ∈ X \ {0} : ||u||2 + λ

∫
RN

|u|pdx = µ

∫
RN

a(x)|u|qdx
}
. (2)

At this stage, using some ideas introduced in [4], we also consider

µn := inf
u∈X\{0}

inf
t>0

Rn(tu) and µe := inf
u∈X\{0}

inf
t>0

Re(tu). (3)

As a product, we shall state our first main result as follows:

Theorem 2.1. Suppose (Q), (V0) − (V1) and (a0). Then for each λ > 0 we obtain that 0 < µn < µe < ∞.

Furthermore, there exists λ∗ > 0 such that for each µ > µn Problem (3) admits at least a weak solution uλ,µ ∈ X

whenever λ ∈ (0, λ∗) which it satisfies the following statements:

i) E′′
λ(uλ,µ)(uλ,µ, uλ,µ) < 0, that is, uλ,µ ∈ N−

λ,µ; ii) There exists Dµ > 0 such that Eλ,µ(uλ,µ) ≥ Dµ and

uλ,µ → 0 in X as µ→ ∞.

Now, we shall assume the following hypothesis:

(a1) It holds that a ∈ L∞(RN ) ∩ Lr(RN ) with r = (p/q)′ = p/(p− q) and a(x) > 0 a.e. in x ∈ RN .

Theorem 2.2. Suppose (Q), (V0) − (V1) and (a1). Then for each λ > 0 we obtain that 0 < µn < µe < ∞.

Furthermore, there exits λ∗ > 0 such that for each µ > µn Problem (3) admits at least a ground state solution

vλ,µ ∈ X taking into account one of the following conditions:

a) µ ∈ [µe,∞), λ > 0; b) µ ∈ (µn, µe) and λ ∈ (0, λ∗).

Moreover, the weak solution vλ,µ satisfies the following assertions:

i) It holds that E′′
λ(vλ,µ)(vλ,µ, vλ,µ) > 0, that is, vλ,µ ∈ N+

λ,µ. Furthermore, ∥vλ,µ∥ → ∞ in X as µ→ ∞.

ii) For each µ ∈ (µn, µe) we obtain that Eλ,µ(vλ,µ) > 0; (iii) For µ = µe it follows that Eλ(vλ,µ) = 0; (iv) For

each µ > µe we obtain also that Eλ(vλ,µ) < 0.
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Abstract

Given a smooth compact Riemannian n-manifold (M, g), we prove existence of extremal functions for sharp

Sobolev inequalities which are closely related to the embedding of H1,q(M) into Lqn/(n−q)(M) where the Lq

remainder term is replaced by upper order terms.

1 Introduction

||u||q
Lq∗ (M)

≤ K(n, q)q||∇gu||qLq(M) +B0(p, n, g)||u||qLp(M) . (1)

The constant B0(p, n, g) depends only on p and (M, g) and

K(n, q) := sup

{ ||u||Lq∗ (Rn)

||∇u||Lq(Rn)
: u ∈ Lq

∗
(Rn) \ {0}, |∇u| ∈ Lq(Rn)

}
.

for n ≥ 3 and q∗ = qn/(n− q), K(n, q) is the classical Euclidean Sobolev best constant,

Special attention has also been paid to the existence problem of extremal functions to (1). A non-zero function

u0 ∈ C∞(M) is said to be an extremal to (1), if

||u0||qLq∗ (M)
= K(n, q)q||∇gu0||qLq(M) +B0(p, n, g)||u0||qLq(M) .

Our goal is to discuss the existence and compactness of extremal functions to two classes of Sobolev type inequalities

modeled on smooth compact Riemannian manifolds, precisely sharp Riemannian Sobolev-Poincaré inequalities

involving upper order remainder terms.

We here are interested in discussing the extremal problem related to the inequalities (1) regarding upper order

remainder terms, i.e. p ≥ 2. Let now B0(p, n, g) be the best possible constant in (1), i.e.

2 Main Results

Denote by Ep(g) the set of the extremal functions to (1) with unit Lq
∗
-norm.

Our main results in this paper are summarized in the next theorem.

Theorem 2.1. Let (M, g) be a smooth compact Riemannian n-manifold without boundary of dimension n ≥ 4 such

that the inequality (1) is true. Then the set Ep(g) is non-empty for any 1 < q < p < q∗.

Note that the conclusion of Theorem 2.1 does not depend on the geometry of the manifold.

The tools are based on blow-up techniques, concentration analysis and PDE estimates. What happens is that

each proof has its specific technical difficulties inherent to the problem addressed. For instance, here part them are

caused by by the range of values of p in our inequalities.
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The ideas of the proofs are mainly inspired in the works of Aubin [1]. The key points are the so-called Lp

concentration estimates. The outline of the existence part is as follows. We begin by constructing minimizers for

certain functionals, related to our geometric Sobolev inequalities, which converges weakly to a nonnegative function

u ∈ C∞(M). Our aim now is to show that u is non-zero, since this conclusion easily implies ||u||Lq∗ = 1. Assuming

then that u = 0 on M , we perform a comprehensive study of blow-up, concentration and a priori estimates on the

generated family of minimizers in order to obtain a contradiction. With a few adaptations of the proof of existence,

we easily achieve compactness.
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Abstract

The purpose of this article is to obtain weak solutions for a class nonlinear elliptic problem for the p(x)-

Laplacian-like operators under no-flux boundary conditions, where the nonlinearity has a critical growth. To

overcome the lack of compactness we use a fixed point result due to Carl and Heikkilä and the theory of the

variable exponent Sobolev spaces.

1 Introduction

The purpose of this work is to investigate the existence of weak solutions for the following nonlinear elliptic problem

for the p(x)-Laplacian-like operators originated from a capillary phenomena

−M
(
L(u)

)[
div(|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)− |u|p(x)−2u
]
= a|u|t(x)−2 + |u|r(x)−2 + h

in Ω,

u = constant on ∂Ω, (1)∫
∂Ω

(
|∇u|p(x)−2 +

|∇u|2p(x)−2√
1 + |∇u|2p(x)

)∂u
∂ν
dΓ = 0.

where Ω is a bounded domain in RN with a smooth boundary ∂Ω, and N ≥ 1, p, r, t ∈ C+(Ω) = {f : f ∈
C(Ω), f(x) > 1 for any x ∈ Ω}; a is a positive parameter; M : R+ → R+ is a continuous function,

L(u) =
∫
Ω

|∇u|p(x)+
√

1+|∇u|2p(x)+|u|p(x)

p(x) dx is a p(x)-Laplacian type operator and

1 < p− := min
Ω
p(x) ≤ p+ := max

Ω
p(x) < N for every p ∈ C+(Ω).

In recent years, Kirchhoff type equations involving the p(x)−Laplace operator with critical growth have attracted

an increasing attention.(see for example [3,4,5]). Due to the lack of compactness of the embedding W
1,p(x)
0 (Ω) ↪→

Lp
∗(x)(Ω), many authors have used the concentration compactness principle for variable exponents proved by Bonder

and Silva [1]. In this research, to deal with this difficulty we will use a fixed theorem in [2].

2 Assumptions and Main Result

Throughout this paper, let

V = {u ∈W 1,p(x)(Ω) : u|∂Ω = constant},
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where W 1,p(x)(Ω) (p ∈ C(Ω), 2 ≤ p(x) < +∞) is the well known variable exponent Sobolev space.

The space V is a closed subspace of the separable and reflexive Banach space W 1,p(x)(Ω) , so V is also separable

and reflexive Banach space with the usual norm of W 1,p(x)(Ω).

We will assume

(A1) M : [0,+∞[→ [m0,+∞[ is a continuous and increasing function; m0 > 0.

(A2) h ∈W−1,p′(x)(Ω), p∗(x) = Np(x)
N−p(x) ,∀x ∈ Ω and

A =
{
x ∈ Ω : t(x) = p∗(x)

}
is nonempty.

The main result in this work can be stated as follows.

Theorem 2.1. Suppose (A1) - (A2) hold. Then problem (1.1) has a weak solution u ∈ V , provided that constant

a is sufficiently small.

Proof We use a fixed point theorem for increasing self-mappings in Banach semilattice (See [2]).
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Abstract

In this talk we present a general approach based on the fibering method and Nonlinear Rayleigh Quotient to

prove existence of critical points for a suitable family of functionals depending on a parameter. Under suitable

assumptions we show existence of infinitely many critical points at a fixed energy level and also bifurcation

results are obtained.

1 Introduction

Many problems in nonlinear pdes can be formulated as a critical point equation

Φ′(u) = 0, (1)

where Φ′ is the Fréchet derivative of a certain functional Φ, the so-called energy functional. The search of critical

points is then addressed by variational methods. For physical reasons, the partial differential equation is often

coupled to some additional constraint on the variable u (e.g. a sign constraint u > 0 or a mass constraint ∥u∥ = m)

and a huge bibliography is available on this subject.

The aim here is to investigate (1) under a different constraint, namely, the level (or energy) constraint Φ(u) = c,

where c ∈ R is given a priori. Motivated by several nonlinear elliptic problems, we shall consider a class of functionals

depending on a real parameter, namely

Φµ := I1 − µI2,

where µ ∈ R, I1, I2 ∈ C1(X), and X is an infinite dimensional Banach space. Then, given c ∈ R we consider the

problem

Φ′
µ(u) = 0, Φµ(u) = c, (2)

i.e. we look for couples (µ, u) ∈ R × X \ {0} which solve the system. We shall follow the nonlinear generalized

Rayleigh quotient method introduced by Y. Ilyasov [1] and show that this method is suitable to investigate the

structure of the solution set of (2)

S := {(µ, c) ∈ R2 : Φµ has a critical point at the level c}.

2 Main abstract results

Before stating our result let us show how the nonlinear generalized Rayleigh quotient method applies to the system

(2). Assume that I2(u) ̸= 0 for every u ∈ X \ {0} (this is often the case in many elliptic problems), so that one can

solve the level constraint explicitely in µ:

Φµ(u) = c ⇐⇒ µ = µ(c, u) :=
I1(u)− c

I2(u)
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and we see that for any c the functional u 7→ µ(c, u) satisfies the following relation,

∂µ

∂u
(c, u) =

Φ′
µ(c,u)(u)

I2(u)
, ∀u ∈ X \ {0}.

Here ∂µ
∂u (c, u) denotes the Fréchet derivative of the functional u 7→ µ(c, u). Then we have the equivalence:

Φ′
µ(u) = 0, Φµ(u) = c ⇐⇒ µ = µ(c, u),

∂µ

∂u
(c, u) = 0,

i.e. (2) can be completely solved by understanding the set of critical points (and critical values) of the functional

u 7→ µ(c, u). In conclusion (2) is solvable if and only if µ is a critical value (and u an associated critical point) of

the latter functional. Thus, denoting by K(c) the set of these critical values, we immediately find a sufficient and

necessary condition for the solvability of (2) obtaining an existence result.

Theorem 2.1. For a given c ∈ R the problem (2) has a solution (µ, u) if, and only if, µ ∈ K(c) and u is the

associated critical point. In particular, if u 7→ µ(c, u) has a ground state (or least energy) level gs(c) then (2) has

no solution for µ < gs(c).

Under some technical conditions on the family of functionals Φµ we prove also that there exist infinitely many

pairs (µn,c,±un,c) solving (2). This multiplicity result, which involves some technical staff to state it rigorously, is

proved via the Ljusternik-Schnirelman theory, and is established not only for a single value of c, but for c lying in an

open interval I ⊂ R. Consequently it makes sense to study also the behaviour of µn,c and un,c with respect to c ∈ I.
In many cases the values µn,c depend continuously on c, so that letting c vary we shall obtain a family of energy

curves {(µn,c, c); c ∈ I}n∈N. The properties of these energy curves give information on the bifurcation analysis of

the unconstrained problem Φ′
µ(u) = 0. In particular, this procedure shall allow us to deduce several bifurcation

and multiplicity results for this problem. Applications are given to important partial differential equations.

The results are taken from a join work with Humberto R. Quoirin and Kaye Silva [2].
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Abstract

We study a reaction-diffusion problem in a thin domain with varying order of thickness. Motivated by

the applications, we assume the oscillating behavior of the boundary and prescribe the Robin-type boundary

condition simulating the reaction catalyzed by the upper wall. Using the appropriate functional setting and

the unfolding operator method, we rigorously derive lower-dimensional approximation of the governing problem.

Five different limit problems have been obtained by comparing the magnitude of the reaction mechanism with

the variation in domain’s thickness.

1 Introduction

We consider a thin two-dimensional domain whose order of thickness is not fixed, but it can vary. Inspired by

the microfluidic applications, we also allow the oscillating behaviour of the upper boundary. More precisely, let us

consider the following family of open sets

Rε = int
(
Rε1 ∪Rε2 ∪Rε3

)
where

Rεi =
{
(x, y) ∈ R2 : x ∈ (0, a), 0 < y < δi(ε)gi(x/ε)

}
, δ1(ε) = δ3(ε) = ε, δ2(ε) = εβ .

Notice that parameter β > 1 sets the greatest order of the compression, and the Li-periodic functions gi : R 7→ R
with i = 1, 2, 3 the profile of the regions. We assume gi are strictly positive and Lipschitz. Figure 1 below illustrates

our thin channel with different orders of thickness and with the roughness modeled by the periodic functions gi.

Figure 1: A thin domain with different orders of compression and oscillating boundary.

We are interested in analyzing the asymptotic behaviour of the solutions of the following elliptic boundary-value
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problem 
−∆uε + uε = fε in Rε ,
∂uε

∂ηε
= εα(h− uε) on Γε ,

∂uε

∂ηε
= 0 on ∂Rε\Γε ,

where Γε denotes the upper rough boundary of Rε, the family of forcing terms fε are uniformly bounded that

converges to f in an appropriate sense and h : (0, 1) 7→ R is assumed to be a one variable function in H1(0, 1).

2 Main Results

Theorem 2.1. There exists a unique limit function u ∈ H1(0, 1) satisfying

α ≥ β :



−q1u′′ + r1u = f̄1 in (0, a)

−q2u′′ + r2u = f̄2 + h̄2 in (a, b)

−q3u′′ + r3u = f̄3 in (b, 1)

u′(0) = u′(1) = 0

q1u
′
−(a) = q2u

′
+(a)

q2u
′
−(b) = q3u

′
+(b)

1 ≤ α < β :



−q1u′′ + r1u = f̄1 + h̄1 in (0, a)

−q3u′′ + r3u = f̄3 + h̄3 in (b, 1)

u′(0) = u′(1) = 0

u(a) = h(a)

u(b) = h(b)

q1 =
1

L1

∫
Y ∗
1

(1− ∂1X1)dY, r1 = ⟨g1⟩(0,L1), f̄1 =
1

L1

∫
Y ∗
1

f̂1dY, q2 =
1

⟨1/g⟩(0,L2)
, f̄2 =

1

L2

∫
Y ∗
2

f̂2dY,

q3 =
1

L3

∫
Y ∗
3

(1− ∂1X3)dY, r3 = ⟨g3⟩(0,L3), f̄3 =
1

L3

∫
Y ∗
3

f̂3dY.

If α = β, r2 = ⟨g2⟩(0,L2) +
1

L2
, h̄2 =

1

L2
h, and if α > β, r2 = ⟨g2⟩(0,L2), h̄2 = 0,

where ⟨gi⟩(0,Li) denotes the average of gi in the interval (0, Li). Moreover, Xj ∈ H1
#(Y

∗
i ), j = 1, 3, with∫

Y ∗
j
XdY = 0, is the unique solution of the auxiliary problem∫

Y ∗
j

∇Xj∇ψdY =

∫
Y ∗
j

∂1ψdY, ∀ψ ∈ H1
#(Y

∗
j ),

dY = dy1dy2 and

Y ∗
i = {( y1, y2) ∈ R2 : 0 < y1 < Li and 0 < y2 < gi(y1)}.

Finally, if α < 1 < β
1

[δi(ε)]1/2
||uε − h||L2(Rε

i )
→ 0, as ε→ 0.
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[1] nakasato, j. c. & pažanin i. & pereira m. c. - Reaction-diffusion problem in a thin domain with oscillating

boundary and varying order of thickness, Z. Angew. Math. Phys. 72 (1) (2021), 1 – 17.
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Abstract

In this work, we establish a new method to find critical points of differentiable functionals defined in reflexive

Banach spaces which belong to an appropriated class (J ) of functionals. As a consequence, we solve some

variational elliptic problems, whose associated energy functional belongs to (J ) and provide a version of the

mountain pass theorem for functionals in the class (J ).

1 Introduction

This work, which is based in [3], establishes an alternative method that allows us to complement some known results

of the literature. In fact, this referred method, which we will call Method of the energy function, has proved to be

effective to treat some classes of relevant elliptic partial differential problems, for which, some progress is made in

the present article. The idea of trying to relate the energy functional to a real function was inspired in [1], where

the authors study a degenerate Kirchhoff problem of the form{
−m(∥u∥)∆u = f(u) in Ω,

u = 0 on ∂Ω,
(1)

with Ω ⊂ RN (N ≥ 1) is a smooth bounded domain and the functions m : [0,∞) → R and f : R → R are continuous

satisfyng suitable ocnditions.

In fact, in [1], the authors were inspired by an argument used in [2, Proposition 9] to prove the differentiability

of a certain real function α. Another important detail is that, in [1], the function α was used to show that the

weak solution found to the problem (1) is nontrivial and no relation was established between critical points of a real

function involving α and critical points of the energy functional associated to the problem (1). In the present paper

we use a similar strategy, however in our case we introduce a function ζ : [0,∞) → R (see (2) that is differentiable

and we prove a strong connexion between the critical points of J and ζ.

In order to give a more clear idea about the subject we are going to treat, let us consider, throughout this notes,

the following situation:

Let E be a reflexive Banach space. We say that a functional J belongs to class (J ) in E, if J : E → R, J = Ψ−Φ

and Ψ,Φ ∈ C1(E,R) satisfy the following hypotheses:

(Ψ1) Ψ is weakly lower semicontinuous and coercive;

(Ψ2) Ãr = {u ∈ E; Ψ(u) ≤ r} for all r ≥ 0, Ã0 = {0} and 0 ∈ int(Ãr) for each r > 0;

(Ψ3) Ψ′(u)u ̸= 0 for all u ∈ ∂Ãr, where ∂Ãr = {u ∈ E; Ψ(u) = r};

(Ψ4) For each u ̸= 0 and r > 0, there exists a unique tu(r) > 0 such that tu(r)u ∈ ∂Ãr;

(Ψ5) If un ⇀ u0 in E and Ψ(un) → Ψ(u0), then un → u0 in E;

(Φ1) Φ and u 7→ Φ′(u)u/Ψ′(u)u are weakly upper semicontinuous;
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(Φ2) If Φ′(u) = 0, then Φ(u) ≤ 0;

(Φ3) There exists a sequence {un} ⊂ E such that un → 0 and Φ(un) > 0, for all n ∈ N.

We call energy function to the function ζ : [0,∞) → R defined by

ζ(r) := r − φ(r), (2)

where φ(r) := max
u∈∂Ãr

Φ(u) if r > 0 and φ(0) = Φ(0).

We point out that it is not obvious or intuitive to think that ζ is differentiable, or even continuous regarding

to r, mainly because the maximum point of Φ on ∂Ãr cannot be unique. For this reason, next proposition is a

nontrivial and very technical result.

We say that a function ur ∈ Gr is an energy maximum type point if

Φ′(ur)ur
Ψ′(ur)ur

= max
u∈Gr

Φ′(u)u

Ψ′(u)u
.

Observe that an energy maximum type point ur ∈ ∂Ãr maximizes at the same time Φ in Ãr and u 7→ Φ′(u)u
Ψ′(u)u in Gr,

and, for sure, it is nontrivial when r > 0.

2 Main Results

Theorem 2.1. Let E be a reflexive Banach space and J be a functional of class (J ) in E. A maximum energy

type point ur ∈ Gr is a critical point of the functional J , for some r > 0 if, and only if, r is a critical point of the

energy function ζ.

Theorem 2.2. Let E be a reflexive Banach space and J be a functional of class (J ) in E. Suppose that there exist

α, ρ > 0 and w ∈ E, with w ∈ ∂ÃR, such that

(H1) J(u) ≥ α > J(0) for all u ∈ ∂Ãρ;

(H2) J(w) < α, with R > ρ.

Then there holds the inequality below

c∗ = max
r∈[0,R]

min
u∈∂Ãr

J(u) ≤ inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) = c,

where Γ = {γ ∈ C([0, 1], E); γ(0) = 0, γ(1) = w}. Moreover, c∗ > max{J(0), J(w)} is a critical value of J .

In order to demonstrate the efficacy of the method, some applications of the previous theorems will be provided,

by considering different types of elliptic partial differential equations, resulting in some advances in the literature.
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Abstract

The purpose of this presentation is to establish sufficient conditions for closed range estimates on (0, q)-

forms, for some fixed q, 1 ≤ q ≤ n − 1, for ∂̄b in both L2 and L2-Sobolev spaces in embedded, not necessarily

pseudoconvex CR manifolds of hypersurface type. The condition, named weak Y (q), is both more general than

previously established sufficient conditions and easier to check. Applications of our estimates include estimates

for the Szegö projection as well as an argument that the harmonic forms have the same regularity as the complex

Green operator. We use a microlocal argument and carefully construct a norm that is well suited for a microlocal

decomposition of form. We do not require that the CR manifold is the boundary of a domain. Finally, we provide

an example that demonstrates that weak Y (q) is an easier condition to verify than earlier, less general conditions.

1 Introduction

A CR manifold is essentially the generalization of a real hypersurface into a complex manifold; hence odd-

dimensional, where its tangent bundle is split into a complex subbundle, which is the sum of holomorphic and

anti holomorphic directions, and another bundle, which is the totally real part. A CR manifold is called of

hypersurface type if the totally real part of the tangent bundle is a line bundle. The CR manifold M ⊂ CN

is endowed with a subbundle T 1,0(M), called the CR structure, of its complexified tangent bundle CTM = TM ⊗C
of M which does not intersect its complex conjugate T 0,1(M) (so being possible to define a Hermitian metric

such that T 1,0(M) ⊥ T 0,1(M)), and with an integrability condition, that is T 1,0(M) is preserved by Lie bracket

([L1, L2] ∈ T 1,0(M) for any L1, L2 ∈ T 1,0(M)). This structure on the CR manifold allow us to define the bundle of

(0, q)-forms Λ0,q(M), and also there define the tangential Cauchy Riemann operator ∂̄b as the natural restriction of

the De Rham exterior derivative on the bundle of (0, q+1)-forms. The inner product on (0, q)-forms on CN induces

a pointwise inner product on (0, q)-forms on M . This product allow us to define a L2 norm || · ||0 on Λ0,q(M),

and its completion produces a Hilbert space L2
0,q(M). The L2 closure of ∂̄b, denoted also by ∂̄b, defines a densely

defined closed operator. In this work we explore the L2-theory of the ∂̄b-equation,

∂̄bu = f. (1)

The study of existence and regularity of solutions of (1) is reduced to study of the operator □b = ∂̄b∂̄
∗
b + ∂̄∗b ∂̄b

(∂̄∗b is the L2 adjoint of ∂̄b) called the Kohn Laplacian operator, and the operator which invert □b, if it exists, is

called by the complex Green operator. Although □b is a Laplace type operator, it is neither elliptic nor constant

coefficient, so its analysis is quiet intricate. Moreover, in general □b is not invertible - there must be some geometric

or potential theoretic structure. A standard condition generally considered is the Pseudoconvexity, which is a

curvature condition that is measured by an object called the Levi form γ and it is equivalent to existence of

complex Green at all (possible) form levels of the ∂̄b-complex [1,2]. However, it is not a natural condition for the

analysis of (0, q)-forms when q ≥ 1 is fixed.

Definition 1.1. For 1 ≤ q ≤ n− 1 we say M satisfies Z(q)-weakly if there exists a real Υ ∈ T 1,1(M) satisfying
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1. |θ|2 ≥ (iθ ∧ θ̄)(Υ) ≥ 0 for all θ ∈ Λ1,0(M)

2. µ1+µ2+ · · ·+µq− i < dγx,Υ >≥ 0 where µ1, ..., µn−1 are the eigenvalues of the Levi form at x in increasing

order.

3. ω(Υ) ̸= q where ω is the (1, 1)-form associated to the induced metric on CT (M).

We say thatM satisfies weak Y (q) ifM satisfies both Z(q)-weakly and Z(n−q−1)-weakly. IfM is pseudoconvex,

the definition above is satisfied choosing Υ = 0. This definition generalizes its previous versions given on [3,4].

Theorem 1.1. Let M2n−1 be an embedded C∞, compact, orientable CR-manifold of hypersurface type that satisfies

weak Y (q) for some fixed q, 1 ≤ q ≤ n− 2. Then the following hold:

1. The operators ∂̄b : L
2
0,q(M) → L2

0,q+1(M) and ∂̄b : L
2
0,q−1(M) → L2

0,q(M) have closed range;

2. The operators ∂̄∗b : L2
0,q+1(M) → L2

0,q(M) and ∂̄∗b : L2
0,q(M) → L2

0,q−1(M) have closed range;

3. The Kohn Laplacian □b has closed range on L2
0,q(M);

4. The complex Green operator Gq exists and is continuous on L2
0,q(M);

5. The canonical solution operators, ∂̄∗bGq : L2
0,q(M) → L2

0,q−1(M) and Gq∂̄
∗
b : L2

0,q+1(M) → L2
0,q(M) are

continuous;

6. The canonical solution operators, ∂̄bGq : L
2
0,q(M) → L2

0,q+1(M) Gq∂̄b : L
2
0,q−1(M) → L2

0,q(M) are continuous;

7. The space of the harmonic forms H0,q(M), defined to be the (0,q)-forms annihilated by ∂̄b and ∂̄∗b , is finite

dimensional;

8. If q̃ = q or q + 1 and α ∈ L2
0,q̃, then there exists u ∈ L2

0,q̃−1 so that ∂̄bu = α and ∥u∥0 ≤ C∥α∥0 for some

constant C independent of α;

9. The Szegö projections Sq = I − ∂̄∗b ∂̄bGq and Sq−1 = I − ∂̄∗bGq∂̄b are continuous on L2
0,q(M).

The outline of the argument to prove this result is as follows: we start by proving a basic identity that is well

suited to the geometry of M. The problem with basic identities for ∂̄b is that the Levi form appears with in a term

that also contains the derivative in the totally real direction T . We apply a microlocal argument to control this

term, specifically, we construct a norm based on a microlocal decomposition of our form which allows us to use a

version of the sharp Gȧrding’s inequality and eliminate the T from the inner product term. This allows us to prove

a basic estimate from the basic identity and the main results are due to careful applications of the basic estimate.
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1Instituto de Ciências Matemáticas e de Computação, USP, SP, Brasil, ritis@icmc.usp.br,
2 IFMG, Betim, MG, Brasil, luis.salge@ifmg.edu.br

Abstract

In this work we provide a complete study of the spectrum of a constant coefficients differential operator on

a scale of localized Sobolev spaces, Hs
loc(I), which are Fréchet spaces. This is quite different from what we find

in the literature, where all the relevant results are concerned with spectrum on Banach spaces.

Our aim is to understand the behavior of all the three types of spectrum (point, residual and continuous)

and the relation between them and those of the dual operator. The main result we present shows that there is

no complex number in the resolvent set of such operators, which suggest a new way to define spectrum if we

want to reproduce the classical theorems of the Spectral Theory in Fréchet spaces.

1 Introduction

In this work we present a complete study about the spectrum of a constant coefficients differential operator of order

m ∈ N, a(D), whose adjoint a(D)* is elliptic, seen as a pseudo-differential operator on a interval I ⊂ R, that is,

seen as a(D) : Hs+m
0 (I) ⊂ Hs

loc(I) −→ Hs
loc(I), s ∈ R. Here, Hs

loc(I) is endowed with the topology generated by a

family of seminorms
(
p
(s)
j

)
j∈N

given by p
(s)
j (f)

.
= ∥φjf∥Hs(R) , f ∈ Hs

loc(I), where, for each j ∈ N, Ij = (aj , bj) is

such that [aj , bj ] ⊂ (aj+1, bj+1), with I =
⋃
j∈N[aj , bj ], and φj ∈ C∞

c (Ij+1) satisfies φj = 1 in [aj , bj ].

When we indicate a(D) as above, we mean that in Hs+m
0 (I) we consider the topology induced from Hs

loc(I).

This study was developed inspired by what happen with the Laplace operator on L2(I). Here, we replace L2(I)

by Hs
loc(I) and H

1
0 (I) ∩H2(I) by Hm+s

0 (I), as suggested by the definitions we found in [3].

The best conclusions we obtain are when we consider the Laplace operator on an interval I as ∆ : H2
0 (I) ⊂

L2
loc(I) −→ L2

loc(I). For it, we calculate its closure and compare its spectrum in three stages:

(1) When it is defined on H2
0 (I).

(2) When its domain is H1
0 (I) ∩H2(I), where we call it ∆L2 ; and

(3) When it is defined on H2
loc(I). This, as we are going to see, is the domain of the closure ∆.

In particular, we prove that σc(∆) = σr(∆
∗) = σp(∆) = C and σc(∆L2) = C \

{
−π2n2

l(I)2 : n ∈ N
}
, where l(I) is

the length of I.

2 Main Results

2.1 Spectrum of differential operators with elliptic dual

Consider a symbol a ∈ Sm(R) given by a(ξ) =
∑m
k=0 akξ

k, m ∈ N, ak ∈ C, and the differential operator

a(D) =
∑m
k=0(2πi)

−kak
dk

dxk , determined by it, defined on the following scales a(D) : Hs+m
0 (I) ⊂ Hs

loc(I) →
Hs
loc(I), s ∈ R. Our goal is to compare its spectrum with that from its dual a(D)* : D(a(D)*) ⊂ H−s

c (I) → H−s
c (I)

where D(a(D)*)
.
=
{
g ∈ H−s

c (I); g ◦ a(D) : Hs+m
loc (I) ⊂ Hs

loc(I) → C is continuous
}

and it satisfies the relation
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⟨u, a(D)*ψ⟩ = = ⟨a(D)u, ψ⟩ =

〈
m∑
j=0

(2πi)−jaj
dju

dxj
, ψ

〉
=
〈
u,
∑m
j=0(−2πi)−jaα

djψ
dxj

〉
for u ∈ Hs+m

loc (I) and

ψ ∈ C∞
c (I).

Theorem 2.1. Let a(D) : Hs+m
0 (I) ⊂ Hs

loc(I) −→ Hs
loc(I) be a differential operator of order m with hypoelliptic

formal transpose a(D)′. There exists 0 < δ ≤ 1 such that H−s+m
c (I) ⊂ D [a(D)*] ⊂ H−s+δm

c (I).

Now we compare the sets σ(a(D)) and σ(a(D)*), where a(D) : Hs+m
0 (I) ⊂ Hs

loc(I) → Hs
loc(I) is a differential

operator with constant coefficients and a(D)* : D(a(D*)) ⊂ H−s
c (I) → H−s

c (I) is its hypoelliptic dual.

Theorem 2.2. Under the hypotheses of the last theorem with a(D)′ elliptic, a(D) and its adjoint a(D)* both have

empty resolvent set and, independently of s ∈ R, their types of spectrum are classified as follows: σp(a(D)) =

σp (a(D)*) = ∅, σr(a(D)) = σc (a(D)*) = ∅ and σc(a(D)) = σr (a(D)*) = C.

2.2 Closure of a Differential Operator on a Fréchet Space

Here we determine the closure of a differential operator with constant coefficients a(D) of order m ≥ 1 on Hs
loc(I).

That will allow us to obtain a more precise analysis of the spectrum.

Theorem 2.3. If a(D) : Hs+m
0 (I) ⊂ Hs

loc(I) → Hs
loc(I) is an elliptic differential operator, with constant coefficients,

given by
∑m
j=1(−2πi)kaku

(k) where s ∈ N, then its closure is given by a(D) : Hs+m
loc (I) ⊂ Hs

loc(I) −→ Hs
loc(I) with

a(D)(u) =

m∑
j=1

(−2πi)kaku
(k).

2.3 Spectrum of the Laplace operator on a Fréchet Space

In this section we apply the results obtained in the previous section to the Laplacian operator.

Corollary 2.1. The Laplace operator, seen as a pseudodiferencial operator ∆ : H2
0 (0, π) ⊂ L2

loc(0, π) −→ L2
loc(0, π)

and its adjoint ∆∗ : H2
c (0, π) ⊂ L2

c(0, π) −→ L2
c(0, π), both have resolvent set empty and their spectra are classified

as follows: σp(∆) = σp(∆*) = ∅, σr(∆) = σc(∆*) = ∅, and σc(∆) = σr(∆*) = C.

Proof This corollary follows immediately from the ellipticity of ∆ and ∆* and Theorem 2.2.

Denote by ∆L2 the Laplacian defined on the domain ∆L2 : H1
0 (I) ∩H2(I) ⊂ L2

loc(I) −→ L2
loc(I).

We have σ(∆) = σ(∆L2) = σ(∆) = C.
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Abstract

We show existence of solution for a supercritical nonlinear Schrödinger equation on the whole RN by means

of an approximation scheme. We prove a Sobolev embedding corresponding to the variable exponent of the

equation.

1 Introduction and main results

Assume for a moment that p and q are constants. The nonlinear Schrödinger equation

iφt −∆φ = a(x)|φ|q−2φ+ |φ|p−2φ in RN × R (1)

has standing wave solutions

φ(x, t) = e−iζ
2tζ

2
p−2u(ζx) (2)

where ζ > 0,

−∆u+ u = λa(x)|u|q−2u+ |u|p−2u in RN (3)

and λ = ζ
2(q−p)
p−2 .

We are interested in finding positive solutions u(r), r = |x|, with radial symmetry of the equation

−∆u+ u = λa(r)uq(r)−1 + up(r)−1 in RN (4)

where N ≥ 3 and the exponents p(r) and q(r) are functions fulfilling

1 < q(r) < 2 (5)

and

p(r) =
2N

N − 2
+ h(r). (6)

Here λ > 0 is a parameter and a, h, p, q are positive radially symmetric continuous functions, other assumptions

will be timely presented. Clearly (2) is still standing wave for (4) if p(r) is constant and q(r) is a function.

� h is a function with the following properties.

h : [0,∞) → [0,∞) is continuous, bounded, h(0) = 0 and h(r) > 0 for all r > 0; (7)

there is a constant β > 2 such that h(r) ≤ c| log r|−β for r close to 0. (8)

We denote by H1
r (RN ), N ≥ 3, the closed subspace of H1(RN ) composed by radially symmetric functions on

RN , i.e.,

H1
r (RN ) = {u ∈ H1(RN ) : u = u(r), r = |x|},

endowed with the usual norm

∥u∥H1(RN ) =

(∫
RN

(
|∇u|2 + |u|2

)
dx

) 1
2

. (9)

83



84

2 Main Results

Theorem 2.1. Let p(r) = 2∗ + h(r), 2∗ = 2N/(N − 2) and h satisfying (7)-(8). Then

sup

{∫
RN

|u(x)|p(r)dx : u ∈ H1
r (RN ), ∥u∥H1(RN ) = 1

}
<∞. (1)

The continuity of the embedding reads as follows.

Corollary 2.1. Let p(r) = 2∗ + h(r) with h satisfying (7)-(8). Then the following embedding is continuous

H1
r (RN ) ↪→ Lp(r)(RN ). (2)

We turn our attention to the supercritical elliptic equation which is slightly more general than (4), namely{
−∆u+ u = λa(r)uq(r)−1 + f(r, u) in RN

u > 0 in RN .
(3)

Theorem 2.2. If λ > 0 is a constant, q and a are radially symmetric continuous functions, r = |x|, such that

1 < q− ≤ q(r) ≤ q+ < 2, q−, q+ ∈ R, a ∈ L
2

2−q(r) (RN ), a(r) > 0 in RN , f : RN × R → R is a continuous function,

radially symmetric in the first variable and satisfying the growth condition

0 ≤ f(r, t)t ≤ b1t
p(r) for every r ∈ R and t ≥ 0, (4)

where b1 > 0 is a constant, p(r) = 2∗ + h(r), with h satisfying (7)-(8), 2∗ = 2N/(N − 2). Then there exists λ∗ > 0

such that for every λ ∈ (0, λ∗) problem (P) possesses at least a positive radial solution uλ ∈ H1(RN ). Furthermore,

∥uλ∥RN → 0 as λ→ 0.

We would like to mention that problem (P) was studied in [1] for the unit ball case.

Corollary 2.2. The solution uλ decays to zero, in the sense that uλ(r) → 0 as r → ∞. Moreover, there is a

constant C > 0 such that 0 ≤ min{rN−2
2 , r

N−1
2 }uλ(r) ≤ C for every r ∈ R.

For a particular f , the nonexistence of solution for equation (4) reads as follows.

Proposition 2.1. Assume the hypotheses of Theorem 2.2. If f(r, t) = tp(r)−1 and λ > 0 is sufficiently large, then

equation (4) has no positive solution in H1(RN ). In other words λ∗ <∞.
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Abstract

We show the existence of a solution for an equation where the nonlinearity is logarithmically singular at the

origin, namely −∆u = (log u + f(u))χ{u>0} in Ω ⊂ R2 with Dirichlet boundary condition. The function f has

exponential growth, which can be subcritical or critical with respect to the Trudinger-Moser inequality. In the

critical context, we obtain an admissibility condition for problems of the form −∆u = (log u+ λf(u))χ{u>0} in

Ω ⊂ R2.

1 Introduction

This work consists in studying the problem
−∆u = (log u+ f(u))χ{u>0} in Ω

u ≥ 0, u ̸≡ 0 in Ω

u = 0 on ∂Ω,

(1)

where Ω ⊂ R2 is a smooth bounded domain, χ{u>0} denotes the characteristic function corresponding to the set

{x ∈ Ω : u(x) > 0} and we tacitly assume (log u)χ{u>0} = 0 if u = 0.

The function f can be allowed to have either subcritical or critical growth in the sense of Trudinger-Moser, that

is,

Definition 1.1. The function f has subcritical growth if

lim
s→∞

|f(s)|
exp(αs2)

= 0 for all α > 0. (2)

Definition 1.2. We say that f has critical growth if there exists α > 0 such that

lim
s→∞

|f(s)|
exp(κs2)

= ∞ for all 0 < κ < α, and lim
s→∞

|f(s)|
exp(κs2)

= 0 for all κ > α. (3)

Under certain assumptions of f , we are able to obtain a nontrivial function u ∈ H1
0 (Ω) that solves problem

(1). The main difficulties are the singularity of log at the origin and the critical behaviour of f . Indeed, in [1] the

authors obtained results only in the subcritical context. In [2], the results of [1] were extended and the critical case

was addressed. Our approach is variational, and we use an approximation scheme. We study the energy functional

Iϵ corresponding to the perturbed equation −∆u + gϵ(u) = f(u), where gϵ is well defined at 0 and approximates

− log u. We show that Iϵ has a critical point ( which is a Mountain Pass) uϵ in H1
0 (Ω), which converges to a

nontrivial nonnegative solution of (1) as ϵ→ 0.
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2 Main Results

The following result was proven in [2, Chapter 5] and concerns the subcritical case.

Theorem 2.1. Problem (1) is solvable for a large variety of functions f , including

•f(s) = es;

•f(s) = skes with k > 1;

•f(s) = es − µ with µ > 0.

The critical case was treated in [2, Chapter 6]. The following results were obtained. They can be extended for

a larger class of functions f with critical growth.

Theorem 2.2. Let f(s) = skeαs
2

with k > 1. There exists α0 > 0 such that problem (1) has a nontrivial

nonnegative solution provided 0 < α < α0.

Theorem 2.3. Let α ≥ 3/4 and assume that f(s) = λseαs
2

. There exists λ0 > 1 such that problem (1) has a

nontrivial nonnegative solution for λ > λ0 and |Ω| < cλ,α, where

cλ,α =
π

2

(
e

2λe1+4/α + α

)
.

“This work is part of the author’s PhD Thesis and it was developed at IMECC, UNICAMP-SP with support

by CAPES. The author also thanks FAPESP for financial support.”
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1Departamento de Matemática, UFMG, MG, Brasil, ronaldo@mat.ufmg.br,
2 Centro de Ciências Exatas e de Tecnologia, Departamento de Matemática, UFSCar, SP, Brasil, olimpio@ufscar.br,
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Abstract

In this work, we study the existence of weak solution to a quasilinear elliptic problem involving the fractional

p-Laplacian operator, a Hardy potential and multiple critical Sobolev nonlinearities with singularities,

(−∆p)
su− µ

|u|p−2u

|x|ps =
|u|p

∗
s(β)−2u

|x|β +
|u|p

∗
s(α)−2u

|x|α ,

where x ∈ RN , u ∈ Ds,p(RN ), 0 < s < 1, 1 < p < +∞, N > sp, 0 < α < sp, 0 < β < sp, β ̸= α,

µ < µH ≡ infu∈Ds,p(RN )\{0}[u]
p
s,p/||u||ps,p > 0. To prove our result we formulate a refined version of the

concentration-compactness principle and, as an independent result, we show that the extremals for the Sobolev

inequality are attained.

1 Introduction

In this work, we consider the quasilinear elliptic problem involving the fractional p-Laplacian operator with a Hardy

potential and multiple critical nonlinearities with singularities at the origin,

(−∆p)
su− µ

|u|p−2u

|x|ps
=

|u|p∗s(β)−2u

|x|β
+

|u|p∗s(α)−2u

|x|α
(x ∈ RN ) (1)

where 0 < s < 1, 1 < p < +∞, N > sp, 0 < α < sp, 0 < β < sp, β ̸= α, µ < µH ≡ infu∈Ds,p(RN )\{0}[u]
p
s,p/||u||ps,p >

0 and p∗s(α) = (p(N−α)/(N−ps); in particular, if α = 0, then p∗s(0) = p∗s = Np/(N−p). Recall that the fractional
p-Laplacian operator is a non-linear and non-local operator defined for differentiable functions u : RN → R by

(−∆p)
su(x) := 2 lim

ε→0+

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
dy,

where x ∈ RN , p ∈ (1,+∞), s ∈ (0, 1) and N > sp.

Let Ω ⊂ RN be an open, bounded subset with differentiable boundary. We consider tacitly that all the functions

are Lebesgue integrable and we introduce the fractional Sobolev space W s,p
0 (Ω) and the fractional homogeneous

Sobolev space Ds,p(RN ), respectively, by

W s,p
0 (Ω) ≡

{
u ∈ L1

loc(RN ) : [u]s,p < +∞; u ≡ 0 a.e. RN\Ω
}
,

Ds,p(RN ) ≡
{
u ∈ Lp

∗
s (RN ) : [u]s,p <∞

}
⊃W s,p

0 (Ω).

In these definitions, the symbol [u]s,p stands for the Gagliardo seminorm, defined by

u 7−→ [u]s,p =

(∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+sp
dx dy

)1/p

(u ∈ C∞
0 (RN )).
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The variational structure of problem (1) is established through the Hardy-Sobolev inequality: Let 0 < s < 1,

1 < p < +∞ and 0 ⩽ α < sp < N ; then there exists a positive constant C ∈ R+ such that(∫
Ω

|u|p∗α
|x|α

dx

)1/p∗α

⩽ C

(∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)1/p

for every u ∈ W s,p
0 (Ω). The parameter p∗s(α) is the critical fractional exponent of the Hardy-Sobolev embeddings

Ds,p(RN ) ↪→ Lp(RN ; |x|−sp) where the Lebesgue space Lp(RN ; |x|−sp) is equipped with the norm

||u||Lp(RN ;|x|−sp) ≡
(∫

RN

|u|p

|x|sp
dx

)1/p

.

The embeddingsW s,p
0 (Ω) ↪→ Lq(Ω; |x|α) are continuous for 0 ⩽ α ⩽ ps and for 1 ⩽ q ⩽ p∗s(α); and these embeddings

are compact for 1 ⩽ q < p∗s(α). Moreover, the best constants of these embeddings are positive numbers, that is,

µH ≡ inf
u∈Ds,p(RN )

u̸=0

[u]ps,p
∥u∥p

Lp(RN ;|x|−sp)

> 0.

We say that the function u ∈ Ds,p(RN ) is a weak solution to problem (1) if∫
RN

∫
RN

Jp(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+sp
dx dy − µ

∫
RN

Jp(u)φ(x)

|x|ps
dx

=

∫
RN

Jp∗s(β)(u)φ(x)

|x|β
dx+

∫
RN

Jp∗s(α)(u)φ(x)

|x|α
dx

for every function φ ∈ Ds,p(RN ); given 1 < m < +∞, the function Jm : R → R is defined by Jm(t) = |t|m−2t. A

weak solution to problem (1) corresponds to a critical point to the energy functional Φ: RN → R defined by

Φ(u) ≡ 1

p
[u]ps,p −

µ

p

∫
RN

|u|p

|x|ps
dx− 1

p∗s(β)

∫
RN

|u|p∗x(β)

|x|β
dx− 1

p∗s(α)

∫
RN

|u|p∗x(α)

|x|α
dx.

In other terms, u ∈ Ds,p(RN ) is a weak solution to problem (1) if, and only if, Φ′(u) = 0.

2 Main result

Theorem 2.1. Let 0 < s < 1, 1 < p < +∞, N > sp, 0 < α < sp, 0 < β < sp, β ̸= α, µ < µH . Then there exists

a weak solution u ∈ Ds,p(RN ) to problem (1).

To prove Theorem 2.1 we cannot apply the harmonic extension of the fractional Laplacian because this idea is

valid only for p = 2; moreover, since the Hardy-Sobolev embedding Ds,p(RN ) ↪→ Lp(RN ; |x|−sp) is non compact, we

face several difficulties to prove that bounded Palais-Smale sequences in the reflexive Sobolev space Ds,p(RN ) have

at least a strongly convergent subsequence. The presence of multiple critical Sobolev nonlinearities also contributes

to the difficulties in the proof of the theorem. We also mention that due to the Hardy potential, the functional

u 7−→ ([u]ps,p − µ
∫
RN |u|p/|x|sp dx)1/p does not define a norm in Ds,p(RN ); as a consequence, the energy functional

Φ is not lower semicontinuous. With the help of some carefully proved estimates, we managed to overcome these

difficulties and prove a refined version of the concentration-compactness principle.
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1Curso de Licenciatura em Matemática, UFT, TO, Brasil, thiago.cavalcante@mail.uft.edu.br,
2IME, UFG, GO, Brasil, edcarlos@ufg.br

Abstract

It is established existence of weak solutions for a class of superlinear elliptic involving a fourth-order elliptic

problem under Navier conditions on the boundary. Here we do not apply the well known Ambrosetti-Rabinowitz

condition at infinity. Instead of we assume that the nonlinear term is a nonlinear function satisfying the well

known nonquadraticity condition at infinity. Using a Local Linking Theorem we get our main results without

any restrictions on the first eigenvalue for the linear problem. Namely, the first eigenvalue can be negative or

positive. Furthermore, we consider nonlinear terms interacting at high eigenvalues

1 Introduction

In this work we consider the fourth-order elliptic problem{
α∆2u+ β∆u = f(x, u) in Ω,

u = ∆u = 0 on ∂Ω,
(1)

where ∆2 = ∆ ◦ ∆ is the biharmonic operator, N ≥ 4,Ω ⊂ RN is a smooth bounded domain, α > 0, β ∈ R.
The problem (1) is named fourth-order elliptic problem under Navier boundary conditions. Throughout this work

λ1 denotes the first eigenvalue for the linear eigenvalue problem associated to Laplacian operator. The nonlinear

term f is a continuous function which is superlinear at infinity and at the origin. Later on, we shall consider the

assumptions on the nonlinear term f .

The fourth-order elliptic problems are modeled in the functional space H = H1
0(Ω)∩H2(Ω). The weak solutions

for problem (1) are precisely the critical points for the functional of C1 class I : H → R given by

I(u) =
1

2

∫
Ω

(α∆u∆v − β∇u∇v) dx−
∫
Ω

F (x, u) dx, (2)

where the primitive for f .

In this work we shall consider that f ∈ C(Ω× R,R). Moreover, we assume the following hypotheses:

(f0) There exist a1 > 0 and p ∈ (2, 2∗) such that

|f(x, t)| ≤ a1(1 + |t|p−1), for any (x, t) ∈ Ω× R

where 2∗ =
2N

N − 4
for each N ≥ 5 and 2∗ = ∞ for N = 4.

(f1) lim
|t|→∞

f(x, t)

t
= +∞ uniformly in Ω.

(f2) There exist k ∈ N and f0 ∈ (µk, µk+1), where µk and µk+1 are two consecutive eigenvalues for the problem

associated to (1), such that

lim
|t|→0

f(x, t)

t
= f0 uniformly in Ω.
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(NQ) setting H(x, t) := f(x, t)t− 2F (x, t), we have that

lim
|t|→∞

H(x, t) = +∞, uniformly for x ∈ Ω.

2 Main Results

Using a Local Linking Theorem we get our main results without any restrictions on the first eigenvalue for the

linear problem. Namely, the first eigenvalue can be negative or positive.

Theorem 2.1. Suppose that f satisfies (f0), (f1), (f2) and (NQ). Assume also that one of the following conditions

i) the first eigenvalue µ1 is positive;

ii) the first eigenvalue µ1 is negative and 0 ∈ Ik;

iii) the first eigenvalue µ1 is negative and 0 /∈ Ik.

Then problem (1) admits at least one nontrivial solution.

In order to prove the theorem, we use the Linking Geometry and prove that the functional I satisfies the Cerami

Condition at any level c ∈ R.
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Abstract

In this talk we present new results on solvability of the equation A∗(D)f = µ for f ∈ Lp(Rn) and positive

measure data µ associated to an elliptic homogeneous differential operator A(D) of order m. Our method is

based on controlling the (m, p)−energy of µ giving a natural characterization for solutions when 1 ≤ p <∞. We

also obtain sufficient conditions in the limiting case p = ∞ using new L1 estimates on measures for elliptic and

canceling operators.

1 Introduction

N. C. Phuc and M. Torres in [6] characterized the existence of solutions in Lebesgue spaces for the divergence

equation

div f = µ, (1)

where µ ∈ M+(RN ), the set of positive measures on RN , and f ∈ Lp(RN ,RN ). The method is based on controlling

the (1, p)−energy of µ defined by ∥I1µ∥Lp , for 1 ≤ p < ∞, where I1 is the Riesz potential of order 1 (see [6,

Theorems 3.1 and 3.2]). The previous results do not cover the case p = ∞, however, in Theorem 3.3 they show

that an L∞ solution for (1) exists if and only if µ is a (N − 1)−Ahlfors regular measure, i.e. µ satisfies

µ(B(x, r)) ≤ CrN−1,

where the constant C > 0 is independent of x ∈ RN and r > 0.

Let A(D) be a homogeneous differential operator on RN , N ≥ 2 with constant coefficients, of order m, from a

finite dimensional complex vector space E to a finite dimensional complex vector space F given by

A(D) =
∑

|α|=m

aα∂
α : C∞

c (RN , E) → C∞
c (RN , F ), aα ∈ L(E,F ).

In this work, we study the Lebesgue solvability for the equation

A∗(D)f = µ, (2)

where A∗(D) is the (formal) adjoint operator associated to the homogeneous differential operator A(D). In what

follows, for an open subset Ω ⊆ RN and a finite dimensional complex vector space X, M+(Ω, X) denotes the set of

all X-valued complex measures on Ω such that the real and imaginary parts of each component are positive Radon

measures. We also define the (m, p)−energy of µ by ∥Imµ∥Lp , for 1 ≤ p < ∞, where Im is the Riesz potential of

order m.
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2 Main Results

Our first result is a slight improvement on [6, Theorems 3.1 and 3.2].

Theorem 2.1. Let A(D) be a homogeneous linear differential operator of order 1 ≤ m < N on RN , N ≥ 2, from

E to F and µ ∈ M+(RN , E).

(i) If 1 ≤ p ≤ N/(N −m) and f ∈ Lp(RN , F ) is a solution for (2) then µ ≡ 0.

(ii) If N/(N −m) < p <∞ and f ∈ Lp(RN , F ) is a solution for (2), then µ has finite (m, p)-energy. Conversely,

if µ has finite (m, p)-energy and A(D) is elliptic, then there exists a function f ∈ Lp(RN , F ) solving (2).

We recall that ellipticity means that the symbol A(ξ) : E → F given by

A(ξ) :=
∑

|α|=m

aαξ
α

is injective for ξ ∈ RN\ {0}. In particular, we recover Theorems 3.1 and 3.2 from [6] taking A(D) = ∇ with E = R
and F = RN . Our second and main result deals with the case p = ∞.

Theorem 2.2. Let A(D) be a homogeneous linear differential operator of order 1 ≤ m < N on RN from E to F

and µ ∈ M+(RN , E). If A(D) is elliptic and canceling, and µ satisfies both

|µ|(B(0, r)) ≤ C1r
N−m, (1)

and the following control of the truncated Wolff’s potential∫ |y|/4

0

|µ(B(y, r))|
rN−m+1

dr ≤ C2, uniformly on y, (2)

then there exists f ∈ L∞(RN , F ) solving (2).

The canceling property means
⋂
ξ∈RN\0 A(ξ)[E] = {0} . The main ingredient in the proof of Theorem 2.2 is to

investigate the sufficient conditions on µ in order to obtain∣∣∣∣∫
RN

u(x) dµ(x)

∣∣∣∣ ≤ C∥A(D)u∥L1 , ∀u ∈ C∞
c (RN , E).
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JOÃO VITOR DA SILVA1 & VICTOR ANTONIO BLANCO VILORIA2

1IMECC, UNICAMP, SP, Brasil, jdasilva@unicamp.br,
2IMECC, UNICAMP, SP, Brasil, v209370@dac.unicamp.br

Abstract

In this work we will focus our attention on finding a family of solutions (in the viscosity sense) (uε)ε>0 for a

singularly perturbed problem driven governed by normalized p(x)-Laplacian. Assuming suitable assumptions on

the data we will show that such solutions enjoy certain properties, such as uniform boundedness, local Lipschitz

regularity and non-degeneracy in a smooth domain Ω ⊂ Rn. Furthermore, by using the stability of notion

of viscosity solutions, we will show, up to a subsequence, that lim
j→∞

uεj = u0, which becomes a solution of a

one-phase free problem of Bernoulli type. Our results are natural extension to the ones in [2] and [3].

1 Introduction

In last years researches about Tug-of-war game with varying probabilities have appeared in the modern interplay of

Probability Theory and Elliptic PDEs models. Precisely, in [1] the authors studied a two player zero-sum tug-of-war

game with varying probabilities that depend on the game location x ∈ Ω. Particularly, they show that the value of

the game converges to a solution of the normalized p(x)−Laplacian.

Thus, motivated by modern issues of singular PDEs in non-variational models (cf. [2]), we would like to study:

{
∆N

pε(x)uε(x) = ζε (uε) + fε(x) in Ω,

uε(x) = g(x) on ∂Ω,
(1)

where the Normalized p(x)−Laplacian is defined as follows:

∆
N
p(x)u =

1

p(x)
∆u+

p(x) − 2

p(x)
∆

N
∞u =

1

p(x)
∆u+

p(x) − 2

p(x)

〈
D2u ·Du,Du

〉
|Du|2

.

Furthermore, we will assume pε ∈ C0,1(Ω), fε ∈ C∞(Ω) and there exist positive constants A,B, p+, p−, pl such that

1 < p− ≤ pε(x) ≤ p+ <∞, |Dpε(x)| ≤ pl and A ≤ fε(x) ≤ B for every x ∈ Ω and all ε > 0. Moreover, Ω ⊂ Rn is a

bounded and open domain, 0 ≤ g ∈ C(∂Ω) and ζε(t) =
1
εζ(

t
ε ), with 0 ≤ ζε ∈ C∞

0 (Ω).

Definition 1.1. A function u ∈ C(Ω) is said a viscosity sub-solution (super-solution) of

∆N
p(x)u = h(x, u(x)) com h ∈ C0(Ω× R+) (2)

if and only if for each x0 ∈ Ω e ϕ ∈ C2(Ω) such that u− ϕ has a local maximum (minimum) at x0, then

(1) ∆N
p(x0)

ϕ (x0) ≤ h (x0, ϕ(x0)) (resp. ≥ h (x0, ϕ(x0)) ) if Dϕ (x0) ̸= 0.

(2) 1
p(x0)

∆ϕ (x0) +
p(x0)−2
p(x0)

λmax

(
D2ϕ (x0)

)
≤ h (x0, ϕ(x0)) (resp. ≥ h (x0, ϕ(x0))) if Dϕ (x0) = 0 and p(x) ≥ 2.

(3) 1
p(x0)

∆ϕ (x0)+
p(x0)−2
p(x0)

λmin

(
D2ϕ (x0)

)
≤ h (x0, ϕ(x0)) (... ≥ h (x0, ϕ(x0)) ) if Dϕ (x0) = 0 and p(x) ∈ (1, 2).

Finally, u is a solution of (2) in the viscosity sense if it is a sub and super-solution.
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In order to show the existence of solutions for (1), we choose an appropriate approximation of (1) by a
“regularized problem”: for fixed δ > 0 and ε > 0, there are solutions (in the classical sense) regular enough
uε,δ to 

n∑
i,j=1

a
pε(x),δ
ij (Du)uij = ζε (u) + fε(x) in Ω

u(x) = g(x) on ∂Ω,

(3)

where the uniformly elliptic operator ν 7→ a
pε(x),δ
ij (·) is given by:

a
pε(x),δ
ij (ν) =

1

pε(x)
δij +

pε(x) − 2

pε(x)

νiνj

|ν|2 + δ2
, ∀ν ∈ Rn

.

By sing auxiliary results, e.g., the Aleksandrov-Bakelman-Pucci’s Maximum Principle, Harnack Inequality and the

existence of Perron-type solutions, we conclude that, up to a subsequence (uε,δ)δ>0 converges local uniformly for a

non-negative family of solutions and uniformly bounded.

2 Main Results

Our first result establishes local Lipschitz regularity to solution of (1) (cf. [1], [2] and [3])

Theorem 2.1 (Lipschitz regularity- cf. [1]). Let (uε)ε>0 be viscosity solutions of (1) and Ω′ ⋐ Ω, then there

exist a constant C > 0 depending on universal parameters and Ω′ ⊆ Ω such that

∥uε∥C0,1(Ω′) = ∥uε∥L∞(Ω′) + ∥Duε∥L∞(Ω′) ≤ C.

Furthermore, by invoking a suitable barrier and other tools, we will prove the following result:

Theorem 2.2 (Strong No-degeneracy - cf. [1]). Let (uε)ε>0 be Perron’s solutions of (1). Then, there exists a

constant L > 0 such that, for every x0 ∈ {uε > ε} and ε < dε(x0) := dist(x0, {uε ≤ ε}) ≪ 1 there holds

uε(x0) ≥ L(universal)dε(x0) ⇒ sup
Br(x0)

uε(x) ≥ L0(universal)r.

Finally, the family (uε)ε>0 is pre-compact in the topology C0,1
loc (Ω). Hence, we are able to conclude:

Theorem 2.3 (Limiting profile - cf. [1]). Let (uε)ε>0 be solutions of (1). Then, up to a subsequence, (uε)ε>0
converges local uniformly to a solution u0 of one-phase free boundary problem:{

∆N
p0(x)u0(x) = f0(x) in {u0 > 0} ∩ Ω,

u0(x) = g(x) on ∂Ω.
(1)

where fε → f0 and pε → p0 local uniformly in Ω. Furthermore, ∥uε∥C0,1(Ω′) ≤ C(universal).
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4Instituto de Investigación, Facultad de Ciencias, UNS, Perú, hmorales@uns.edu.pe,
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Abstract

In this paper, we deal with a class of frictional contact problem of p(x)-Kirschhoff type with convection term.

Due to the lack of a variational structure the well-known variational methods are not applicable. By means of

the topological degree theory for (S+) type mappings (See Skrypnik, 1994) we establish the existence of weak

solutions.

1 Introduction

The purpose of this work is to investigate the existence of weak solutions for the following boundary value problem

−M
(∫

Ω

1

p(x)
|∇u|p(x)dx

)
div
(
|∇u|p(x)−2∇u

)
= f1(x, u,∇u) in Ω

u = 0 on Γ1

M
(∫

Ω

1

p(x)
|∇u|p(x)dx

)
|∇u|p(x)−2 ∂u

∂ν
= f2(x, u) in Γ2∣∣∣M(∫

Ω

1

p(x)
|∇u|p(x)dx

)
|∇u|p(x)−2 ∂u

∂ν

∣∣∣ ≤ g,

M
(∫

Ω

1

p(x)
|∇u|p(x)dx

)
|∇u|p(x)−2 ∂u

∂ν
= −g u

|u|
, if u ̸= 0 in Γ3

(1)

where Ω ⊆ R2 is a bounded domain with smooth enough boundary Γ, partitioned in three parts Γ1,Γ2,Γ3 such

that meas (Γi) > 0, (i = 1, 2, 3); f1 : Ω×R×Rn −→ R , f2 : Γ2 ×R → R, g : Γ3 → R and M : R+ → R+ are given

functions, p ∈ C(Ω).

Many scholars make efforts to investigate p(x)-Kirchhoff type equations with nonlinear boundary condition of

different class in recent years (See e.g. [3,5]) and indeed, important results were obtained. Motivated by the

ideas in [1] we consider problem (1.1) (which has already been treated for constant exponent, with M(s) =

1, f1(x, u,∇u) = f1(x), f2(x, u) = f2(x) in [2] by means of an abstract Lagrange multiplier technique) with M

a nonconstant continuous function in the setting of the variable exponent spaces. Unlike in [2], we will apply the

topological degree introduced by Skrypnik to solve our problem.

2 Assumptions and Main Result

First, we introduce the space

X = {u ∈W 1,p(x)(Ω) : γu = 0 on Γ1}

herein W 1,p(x)(Ω) (p ∈ C(Ω), 2 ≤ p(x) < +∞) is the well known variable exponent Sobolev space.
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(A1) M : [0,+∞[→ [m0,+∞[ is a continuous and increasing function; m0 > 0.

(A2) f1 : Ω× R× Rn −→ R is a Caratheodory function such that

|f1(x, η, ξ)| ≤ c3

(
k(x) + |η|q(x)−1 + |ξ|q(x)−1

)
for almost all x ∈ Ω and all (η, ξ) ∈ R×Rn, c3 > 0, q is a continuous function such that 1 < q(x) < p(x) and

k ∈ Lp
′(x)(Ω).

(A3) f2 : Γ2 × R → R is a Caratheodory function satisfying the following conditions

|f2(x, s)| ≤ c1 + c2|s|α(x)−1), ∀x ∈ Γ2, s ∈ R,

for some α ∈ C+(Ω) such that 1 < α(x) < p∗(x) for x ∈ Ω and c1, c2 are positive constants.

(A4) g ∈ Lp
′(x)(Γ3), g(x) ≥ 0 a.e on Γ3

So, our main result can be stated as follows.

Theorem 2.1. Suppose (A1) - (A4) hold. Then problem (1.1) has a solution u ∈ X.

Proof We apply the topological degree theory for (S+) type mappings (See [4]).
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Abstract

In this work, we study the existence and stabilization of the solution of a Bresse Thermoelastic System with

nonlinear dissipation at the boundary. We will initially prove the existence through the Theory of Semigroups

of Nonlinear Operators. Later, to analyze the stabilization, we used the method of multipliers.

1 Introduction

Our objective, inspired by the works of [3] and [5] was to study the following thermoelastic Bresse system

ρ1φtt − k(φx + ψ + lw)x − k0l(wx − lφ) = 0 em (0, L)× (0,∞), (1)

ρ2ψtt − bψxx + k(φx + ψ + lw) + γθx = 0 em (0, L)× (0,∞), (2)

ρ1wtt − k0(wx − lφ)x + kl(φx + ψ + lw) = 0 em (0, L)× (0,∞), (3)

θt − k1θxx +mψxt = 0 em (0, L)× (0,∞), (4)

with initial conditions
φ(·, 0) = φ0, φt(·, 0) = φ1

ψ(·, 0) = ψ0, ψt(·, 0) = ψ1

w(·, 0) = w0, wt(·, 0) = w1,

θ(·, 0) = θ0

(5)

and with boundary conditions

φ(0, t) = ψ(0, t) = w(0, t) = θ(0, t) = θ(L, t) = 0 (6)

and
k(φx + ψ + lw)(L, t) = −g(φt(L, t))

bψx(L, t) = −g2(ψt(L, t))

k0l(wx − lφ)(L, t) = −g3(wt(L, t))

(7)

The coefficients ρ1, ρ2, k, k0, k1, b, γ, l and m are positive constants and g1, g2, e g3 represent nonlinear dissipative

terms on the boundary satisfying

Hg: The functions gi : R → R, i = 1, 2, 3 satisfy the following hypotheses:

(i): gi is continuous, monotonous increasing.

(ii): gi(s)s ≥ 0 for s ̸= 0

(iii): There are constant m and M constants such that 0 < m < M and ms2 ≤ gi(s)s ≤Ms2, |s| > 1.

The energy of the system (1)-(7) is given by

E(t) =
1

2

∫ L

0

(
ρ1|φt|2 + ρ2|ψt|2 + ρ1|wt|2 + b|ψx|2 + k|φx + ψ + lw|2 + k0|wx − lφ|2 + γ

m
|θ|2
)
dx

The phase space H is given by H = V0 × V0 × V0 × L2(0, L)× L2(0, L)× L2(0, L)× L2(0, L).
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2 Main Results

To show the existence of a solution to the system (1)-(7), we use the theory found in [1] and [4].

Our main result is that for the system(1)-(7), using the hypotheses forg mentioned above and some more

functions also defined by Lasiecka e Tataru in [3] and with the multipliers technique. we were able to prove the

following theorem.

Theorem 2.1. Let gi be the functions satisfying the hypotheses (i), (ii) and (iii) of Hg, if U = (φ,ψ,w, φt, ψt, wt, θ)

is solution of system (1)-(7), then for some T0 > 0

E(t) ≤ S

(
t

T0
− 1

)
, ∀t > T0.

For the proof we follow the same reasoning used in [5] by Salinas.

References

[1] Barbu, V. Nonlinear Semigroups and Differential Equations in Banch Spaces. Bucuresti: Editura Academiei

Bucuresti Rinâbua, 1976
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2Instituto de Investigación, FCM, UNMSM, Perú, jnernuib@unmsm.edu.pe,
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Abstract

The object of this work is to study the existence of weak solutions for (p1(x), p2(x))-Laplacian parabolic

Kirchhoff equation . We establish our results by using the degree theory for operators of the form T + S + C,

where T is a maximal monotone, S is bounded pseudomonotone and C is is compact con D(T ) ⊆ D(C) and

satisfies a sublinearity condition, in the framework of variable exponent Sobolev spaces.

1 Introduction

In this research, we focus on the following nonlocal parabolic problem

ut −M1(L1(u))(div(|∇u|p1(x)−2∇u)− |u|p1(x)−2u)−M2(L2(u))(div(|∇u|p2(x)−2∇u)− |u|p2(x)−2u)

+f(x, t, u,∇u) = h(x, t) in Ω× (0, T ) (1)(
M1(L1(u))|∇u|p1(x)−2 +M2(L2(u))|∇u|p2(x)−2

) ∂u
∂ν

+ g(x, u) = 0 on ∂Ω× (0, T ),

u(x, 0) = u(x, T ), x ∈ Ω. (2)

where Ω ⊂ RN is a bounded smooth domain and pi(x) ∈ C(Ω) with pi(x) > 1 for any x ∈ Ω i=1,2 ,

Li(u) =
∫
Ω

1
pi(x)

(|∇u|pi(x) + |u|pi(x)) dx , and Mi, f are functions that satisfy conditions which will be stated

later.

In literature, considerable amount of work has been done by many researches for elliptic p(x)-Kirchhoff-Laplacian

equations, see [2-4]. As far as the parabolic type p(x)-Laplacian equations are concerned, few articles have appeared,

we refer the reader to [5-6]. In this work, unlike the previous ones we use the theory of degree for operators of type

T +S+C, where T is a maximal monotone, S is bounded pseudomonotone and C is is compact con D(T ) ⊆ D(C)

and satisfies a sublinearity condition.

2 Assumption and Main Result

Throughout this paper W 1,p(x)(Ω) (p ∈ C(Ω), 2 ≤ p(x) < +∞) is the well known variable exponent Sobolev space.

We give the following hypotheses.

(A1) Mi : [0,+∞[→ [m0,+∞[ is a continuous and nondecreasing function, i=1,2; m0 > 0.

(A2) f : Ω× (0, T )× R× Rn −→ R is a Caratheodory function such that

|f(x, t, η, ξ)| ≤ c1k(x, t), k ∈ L∞(0, T ;Lp
′(x)(Ω)) ;

f(x, t, η, ξ)η ≥ |η|p(x), for all (x, t) ∈ Ω× (0, T ), η ∈ R and ξ ∈ Rn

(A3) h ∈ H =
(
Lp(x)(0, T ;W 1,p(x)(Ω))

)′
; |g(x, u)| ≤ c2|u|r(x)−1 for a.e. x ∈ Γ and all u ∈ R+, r

+ < p−.
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3 Main Result

We are ready to state and prove the main result of the present paper.

Theorem 3.1. Suppose (A1) - (A3) hold. Then (1) admits at least one weak solution.

Proof We transform (1) into an equivalent problem of type Tu + Su + Cu = h. Then, we apply a result in [1].

□.
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Abstract

In this paper we investigate the existence and uniqueness of global solutions for the variational inequality for

the beam non linear equation

utt −∆u+∆2u+ |u|ρ = 0 in Ω× (0,∞)

u = 0,
∂u

∂ν
= 0 on Γ× (0,∞)u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

where Ω is a bounded domain of Rn, ρ > 0 is a real number, ν(x) is the exterior unit normal vector at x ∈ Γ.

Our result is obtained using the Galerkin method with a special basis, the Tartar argument and the compactness

approach. Uniqueness is also studied.

In Medeiros et al [9] was investigated the existence and uniqueness of global solutions for the problem

utt −∆u+ |u|ρ = f in Ω× (0,∞),

u = 0 on Γ× (0,∞), u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Ω.

There, Galerkin method an Tartar argument [8] were applied.

In Milla et al. [1] the authors investigate the existence and uniqueness of global solutions of the initial value problem

for the nonlinear mixed problem

utt −∆u+∆2u+ |u|ρ = 0 in Ω× (0,∞),

u = 0,
∂u

∂ν
= 0 on Γ× (0,∞), u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Ω.

(1)

By applying the Galerkin method with a special basis, a modification of the Tartar approach [8] and compactness

method, they get their result. A nonlinear perturbation of problem ((1))1 is given by utt −∆u +∆2u + |u|ρ ≥ 0.

This inequality is satisfied in a certain sense. In the present work we investigated the existence of global solutions

for the unilateral problem associated with this perturbation.

Unilateral problem is very interesting too, because in general, dynamic contact problems are characterized

by nonlinear hyperbolic variational inequalities. For contact problem on elasticity and finite element method see

Kikuchi-Oden [2] and reference there in. For contact problems on viscoelastic materials see [3]. For contact problems

on Klein-Gordon operator see [4]. For contact problems on Oldroyd Model of Viscoelastic fluids see [5]. For contact

problems on Navier-stokes Operator with variable viscosity see [6]. For contact problems on viscoelastic plate

equation see [7]. We formulate the unilateral problem as follows. Let K = {v ∈ H1
0 (Ω); v ≥ 0 a.e. in Ω} a closed

and convex subset of H1
0 (Ω), the variational problem is to find a solution u(x, t) satisfying∫

Q

(utt −∆u+∆2u+ |u|ρ)(v − ut) ≥ 0,∀v ∈ K, (2)

with ut(x, t) ∈ K a. e. on [0, T ] and talking the initial and boundary data

u = 0, ut = 0 on Σ, u = ∆u = 0 on Σ, u(., 0) = u0, ut(., 0) = u1 in Ω.

Next we shall state the main results of this paper.

101



102

Theorem 0.2. Assume that
1

2
|u1|2 +

1

2
∥u0∥2 +

1

2
∥u0∥2H2

0 (Ω) +
1

ρ+ 1

∫
Ω

|u0|ρ+1u0dx < N <
1

4
(λ∗)2 (note that

N <
1

4
(λ∗)2 implies (4N)1/2 < λ∗), ∥u0∥H2

0 (Ω) < λ∗ = ρ+1
4k0

, consider the space H4
Γ(Ω) = {u ∈ H4(Ω)|u = ∆u =

0 on Σ} and similarly H3
Γ(Ω) = {u ∈ H3(Ω)|u = ∆u = 0 on Σ}, u0 ∈ H4

Γ(Ω) and u1 ∈ H2
0 (Ω)∩L2(Ω). Then there

exists a function u : [0, T ] → L2(Ω) in the class

u ∈ L∞(0, T ;H1
0 (Ω) ∩H2

0 (Ω) ∩H3
Γ(Ω)), ut ∈ L∞(0, T ;L2(Ω) ∩H1

0 (Ω) ∩H2(Ω)), utt ∈ L∞(0, T ;L2(Ω))

ut(t) ∈ K a.e. in [0, T ], satisfying∫
Q

(utt −∆u+∆2u+ |u|ρ)(v − ut) ≥ 0,∀v ∈ L∞(0, T ;H1
0 (Ω)),

v(t) ∈ K a.e. in t, u(0) = u0, ut(0) = u1

The proof of Theorem 2.1 is made by the penalization method. It consists in considering a perturbation of the

problem (1) adding a singular term called penalty, depending on a parameter ϵ > 0. We solve the mixed problem

in Q for the penalization operator and the estimates obtained for the local solution of the penalized equation, allow

to pass to limits, when ϵ goes to zero, in order to obtain a function u which is the solution of our problem.

The Penalized Problem associated with the variational inequality (2), consists in given 0 < ϵ < 1, find uϵ satisfying

uϵtt −∆uϵ +∆2uϵ +
1

ϵ
(β(uϵt)) = |uϵ|ρ in Q

uϵ = 0 on Σ, uϵt = 0 on Σ, uϵ(x, 0) = uϵ0(x), u
ϵ
t(x, 0) = uϵ1(x) in Ω.

In order to prove Theorem 2.1, we first prove the Penalized Problem. The existence of solutions will be given by

using Faedo-Galerkin approximations with a special basis, the Tartar argument and the compactness approach.

Uniqueness is studied via the energy method.
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Abstract

In this talk, we study the global (in time) existence of small data solutions to the Cauchy problem for

semilinear effective damped wave models with general relaxation function in the source term. Our goal is to

generalize some known results for special nonlinear memory terms, where the convolution is given with respect

to the time variable. We first present auxiliary estimates for integrals. Then we prove results on global (in time)

existence of small data Sobolev solutions for different classes of data.

1 Introduction

Recently in [1] and [2] the authors studied the following Cauchy problem for the classical damped wave equation

with nonlinear memory: utt −∆u+ (1 + t)rut = g ∗ |u|p, (t, x) ∈ [0,∞)× Rn,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn,

where r ∈ (−1, 1) and the relaxation function g = g(t) = t−γ with γ ∈ (0, 1). The convolution with respect to the

time variable is defined in the nonlinear term as follows:

(g ∗ |u|p)(t, x) :=
∫ t

0

g(t− τ)|u(τ, x)|pdτ.

The goal of this work is to generalize results proved previously in [2] in such a way that we can treat the set of

effective dissipation terms. Namely, we treat the Cauchy problemutt −∆u+ b(t)ut = g ∗ |u|p, (t, x) ∈ [0,∞)× Rn,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn,
(1)

where the dissipation term b(t)ut is effective in the sense of [3].

Example 1.1. Typical examples are

b(t) =
µ

(1 + t)r
, b(t) =

µ

(1 + t)r
(log(e+ t))γ , b(t) =

µ

(1 + t)r(log(e+ t))γ

for some µ > 0, γ > 0 and r ∈ (−1, 1).

Further examples are

b(t) = µ(1 + t)(log(e+ t))1−γ

with µ > 0 and γ ≥ 0.
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On the other hand the relaxation function g = g(t) is supposed to satisfy the following properties:

(P1) g = g(t) is defined on (0,∞) and positive there,

(P2) g = g(t) is continuous and strictly decreasing on (0,∞) with limt→∞ g(t) = 0,

(P3) g ∈ L1
(
(0, T )

)
for all T > 0.

Let us introduce the function G = G(t) by

G : t ∈ (0,∞) → G(t) =

∫ t

0

g(s) ds.

From (P1) to (P3) one can get immediately the following properties:

G(0) = 0, G(t) > 0 on (0,∞), G is increasing on (0,∞).

Example 1.2. Typical examples are

� g(t) = e−t,

� g(t) = (1 + t)−γ for γ > 0,

� g(t) = t−γ for γ ∈ (0, 1),

� g(t) = (1 + t)−1 log(e+ t),

� g(t) =
(
(1 + t) log(e+ t)

)−1
.
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Abstract

This paper deals with initial-boundary value problems for a damped thin quasilinear plate. With restriction

on the norms of the initial data it will be established global weak and global strong solutions. It will also be

shown that the strong solution is uniformly stable and unique. Furthermore, using a weak internal damping

mechanism, an exponential decay estimate for the energy of weak solutions is established.

1 Introduction

Let Ω ⊂ R2 be a bounded, open and connected set situated locally on the one side of its smooth boundary Γ.

Γ = Γ0 ∪Γ1 and Γ0 ∩Γ1 = ∅. x = (x1, x2) ∈ R2, ν = (ν1, ν2) is the exterior unit normal vector at each point x ∈ Γ,

τ = (−ν2, ν1) is the unit tangential vector defined at each point x ∈ Γ oriented in the positive direction of Γ. The

normal and tangential derivative are denoted by ∂ν and ∂τ , respectively.

The mathematical deduction of vertical deflections phenomena, such as strings or plates with non-homogeneous

material, establishes models with variable coefficients, and so a thin plate problem could be of the type,

∂2t u+∆2u−M
(
·, ·, |u|2

)
∆u = 0 in Ω× (0,∞),

u = ∂νu = 0 on Γ0 × (0,∞),

∆u+ (1− µ)B1u = 0 on Γ1 × (0,∞),

∂ν∆u+ (1− µ)∂τB2u−M
(
·, ·, |u|2

)
∂νu = 0 on Γ1 × (0,∞),

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x) in Ω,

(1)

where u = u(x, t) is the displacement of the point x of the plate at time t, | · | is the L2 norm in the variable x,

B1u = 2ν1ν2∂
2
x1x2

u − ν21∂
2
x2
u − ν22∂

2
x1
u, B2u = ν1ν2

[
∂2x2

u− ∂2x1
u
]
+
(
ν21 − ν22

)
∂2x1x2

u and 0 < µ < 1/2 is the

Poisson constant.

The two Hilbert spaces V =
{
v ∈ H2(Ω); v = ∂νv = 0 on Γ0

}
and W =

{
v ∈ V ; ∆2v ∈ L2(Ω)

}
have an

important role in this work to obtain the main results, which are:

• Problem (1) is ill-posed in the J. Hadamard sense. That is, only the existence of weak solution will be

established. Moreover, with addition of the weak internal damping, ∂tu, in equation (1)1 we show that the total

energy has an exponential decay rate.

• With addition of the strong internal damping, ∆∂tu, in equation (1)1 we show that such problem is well-posed

in the J. Hadamard sense. This means: there exists a unique global strong solution and this solution is uniformly

stable, that is, small perturbations in the initial data produce small variations in the solutions.

2 Main Results

Theorem 2.1. With restriction on the norms of the initial data and some assumptions on the function M it will

be established global weak and global strong solutions for problem (1). Thus,
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1. If u0 ∈ V , u1 ∈ L2(Ω) there exists at least one function u, that is, a weak solution of problem (1) such that

u ∈ L∞ (0,∞;V ) and ∂tu ∈ L∞(0,∞;L2(Ω)),

−
∫ ∞

0

(u′(t), φ)θ′(t)dt+

∫ ∞

0

((u(t), φ))θ(t)dt+

∫ ∞

0

(
M(t, |u(t)|2)∇u(t),∇φ

)
θ(t)dt+∫ ∞

0

(
∇M(t, |u(t)|2)∇u(t), φ

)
θ(t)dt = 0 for all φ ∈ V and θ ∈ D(0,∞),

u(x, 0) = u0(x) and ∂tu(x, 0) = u1(x) in Ω.

2. With addition of the weak internal damping, ∂tu, in equation (1)1 we show that there are real constants κ1

and κ2 s.t. the energy, E(t) = 1
2

{
|u′(t)|2 + ||u(t)||2 +

∫
Ω
M
(
·, t, |u(t)|2

)
|∇u(t)|2R dx

}
, defined by the global

weak solution satisfies

E(t) ≤ 2κ1E(0) exp

{
− ζ

κ1
t

}
.

3. With addition of the strong internal damping, ∆∂tu, in equation (1)1 and if u0 ∈W and u1 ∈ V with

γ0u0 = 0 on Γ1 and γ1u0 −M
(
·, 0, |u0|2

)
∂νu0 − ζ∂νu1 = 0 on Γ1,

then there is a global strong solution, u, of this problem with strong damped in the class

u ∈ L∞ (0,∞;V ) ∩ L2
loc (0,∞;W ) , ∂tu ∈ L∞ (0,∞;L2(Ω)

)
∩ L∞

loc (0,∞;V ) , ∂2t u ∈ L∞
loc

(
0,∞;L2(Ω)

)
and such that

∂2t u+∆2u−M
(
·, ·, |u|2

)
∆u− ζ∆∂tu = 0 in L2

loc(0,∞;L2(Ω),

γ0u = 0 in L2
loc(0,∞;H−1/2(Γ1)),

γ1u−M
(
·, ·, |u|2

)
∂νu− ζ∂2νtu = 0 in L2

loc(0,∞;H−3/2(Γ1)),

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x) in Ω.

4. Furthermore, the global strong solution is uniformly stable and, consequently, unique.
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Abstract

We study the Good Local Placement of the Cauchy Problem described by the coupling of three Schrodinger

equations in the continuous case in dimension 1 presented in (1).

This work is inspired by the results obtained in [1] for a coupled system of two Schrodinger equations with

quadratic nonlinearity. This work aims to study the Cauchy problem for a coupled system of equations type

Schrodinger on the real straight.

To establish the main result of this work, we obtain inequalities in Bougain spaces.

1 Introduction

This work is dedicated to studying the Cauchy problem for a system of equations that arises in nonlinear optics

problems. More precisely, let us study the following mathematical model:


iwt + wxx − w + w̄v + v̄u = 0

2ivt + vxx − βv + 1
2w

2 + w̄u = 0

3iut + uxx − β1u+ χvw = 0

w(x, 0) = w0(x) ∈ Hr(R), v(x, 0) = v0(x) ∈ Hs(R) e u(x, 0) = u0(x) ∈ Hk(R),

(1)

where w, v, and u are functions that take on complex values and represent the fundamental harmonic, second,

and third harmonic, respectively, and β, β1, and χ are real numbers that represent the physical parameters of the

system. For more physical information on this model, we recommend [2].

In [3], results of global local good placement are established for the system (1) in the cases r = s = k = 0 or

1, that is, in L2 and H1. In addition, stability results are obtained for traveling wave solutions. Finally, our result

extends the region of local well-posed obtained in [3] concerning the Sobolev indices.

2 Main Results

Theorem 2.1. Given (w0, v0, u0) ∈ Hr(R) × Hs(R) × Hk(R) with (r, s, k) ∈ R ⊂ R3. The Cauchy problem (1)

is locally well-posed in Hr(R) × Hs(R) × Hk(R) in the following way: for each ρ > 0, exist T = T (ρ) > 0 and

b > 1/2 such that for all initial data with ∥w0∥Hr + ∥v0∥Hs + ∥u0∥Hk < ρ, there is only one solution (w, v, u) for

(1) satisfying the following conditions:

ψT (t)w ∈ Xr,b, ψT (t)v ∈ Xs,b
2 and ψT (t)w ∈ Xk,b

3 ,

w ∈ C ([0, T ];Hr) , v ∈ C ([0, T ];Hs) and u ∈ C
(
[0, T ];Hk

)
.

In addition, the data-solution application is locally Lipschitzian.
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Proof The proof of the Theorem above simulates the proof presented in section IV of [1].

The key results for establishing this Theorem and delimiting the R region of the Main Theorem are:

(i) ∥w · v∥Xr,−d ≤ C∥w∥Xr,b · ∥v∥Xs,b
2

, with (r, s, k) satisfying a condition R1;

(ii) ∥v · u∥Xr,−d ≤ C∥v∥Xs,b
2

· ∥u∥Xk,b
3

with (r, s, k) satisfying a condition R2;

(iii) ∥w · w̃∥Xs,−d
2

≤ C∥w∥Xr,b · ∥w∥Xr,b with (r, s, k) satisfying a condition R3;

(iv) ∥w · u∥Xs,−d
2

≤ C∥w∥Xr,b · ∥u∥Xk,b
3

with (r, s, k) satisfying a condition R4 e

(v) ∥w · v∥Xk,−d
3

≤ C∥w∥Xr,b · ∥v∥Xs,b
2

with (r, s, k) satisfying a condition R5.

The region presented in the theorem is R = R1 ∩R2 ∩R3 ∩R4 ∩R5.

The inequalities (i) and (iii) are obtained in [1].

The Bougain space, Xa,b
j considered in this work is the completion of S(R2) with respect to the norm:

∥f∥Xa,b
j

=
∥∥∥⟨ξ⟩a⟨jτ + ϕ(ξ)⟩bf̂(τ, ξ)

∥∥∥
L2

τL
2
ξ

,

we consider Xa,b
1 = Xa,b.

The other inequalities are under review, therefore, this work is under writing for submission.
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Abstract

In this work, we will show that if (u, v) are sufficiently smooth solutions to the Cauchy problem associated

with a system of Schrodinger equations with nonlinear quadratic interactions such that there are a, b ∈ R with

suppu(tj) ⊂ (a, ∞) and suppv(tj) ⊂ (b, ∞) for j = 1 or 2 (t1 ̸= t2 ) then u ≡ v ≡ 0.

1 Introduction

This work is dedicated to studying the Unique Continuation problem of smooth solutions of the Cauchy problem

for a system of equations that arises in the context of nonlinear optics problems. More precisely, let’s study the

following mathematical model:
i∂tu(x, t) + p∂2xu(x, t)− θu(x, t) + ū(x, t)v(x, t) = 0, x ∈ R, t ≥ 0,

iσ∂tv(x, t) + q∂2xv(x, t)− αv(x, t) + a
2u

2(x, t) = 0,

u(x, 0) = u0(x), v(x, 0) = v0(x),

(1)

where u and v are functions that take on complex values and α, θ and a := 1/σ are real numbers that represent

physical parameters of the system, where σ > 0 and p, q = ±1. The model (1) is given by a nonlinear coupling of

two Schrodinger equations with quadratic terms of the type

N1(u, v) = u · v and N2(u, v) =
1

2
u · v. (2)

The model above was studied, in the period case, by Angulo and Linares in [2]. And in [1], we established

results of local and global well-posed for (1).

This work follows the ideas presented in [4] to establish the main result.

The key result for this work is presented in [3] which we present below:

Theorem 1.1. Given w ∈ L1([0, T ] : L∞(R)) ∩ L∞
loc([0, T ] × R) and suppose ∥w∥L1

tL
∞
x ({|x|>R}) −→ 0 when

R −→ ∞.

Assume that u ∈ C([0, T ] : H1(R)), ∂tu, ∂2xu ∈ L2
loc(R) is a solution of the equation

i∂tu+ ∂2xu = wu, (t, x) ∈ [0, T ]× R, (3)

and there are c, d ∈ R, with c ̸= 0 such that supp u(0), supp u(T ) ⊂ {x ∈ R : xc < d}, then u ≡ 0.

2 Main Results

The main result of this work is

Theorem 2.1. Given (u, v) ∈ C([0, T ] : H3 × H3) ∩ C1([0, T ] : L2(R) × L2(R)) strong solution of (1). Suppose

there are a, b ∈ R with supp u(0), supp u(T ) ⊂ (a,∞) and supp v(0), supp v(T ) ⊂ (b,∞), then u ≡ v ≡ 0. in

[0, T ]× R.
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Proof :

The proof of the same follows from the fact of revisiting the Theorem 2.1 and obtaining as a result the equation

(3) with u in place of u.

With a suitable change of we variables can assume θ = α = 0 in the system (1).

Lemmas 2.1 and 2.2 of [4] allow us to conclude that if (u, v) ∈ H3 ×H3 is a solution of (1) then w = v satisfies

the hypotheses of Theorem 2.1 and, as a hypothesis, u satisfies the hypotheses of the same theorem, it follows that

u ≡ 0.

Finally, it follows from the Theorem 2.1 that σi∂tv + ∂2xv = 0, (t, x) ∈ [0, T ] × R with supp v(0), supp

v(T ) ⊂ (b,∞) implies that v ≡ 0.

Finalizing the result.

Note: The theorem above remains valid for (u, v) ∈ Hs(R)×Hκ(R) with s = κ ≥ 3 and (u, v) solutions to the

Cauchy problem (1). In [1], results of good local placement are presented in regions described for the cases σ < 2,

σ = 2, and σ > 2.
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Abstract

We analyze the long-time behavior of the semigroup S(t) generated by a heat equation with degenerate

past history and a nonlinear heat supply posed in a three dimensional bounded domain Ω. Assuming that the

degeneracy occurs in a positive measure subset of Ω, we prove the existence and regularity of the global attractor

associated to this semigroup.

1 Introduction

We consider the heat equation with past history posed on a bounded domain Ω ⊂ R3,
θt − k0∆θ −

∫ t
−∞ k(t− s)div[a(x)∇θ]ds+ f(θ) = 0, (x, t) ∈ Ω× (0,∞);

θ(x, t) = 0, ∂Ω× R;
θ(x, s) = θ0(x, s), x ∈ Ω× (−∞, 0].

(1)

Here k represents the memory kernel, a(x) ≥ 0 is a smooth function such that a = 0 in A, A ⊂ Ω, and

θ0 : Ω× (−∞, 0] → R is the prescribed past history of θ.

According to Dafermos [3] and following Giorgi, Marzocchi and Pata [5], let us define a new variable η

corresponding to the relative displacement history,

ηt(x, s) =

∫ s

0

θt(x, τ)dτ =

∫ t

t−s
θ(x, τ)dτ.

being

θt(x, s) = θ(x, t− s).

Suppose that k(∞) = 0. Then, after performing a change of variables, a formal integration by parts lead us to∫ t

−∞
k(t− s)div[a(x)∇θ]ds =

∫ ∞

0

k′(s)div[a(x)∇ηt(x, s)]ds.

Therefore, system (1) is rewritten as

θt −∆θ −
∫∞
0

(−k′(s))div[a(x)∇ηt(x, s)]ds) + f(θ) = 0, (x, t, s) ∈ Ω× (0,∞)× (0,∞);

ηtt(x, s) = θ(x, t)− ∂sη
t(x, s), Ω× (0,∞)× (0,∞);

θ(x, t) = 0, ∂Ω× (0,∞);

ηt(x, s) = 0, ∂Ω× (0,∞)× (0,∞);

θ(x, 0) = θ0(x), x ∈ Ω;

η0(x, s) = η0(x, s), Ω× (0,∞).

(2)

Under appropriate assumptions we prove that this problem is well-posed and its solution operator S(t) is a

nonlinear C0-semigroup. After that, following some ideas from [1,2] we establish the existence and regularity of the

global attractor associated to this semigroup, which is the main result of this work.
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2 Main Results

In order to state our results, we first need to introduce some spaces which will be useful in our analysis. Consider

H1
a(Ω) = {u ∈ L2(Ω),

√
a∇u ∈ L2(Ω), u|∂Ω = 0}.

Let E be the operator E = −div[a∇], whose domain is such thatD(E) ⊂M = {u ∈ H1
a(Ω), a∇u ∈ H1(Ω)} ⊂ H1

a(Ω).

For r ∈ R, we define the scale of compactly nested Hilbert spaces

Hr = D(E r
2 ),

with inner products given by ⟨u, v⟩r = ⟨u, v⟩ + ⟨E r
2 u, E r

2 v⟩. Particularly, we have H0 = L2(Ω), H1 = H1
a(Ω). For

r ∈ R, we introduce the so-called history spaces

Mr = L2
(−k′)(R

+,Hr+1)

endowed with the weighted L2− inner products < η, ξ >Mr=

∫ ∞

0

(−k′(s)) < η, ξ >r+1 ds. Finally, consider

Hr = Hr ×Mr and Er(t) =
1

2
∥θ∥2r +

1

2

∫ ∞

0

(−k′(s))∥
√
a∇η∥2rds

the r−phase space and the r-energy associated with the problem (P), respectively.

Now we are able to state our results.

Proposition 2.1. There exist C0 > 0 and ϵ0 > 0 such that the energy associated with problem (P) satisfies

Er(t) ≤ 2E(0)e−ϵ0t + C0,

for all (θ, η) ∈ H0.

Proposition 2.2. For every t ≥ 0, there exists a closed and bounded set B(t) ⊂ H 1
3 such that distH(S(t)B0, B(t)) ≤

Λe−ωt, for constants Λ ≥ 0 and ω > 0.

Proposition 2.3. For every t ≥ 0, there exists a compact set K(t) ⊂ H0 such that

distH(S(t)B0),K(t)) ≤ Γe−ωt

for some Γ ≥ 0, and ω > 0 from the previous proposition.

Theorem 2.1. The global attractor A of S(t) is bounded in H0.
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Abstract

This work is concerned with the mathematical study of the general cell-fluid Navier-Stokes model with

inclusion of chemotaxis proposed by [4] in a particular case. More precisely, we investigate the existence of

solutions in a bounded domain Ω ⊂ Rn, n = 2, 3, when the fluids are supposed to have divergence free velocity

vectors and constant volume fraction.

1 Introduction

The model proposed by [4] is a general cell-fluid model that consists of two mass balance equations, two momentum

balance equations for the cell and fluid phase and a convection-diffusion-reaction equation for the oxygen. The

authors include the chemotaxis stress term in the pressure difference. This general model can represent the

Chemotaxis-Navier-Stokes model in a special case, in particular, the authors recover the Chemotaxis-Navier-Stokes

equations by considering that the fluids are incompressible among others assumptions.

The purpose of this work is to investigate a particular case of the model proposed by [4] from a mathematical

point of view. We consider the non-homogeneous case when the fluids have divergence free velocity vectors and

constant volume fraction:

1

2
(ρc)t +

1

2
∇ · (ρcuc) = 0, (1)

1

2
(ρω)t +

1

2
∇ · (ρωuω) = 0, (2)

1

2
(ρcuc)t +∇ ·

(
1

2
ρcuc ⊗ uc

)
+

1

2
∇ (Pc + Λ(c)) = ζ(uω − uc) +

1

2
ρcg + εc∇ · (ρcDuc) , (3)

∇ · uc = 0, (4)

1

2
(ρωuω)t +∇ ·

(
1

2
ρωuω ⊗ uω

)
+

1

2
∇Pω = ζ(uc − uω) +

1

2
ρωg + εω∇ · (ρωDuω) , (5)

∇ · uω = 0, (6)

ct +∇ · (cuω) = ∇ · (Dc∇c)−
κ

2
c, (7)

where Du = 1
2

(
∇u+ (∇u)T

)
, ρc and ρω are the cell and the fluid densities; uc and uω are the velocities of the cell

and the fluid; Pc and Pω represent the cell and the fluid pressures; c is the oxygen concentration; g is the gravity

constants; the constants ϵc and ϵω are the effective viscosities cell and fluid; ζ is a constant that represents the

cell-fluid interaction; the constant κ is the consumption rate; Dc is a constant related to the diffusion coefficient;

and Λ(c) = Λ0 − Λ1c, where Λ0 and Λ1 are constants, is the chemotaxis stress.

We supplement the system (1)-(7) with the following initial and boundary conditions

uc = uω = 0,
∂c

∂η
= 0, in ∂Ω× (0,∞), (8)

ρc(x, 0) = ρc,0, ρω(x, 0) = ρω,0, uc(x, 0) = uc,0, uω(x, 0) = uω,0, c(x, 0) = c0, (9)
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in Ω, where Ω is a bounded domain of Rn, n = 2, 3, with smooth boundary ∂Ω.

To state the existence of weak solutions, we apply the Semi-Galerkin method and we follow the idea of [1,3],

for example. And to estate the existence and uniqueness of strong solution we follow the idea of [2]. In this case,

we start by linearizing problem (1)-(7) and prove the existence of strong solution for this linearized problem. Next,

we construct a sequence of approximate solutions in a inductively way and prove that this sequence is bounded

independently of the index. Finally, we show that the whole sequence converges to a strong solution of (1)-(7) in a

sufficiently strong sense.
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Abstract

In this work we provide a comparison principle for the weak solutions u(·, t), v(·, t) of two similar evolution

p-Laplacian equations, both with source terms in a divergent and non-divergent form. The initial conditions

u(·, 0) and v(·, 0) are supposed to belong to the space L1(Rn) ∩ L∞(Rn). Once we treat with signal solutions

defined in all space Rn, for all t in a maximal existence interval [0, T∗), the arguments presented here differ from

the ones used to prove the comparison principle in bounded domains. We suppose p ≥ n, p > 2 and also consider

some additional natural assumptions.

1 Introduction

The main objective of this work is to present a comparison principle (proved in [2]), for the solutions u(·, t) and

v(·, t), defined in a maximal existence interval [0, T∗) and [0, T∗∗) respectively, of two similar initial value problems

for evolution p-laplacian equations of the type

ut + divf(x, t, u) = div (|∇u|p−2 ∇u) + g(x, t, u) + h(x, t), (1)

u(·, 0) = u0 ∈ L1(Rn) ∩ L∞(Rn), (2)

and

vt + divf(x, t, v) = div (|∇v|p−2 ∇v) +G(x, t, v) +H(x, t), (3)

v(·, 0) = v0 ∈ L1(Rn) ∩ L∞(Rn), (4)

where p > 2 is a constant, p ≥ n, such that g(x, t,u) ≤ G(x, t,u) and h(x, t) ≤ H(x, t) ∀ x ∈ Rn 0 ≤ t ≤ T and

|u| ∈ R.
We also require that f = (f1, f2, . . . , fn), g, G, h and H are given continous functions that satisfy the following

basic hypothesis:

|f(x, t, u)| ≤ Kf (M,T ) |u| and |g(x, t, u)| ≤ K
g
(M,T ) |u| ∀x ∈ Rn, 0 ≤ t ≤ T, |u| ≤M, (5)

|G(x, t, v)| ≤ KG(M,T ) |v| ∀ x ∈ Rn, 0 ≤ t ≤ T, |v| ≤M, (6)

with constants Kf (M,T ),Kg(M,T ),KG(M,T ) depending upon the values of M,T and where | · | denotes the

absolute value (in case of scalars) or the Euclidean norm (in case of vectors), and h(·, t) ∈ L1
loc([ 0,∞), L1(Rn)) and

H(·, t) ∈ L1
loc([0,∞), L1(Rn)). We also need this additional assumption about the functions f , g and G :

|f(x, t, u)− f(x, t, v)| ≤ Lf (M,T )|u− v| (7)

|g(x, t, u)− g(x, t, v)| ≤ Lg(M,T )|u− v| (8)
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|G(x, t, u)−G(x, t, v)| ≤ LG(M,T )|u− v|, (9)

for all x ∈ Rn, t ∈ [0, T ] for any T > 0 such that both solutions are defined. Besides that, |u| ≤M , |v| ≤M , where

M =M(T ) is a constant that depends on T .

In this work we are considering a weak solution in some time interval [0, T∗), any function w(·, t) ∈ S, satisfying

the problem (1) with some initial condition w(·, 0) = w0 ∈ L1(Rn) ∩ L∞(Rn), where S = L∞
loc([0, T∗), L

1(Rn) ∩
L∞(Rn)) ∩C0([0, T∗), L

1
loc(Rn)) ∩ L

p
loc((0, T∗),W

1,p
loc (Rn)), for p > 2 and p ≥ n. For the local (in time) existence of

solutions, see e.g. [3,4,5,6,7]. For the global (in time) existence of solutions, see e.g. [1,3].

2 Main Results

Our purpose is to show the following comparison theorem for the solutions u(·, t) and v(·, t) of the problems

(1a)− (1b) and (2a)− (2b) respectively.

Theorem 2.1. Let p ≥ n, p > 2 and u(·, t), v(·, t) ∈ S solutions of (1)-(2) and (3)-(2) respectively, such that

g(x, t, u) ≤ G(x, t, u) and h(x, t) ≤ H(x, t) ∀ x ∈ Rn 0 ≤ t ≤ T and |u| ∈ R. Under the assumptions (5) - (9)

above, if u0 ≤ v0, then we have

u(·, t) ≤ v(·, t) ∀ 0 < t ≤ T

for any T > 0 such that both solutions are defined in [0, T ].

Proof The idea of the proof is first to demonstrate, under the hyphotesis of the theorem, that∫
Rn

(u(x, t)− v(x, t))+dx ≤ eLG(M,T )t

∫
Rn

(u0(x)− v0(x))+dx

and ∫
Rn

(u(x, t)− v(x, t))−dx ≤ eLG(M,T )t

∫
Rn

(u0(x)− v0(x))−dx,

∀ 0 ≤ t ≤ T < T∗. Then, if u0 ≤ v0, the results follows.

References

[1] chagas, j.q., guidolin, p.l. & zingano, p.r. - Global solvability results for parabolic equations with p-

Laplacian type diffused, J. Math. Anal. Appl., 458, (2018), 860-874.
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Abstract

This paper deals with the Stackelberg-Nash strategies for boundary control problems for linear and semilinear

wave equations. Assuming that we can act on the system through a hierarchy of controls, to each leader we

associate a Nash equilibrium (two followers) corresponding to a bi-objective optimal control problem. Then we

look for a leader that solves an exact boundary controllability problem.

1 Introduction

Let Ω ⊂ RN be a bounded domain with boundary of class C2, let us assume that T > 0 and let us inttroduce

nonempty open sets Γ0,Γ1,Γ2 ⊂ ∂Ω. We will set Q := Ω× (0, T ), Σ := Γ× (0, T ) and Σi := Σi for i = 0, 1, 2 and

we will denote by ν = ν(x) the outwards unit normal to Ω at the point x ∈ ∂Ω.

Consider the following semilinear system:
ytt −∆y + a(x, t) y = F (y) in Q,

y = f 1Γ0 + v1 1Γ1 + v2 1Γ2 on Σ,

y(· , 0) = y0, yt(· , 0) = y1 in Ω,

(1)

where a ∈ L∞(Q), f ∈ L2(Σ0), v
i ∈ L2(Σi) (i = 1, 2), F : R 7→ R is a C1 function, (y0, y1) ∈ L2(Ω)×H−1(Ω) and

1A stands for the characteristic function of A.

The main goal of this article is to give a positive answer to a question left open in [1]. More precisely, the

objective is to get hierarchical exact controllability results for (1) following a Stackelberg-Nash strategy.

Let us mention that these results extend the results of [5] in two directions: we get exact and not approximate

control and, moreover, we work with several followers.

For simplicity, we will assume in the sequel that only three controls are applied (one leader and two followers),

but very similar considerations hold for systems with a higher number of controls.

Let us define the following main cost functional

J(f) :=
1

2

∫∫
Σ0

|f |2 dΓ dt

and the secondary cost functionals

Ji(f ; v
1, v2) :=

αi
2

∫∫
Oi,d×(0,T )

|y − yi,d|2 dx dt+
µi
2

∫∫
Σi

∣∣vi∣∣2 dΓ dt, i = 1, 2, (2)

where the Oi,d ⊂ Ω are nonempty open sets, the yi,d ∈ L2(Oi,d × (0, T )) are given functions, the αi and µi are

positive constants and y is the solution to (1).
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1.1 Main results

Let us present the main results of this paper.

Let x0 ∈ Rn \ Ω be given and let us introduce the set

Γ+ := {x ∈ Γ; (x− x0) · ν(x) > 0} ,

the function d : Ω 7→ R with d(x) = |x− x0|2 for all x ∈ Ω and the quantities

R0 := min{
√
d(x); x ∈ Ω} and R1 := max{

√
d(x); x ∈ Ω}.

In the sequel, we will impose the assumptions

Γ0 ⊃ Γ+ and T > 2R1. (3)

Definition 1.1. Let f ∈ L2(Σ0) be given. It will be said that the pair (v1, v2) is a Nash quasi-equilibrium for the

functionals Ji associated to f if

J ′
i(f ; v

1, v2) · v̂i = 0 ∀ v̂i ∈ L2(Σi), i = 1, 2. (4)

The following result holds in the semilinear case:

Theorem 1.1. Assume that F is C1 and globally Lipschitz-continuous and the µi > 0 (i = 1, 2) are large enough,

depending on Ω, O, Γi, Oi,d, T , R1 and ∥F∥W 1,∞ . Let (ȳ0, ȳ1) ∈ L2(Ω)×H−1(Ω) be given and let ȳ be an associated

trajectory. Then, for any (y0, y1) ∈ L2(Ω) × H−1(Ω), there exist a control f ∈ L2(Σ0) and an associated Nash

quasi-equilibrium (v1(f), v2(f)) such that the corresponding solution to (1) satisfies

y(· , T ) = ȳ(· , T ), yt(· , T ) = ȳt(· , T ) in Ω.
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Abstract

Firstly, we are looking for the ground states of NLS-δ′s equation on the star graph. Secondly, we study

spectral/orbital instability of the critical points of an associated action functional.

1 Introduction

Let Γ be a star graph identified with the disjoint union of the intervals Ij = (0,∞), j = 1, . . . , N , augmented by the

central vertex v = 0. In [3] we study the following focusing nonlinear Schrödinger equation on Γ with δ′s coupling:

i∂tu(t, x) = −∆βu(t, x)− |u(t, x)|p−1
u(t, x), (t, x) ∈ R× Γ, (1)

where β ∈ R \ {0}, p > 1, u : R× Γ → CN , and (−∆βv) (x) = (−v′′j (x)), with
dom(∆β) =

{
v ∈ H1(Γ) : v′1(0) = . . . = v′N (0),

∑N
j=1 vj(0) = βv′1(0)

}
.

The Schrödinger operator −∆β with δ′s coupling has the precise interpretation as the self-adjoint operator

on L2(Γ) uniquely associated with the closed semibounded quadratic form Fβ(v) = ∥v′∥22 +
1

β

∣∣∣∣∣ N∑j=1

vj(0)

∣∣∣∣∣
2

on H1(Γ). It belongs to N2-parametric family of self-adjoint extensions of the minimal symmetric operator

(−∆minv) (x) =
(
−v′′j (x)

)N
j=1

,

dom (∆min) =
{
v ∈ H2(Γ) : v1(0) = . . . = vN (0) = 0, v′1(0) = . . . = v′N (0) = 0

}
.

It is a difficult problem to understand which of self-adjoint conditions are physically relevant (self-adjointness is

just a necessary physical requirement to ensure conservation of the probability current at the vertex).

Among all matching conditions, the most popular are the Kirchhoff ones: v1(0) = . . . = vN (0),
∑N
j=1 v

′
j(0) = 0.

Justifications of the Kirchhoff conditions on different types of metric graphs have been obtained in many physical

experiments involving wave propagation in thin waveguides and quantum nanowires. These arguments led to the

fact that the Kirchhoff conditions have been assumed the most natural, hence they become the most widely studied.

The systematic study of nonlinear evolution equations on metric graphs dates back to the nineties. The nonlinear

PDEs on graphs, mostly the nonlinear Schrödinger equation (NLS), have been studied in the past decade in the

context of existence, stability, and propagation of solitary waves (see [6] for the references). Two fields where NLS

equation appears as a preferred model are optics of nonlinear Kerr media and dynamics of Bose-Einstein condensates

involving application to graph-like structures. The extensive study of existence of ground states (as minimizers of

energy functional under fixed mass) for the NLS models on metric graphs was carried out in the presence of the

Kitchhoff conditions at the vertices of the graph (see [2] and references therein). The existence and the stability of

solitary waves for different types of graphs with the Kirchhoff conditions at the vertices were treated in numerous

papers (see [5] for the references).

Rigorous study of the NLS models on graphs in presence of impurities is related to a so-called δ coupling. On

Γ it is defined by: v1(0) = . . . = vN (0),
∑N
j=1 v

′
j(0) = αv1(0), α ∈ R \ {0}. The δ coupling is the most studied

non-Kirchhoff condition.

If we drop the continuity condition v1(0) = . . . = vN (0), the next more general class of self-adjoint conditions

which seems natural for applications consists of those which are permutation invariant at each vertex. The δ′s
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coupling belongs to this class. It is a natural generalization of the δ′ coupling on the line. Its systematic investigation

appears in [1]. The authors prove the existence of the minimizer of the action functional Sω on the Nehari manifold

for attractive coupling. It appears that the δ′ coupling gives rise to a rich structure of a family of ground states,

including a pitchfork bifurcation with symmetry breaking. Mathematically, the main advantage of studying δ′ and

δ′s coupling (on R and Γ respectively) is the existence of an explicit nontrivial family of soliton profiles.

2 Main Results

In [3] we extend the results from [1] for the NLS model on Γ. Firstly, we deal with the existence of the ground states

as minimizers of the action functional Sω restricted to the Nehari manifold. We prove that for an attractive and a

sufficiently weak δ′s coupling the minimizer exists. The principal step in the proof is to compare our minimization

problem with the one for β = ∞. This problem involves the technique of symmetric rearrangements on Γ.

Secondly, we are looking for the candidates to be the minimizers, i.e. critical points to Sω of the form eiθϕ(x),

where ϕ(x) is a real-valued profile. It appears that for ω > p+1
p−1

N2

β2 the whole family of such critical points consists of

N profiles (one is symmetric ϕβ and N−1 are asymmetric profiles ϕk). We show that for ω > p+1
p−1

N2

β2 the minimizer

is given by the asymmetric tail-profile ϕ1, moreover we conjecture that for ω below p+1
p−1

N2

β2 the symmetric profile

ϕβ is the minimizer.

Lastly, we study instability properties of the family of the critical points mentioned above. Namely, using the

Grillakis/Jones Instability Theorem (see [4]), we have proved spectral instability of the asymmetric critical points

ϕk for β < 0, k ≥ 2 and β > 0, N − k ≥ 4. For p > 2, using C2 regularity of the mapping data-solution, we have

shown orbital instability of ϕk.

We also concertize the instability results by proving strong instability (by blow up) of the symmetric profile ϕβ

in the supercritical case p > 5. The proof essentially uses variational characterization of ϕβ .
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Abstract

We consider the dynamical one-dimensional semilinear systems for beams and we analyze how its

controllability properties depend on the modulus of elasticity in shear k. This joint work with Fágner Araruna

(UFPB) and Diego Souza (Universidad de Sevilla).

1 Introduction

The Mindlin-Timoshenko system for thin beams and plates is a widely used model in applications because it takes

into account the vertical displacement and the transverse shear effects. The one-dimensional version reads as:
ρh3

12
utt − uxx + k(u+ vx) = 0 in Q,

ρhvtt − k(u+ vx)x + f(v) = 0 in Q.
(1)

Here, Q := (0, L) × (0, T ), being L > 0 the length of the beam and T > 0 a given time. The angle of rotation

and the vertical displacement at time t of the cross section located at x units from the origin are represented by

u = u(x, t) and v = v(x, t), respectively. The function f is a nonlinear term and the constant h > 0 represents the

thickness of beam which, for this model, is arbitrarily small compared to L. The constant ρ is mass density per

volume unit of the beam and the parameter k is the modulus of elasticity in shear. For more details about the

Mindlin-Timoshenko parameters and governing equations see [1,2].

Another model used to describe vertical displacement of beams is the so-called Kirchhoff equation. It is modelled

when the linear filament of beam remains perpendicular to the deformed middle surface, see [2]. The semilinear

Kirchhoff equation reads as:

ρhvtt −
ρh3

12
vxxtt + vxxxx + f(v) = 0 in Q. (2)

2 Main Results

In this paper, we analyze the boundary exact controllability problem for semilinear Mindlin–Timoshenko and

Kirchhoff beam models by using only one boundary control.

Firstly, we will analyze the controllability problem for the semilinear Mindlin–Timoshenko:

ρh3

12
utt − uxx + k(u+ vx) = 0 in Q,

ρhvtt − k(u+ vx)x + f(v) = 0 in Q,

u(0, ·) = 0, u(L, ·) = 0 in (0, T ),

vx(0, ·) = Θk, vx(L, ·) = 0 in (0, T ).

u(·, 0) = u0, ut(·, 0) = u1 in (0, L),

v(·, 0) = v0, vt(·, 0) = v1 in (0, L).

(1)

121



122

These boundary conditions means that the angle of rotation is kept fixed at both x = 0 and x = L, a boundary

control Θk acts on the slope of the vertical displacement at the extreme x = 0 and no slope is considered at x = L.

Secondly, we will deal with the controllability problem for the semilinear Kirchhoff equation:

ρhvtt −
ρh3

12
vxxtt + vxxxx + f(v) = 0 in Q,

vx(0, ·) = vx(L, ·) = 0 in (0, T ),

vxxx(0, ·) = Υ, vxxx(L, ·) = 0 in (0, T ),

v(·, 0) = v0, vt(·, 0) = v1 in (0, L).

(2)

In this case, the boundary conditions means there are no slopes of the vertical displacement at the extremes x = 0

and x = L, a boundary control Υ enters this system through the third derivative of the displacement at x = 0,

which is interpreted as the shearing force on the beam at x = 0, and no shearing forces are exerted on the beam at

x = L. Shearing forces on the beam are unaligned vertical forces pushing one part of the beam in one direction,

and another part of the beam in the opposite direction.

On the other hand, throughout this paper, the nonlinearity f satisfies the following conditions:

f ∈ L∞
loc(R), f ′ ∈ L∞(R), lim

|s|→+∞

f(s)

s
= α, (3)

where α is a real number. The last condition above means that f behaves as αs, when |s| → +∞, and this kind of

nonlinearity is known as asymptotically linear nonlinearity. It is worth to mentioning that many problems which

involve asymptotically linear nonlinearities have physically significance. For example, nonlinearities of the form

f(s) =
|s|2

1 + γ|s|2
s, γ > 0,

were found to describe the variation of the dielectric constant of gas vapors where a laser beam propagates, those

of the form

f(s) =

(
1− 1

eγ|s|2

)
s, γ > 0,

were used in the context of laser beams in plasma.

We have our first main result:

Theorem 2.1. Let k ≥ 1 be fixed and T > 2Lmax{
√
ρh3/12,

√
ρh/k}. Then, for every data (u1, u0, v1, v0) and

(u1, u0, v1, v0) in H−1 (0, L)× L2 (0, L)× [H1 (0, L)]′ × L2 (0, L), there exists a boundary control Θk ∈ H−1(0, T )

such that the associated solution (u, v) to (1) satisfies

(u(·, T ), ut(·, T ), v(·, T ), vt(·, T )) = (u0, u1, v0, v1) in (0, L). (4)

Our second main result is the following:

Theorem 2.2. Let T > 2L
√
ρh3/12. Then, for every (v0, v1) and (v0, v1) in H1(0, L) × L2(0, L), there exists a

boundary control Υ ∈ H−1(0, T ) such that the associated solution v to (2) satisfies

(v(·, T ), vt(·, T )) = (v0, v1) in (0, L). (5)
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Abstract

We present, analyse and simulate a model for predator-prey interaction with hunger structure. The model

consists of a nonlocal transport equation for the predator, coupled to an ODE for the prey. We deduce a

system of 3 ODEs for some integral quantities of the transport equation, which generalises some classical Lotka-

Volterra systems. By taking an asymptotic regime of fast hunger variation, we find that this system provides

new interpretations and derivations of several variations of the classical Lotka–Volterra system, including the

Holling-type functional responses. We next establish a well-posedness result for the nonlocal transport equation

by means of a fixed-point method. Finally, we show that in the basin of attraction of the nontrivial equilibrium,

the asymptotic behaviour of the original coupled PDE-ODE system is completely described by solutions of the

ODE system. The present work is published in [1].

1 Introduction

The aim of the present work is to introduce a new model for predator-prey dynamics, which includes effects due

to predator hunger. Specifically, in the context of the classical Lotka-Volterra predator-prey dynamics with logistic

prey dynamics, {
u′ = αuw − u

w′ = βw(1− w − u)
(1)

(where u is the predator and w is the prey), it is assumed that predator efficiency, represented by the term αuw,

depends only on the values of u and w, and a nondimensional constant α. The same remark is true even in the

case of models allowing for more realistic functional responses than just αuw.

In nature, however, it is to be expected that the level of hunger of an individual (in whatever way that is defined)

will induce it to behave in distinct ways: when hunger is low, the predator feels sated and may allow itself to rest,

as is observed for instance in lions; in contrast, when hunger level is high, we may expect that a predator will try to

increase its efficiency – for instance, by hunting less desirable prey, or trying harder to capture prey – but only up

to a certain point, after which hunger will translate into an actual weakening of the individual and thus a reduction

of its fitness. Conversely, a sated individual can be expected to have a greater reproductive potential, and so it is

natural to assume that low values of hunger correlate with a greater fitness.

This leads us to propose the following system, which consists of a transport equation for the predator ρ(t, λ),

whose population is structured by a hunger variable λ ∈ [0, 1], coupled with an ODE for the prey population w(t).

See [1] for more details. 
∂tρ+ ∂λ

(
(α1 − α2wλ)ρ

)
= ρα3β(z)

w′(t) = w(1− w)− wuγ(z),

(2)

u(t) =

∫ +∞

0

ρ(t, λ) dλ, z(t) =
1

u(t)

∫ +∞

0

λρ(t, λ) dλ,
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From eq. (2), we can deduce that the integral quantities of the system satisfy the following system,
u′ = α3uβ(z)

z′ = α1 − α2wz

w′ = w(1− w)− wuγ(z)

(3)

where u is the predator, w the prey, z is the mean hunger, and in this work we explore the relationship of this

system to well-known predator-prey models from the literature.

2 Main Results

The definition of solution to the equation (2) is

Definition 2.1. A solution of problem (2) is a pair ρ, w satisfying for almost every t > 0, λ ∈ R,

(1 + |λ|)ρ(t, λ) ∈ L1(R), w ∈ C1(R+),
ρ(t, λ) = ρ0(λ

↓t) exp
(∫ t

0

α3β
(
z(s)

)
+ α2w(s) ds

)
,

w′(t) = w(1− w)− wu(t)z(t),

ρ0(λ) ≥ 0, suppρ0 ⊂ (0,+∞), u(0) > 0, w(0) = w0 > 0,

(1)

where λ↓t denotes the action of the diffeomorphism generated by the characteristics. With this definition we

can prove the following well-posedness result:

Theorem 2.1. Suppose that w(0) > 0, ρ0 ∈ C1(R) such that
∫
R ρ0 dλ > 0, (1 + |λ|2)ρ′0(λ) ∈ L1(R), and

suppρ0 ⊂ (0,+∞). Let β(z) and γ(z) verify some growth assumptions. Then, there exists a unique solution

of the system (2) in the sense of Definition 2.1.

The proof, found in [1], follows a fixed point method, and special care must be taken due to the nonlocal

character of the equations.

We further prove a result about the asymptotic behavior of the solutions, showing that they concentrate (under

some circumstances) on dirac deltas at some explicitly defined values, and provide numerica experiments to illustrate

our results.
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Abstract

We consider the heat equation with dynamic boundary conditions. Using complex interpolation results by

Seeley and Grisvard, we characterize the typical interpolation spaces asssociated to the problem. Then we

provide sufficient conditions to define Lipschitz functions on those spaces. We apply our results to improve the

regularity of solutions and global attractors that can be found in the literature.

1 Introduction

Let Ω ⊂ Rn be a bounded connected open set with C∞ boundary Γ = ∂Ω. In this talk, we will be concerned with

the following equation:
∂u

∂t
= ∆u− λ1u+ f(u), (t, x) ∈ R+ × Ω,

∂u

∂t
= ∆Γu− ∂u

∂ν
− λ2u+ g(u), (t, x) ∈ R+ × Γ,

u = u0, t = 0, x ∈ Ω,

(1)

where R+ = [0,∞), λ1, λ2 ≥ 0 and either λ1 or λ2 is strictly larger than 0. The operator ∆ is the Laplacian, ∆Γ is

the Laplace-Beltrami operator acting on Γ and ν is the outward unit normal vector field on the boundary. Due to

the presence of the Laplace-Beltrami, we say that the boundary condition is of reactive-diffusive type.

In our presentation:

� We first recall the typical function spaces that are used in the study of (1). We show how to define an analytic

semigroup and how to use it to write the equation as an abstract parabolic equation.

� We provide new interpolation formulas and we show how to define Lipschitz continuous functions on the

interpolation spaces.

� We provide new abstract results, based on standard arguments that, under suitable conditions on f and g,

can be used to obtain higher order regularity of the solutions and of the global attractor.

� Finally we show how similar problems can be treated similarly. In particular, we compare with the case where

we do not have the Laplace-Beltrami term, that is, the boundary condition is of pure reactive type. For this

case, some small, but important changes are necessary.

2 Main Result

In the presentation, our main aim is to explain the following result. In the presentation, our main aim is to explain

the following result.
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Theorem 2.1 (Main Theorem). Let s ∈ [−1/p, 1−1/p), p ∈ (n,∞) and n ≥ 2. If f ∈ C3,1(R) satisfies a dissipative

condition and g = f , then the solutions of (1) belong to C3,α(Ω)∩C4,α(Γ) for each t > 0 and u0 ∈ H1
p (Ω)∩Bspp(Γ).

Moreover, a semigroup on H1
p (Ω) ∩Bspp(Γ) can be defined with a global attractor contained in C3,α(Ω) ∩ C4,α(Γ).

In the main theorem, Ck,α is used to denote a function that is of class Ck, whose the kth-derivative is Hölder

continous.

Besides the main theorem, we show how some results found in the literature can be easily obtained, due to our

complete characterization of the interpolation spaces.

Finally, we also compare our results with the works of Gal, Meyries, Sprekels and Wu.
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Abstract

In this paper, we are interested in studying theoretical analysis for the stability of a vibrating beam of finite

length which is fixed at one end and free at the other end and with a dynamical boundary control. The position

u(x, t) of the point x of the beam, at the instant t, is governed by the following wave equation:

utt(x, t)− uxx(x, t) +M (u(x, t)) = 0, 0 < x < 1, t > 0

u(0, t) = 0, ux(1, t) = −ξ(t), t > 0

ξt(t) + ξ(t) = ut(1, t), t > 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < 1, ξ(0) = ξ0 ∈ R

Where M : R → R, be such that s ·M(s) ≥ 0, Lipschitziana and derivable except a finite number.

The solution of problem is a pair of functions {u, ζ} , where u = u(x, t) depending on time t and spatial variable

x and ξ = ξ(t) is dependent only on t. The ξ(t) function denotes the dynamic control.

1 Introduction

In recent years, the study of mathematical models related to flexible structures subject to vibrations have been

significantly driven by an increasing number of issues of practical interest.

Among these models, those related to structural engineering stand out, which require active control mechanisms to

stabilize inherently unstable structures or have a natural damping.

When a vibrating source (deformation) disturbs the medium, one can control these vibrations by adding several

dampers, one option is dynamic damping.

The concept of dynamic control was introduced by automatists in the finite case dimensional (see Francis \cite{3}).

In the case of infinite dimension, the concept of dynamics of controls is considered as an indirect damping mechanism

proposed by Russell \cite{5} and, since then, it attracted the attention of many authors.

In \cite{6}, they theoretically studied the stabilization of one-dimensional wave equations with dynamic limit

control, and establishing, by a multiplier method, an optimal polynomial which gives an energy decay rate of the

type 1/(t+ 1) . A numerical analysis for a locally damped equation was made in \cite{2}.

Introduce the energy space

H1
E(0, 1) = {χ ∈ H(0, 1), χ(0) = 0}

We observe

H1
E(0, 1) ⊂ C[0, 1]

Let us represent by G the function

G(s) =

∫ s

0

M(r)dr
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The energy of system is defined by

E(t) =
1

2

(∫ 1

0

(|ux(x, t)|2 + |ut(x, t)|2 + 2

∫ 1

0

G(u(t))dx+ |ξ(t)|2
)
,

2 Main Results

Theorem 2.1. Assume that y0 ∈ H1
E(0, 1)∩H2(0, 1), y1 ∈ H1

E(0, 1)∩H2(0, 1), G(y0) ∈ L1(0, 1) and ξ0 = −y0x(1).
Then, for each T > 0, there exist a unique solution to the problem under the following regularity

y ∈ L∞ (0, T,H1
E(0, 1) ∩H2(0, 1)

)
yt ∈ L∞ (0, T, L2(0, 1)

)
∩ L2

(
0, T,H1

E(0, 1)
)

ytt ∈ L∞ (0, T, L2(0, 1)
)
∩ L2

(
0, T,H1

E(0, 1)
)

η, ηt ∈ L∞ (0, T ) ∩H1 (0, 1)

ytt − yxx +M(y) = 0, a.e. in (0, 1)× (0, T )

y(0, t) = 0, yx(1, t) = −η(t),

ηt(t) + η(t) = yt(1, t),

y(0) = y0, yt(0) = y1 in (0, 1)
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Abstract

We consider the wave equation with a type of logarithmic dispersion under effects of a strong damping.

This research is a part of a family of wave equations type that was initiated by Charão-Ikehata [1], Charão-

D’Abbicco-Ikehata considered in [2] depending on a parameter θ ∈ (0, 1/2) and Piske-Charão-Ikehata [4] for

small parameter.

1 Introduction

We consider in this work strongly damped wave equation under effects of a logarithmic dispersion depending on a

parameter θ as follows
utt −∆u+m2Lθu−∆ut = 0, t > 0, x ∈ Rn (1)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn, (2)

for θ ∈ (0, 1] and m > 0. In this connection, θ = 0 case is already studied by D’Abbicco-Ikehata [5], so one should

restrict the parameter θ to the case θ > 0. In this sense, this study is a kind of generalization of [5] to the general

θ ∈ (0, 1) through the logarithmic Laplacian type of dispersion term. Asymptotic behavior of the solution and its

optimal decay/growth property has been already discussed in [3,4] considering the operator logarithmic-Laplacian

included in the equation. Without loss of generalization we consider u0 = 0.

The linear operator Lθ : D(Lθ) ⊂ L2(Rn) → L2(Rn), θ > 0 is defined as follows

D(Lθ) :=

{
f ∈ L2(Rn)

∣∣ ∫
Rn

(log(1 + |ξ|2θ))2|f̂(ξ)|2dξ < +∞
}

= Y 2
θ

and (Lθf)(x) := F−1
ξ→x

(
log(1 + |ξ|2θ)f̂(ξ)

)
(x), for f ∈ D(Lθ).

2 Main Results

The asymptotic profile as t→ ∞ of the solution we consider to problem (1.1)-(1.2) is

φ(t, ξ) = P1e
− |ξ|2

2 t sin
(
t
√
|ξ|2 +m2 log(1 + |ξ|2θ)

)√
|ξ|2 +m2 log(1 + |ξ|2θ)

. (3)

The main result of this work is given by the following theorem.

Theorem 2.1. Let ∥u1∥1,θ := ∥(1 + | · |θ)u1∥1, n ≥ 1 and 0 < θ < 1. Let φ the function defined in (3). Choose

u0 = 0, and u1 ∈ L1,θ(Rn) ∩L2(Rn). Then there exists a positive constant C = Cn,δ0,θ such that the mild solution

u ∈ C([0,∞);H1(Rn)) ∩ C1([0,∞);L2(Rn)) to problem (1.1)-(1.2) satisfies∫
Rn

|û(t, ξ)− φ(t, ξ)|2dξ ≤ Cn,δ0,θ

(
m−2P 2

1 t
−n+8−6θ

2 +m−2P 2
1 t

−n+4−4θ
2 +m−2||u1||21,θt−

n
2 + P 2

1 e
−γt

+ ||u1||21t2e−γt + ||u1||21t2e−αt + ||u1||21t2e−βt
)
, t ≥ 0,

where α > 0, β > 0 and γ > 0 are constants and P1 =
∫
Rn u1(x)dx.
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As a result of Theorem 2.1, the following optimal L2-estimates to the solution of problem (1.1)-(1.2) hold.

Theorem 2.2. Under the same assumptions as in Theorem 2.1 the following statements are true.

(i) for n = 1 with 0 < θ < 1
2 , n = 2 with 0 < θ < 1 and n ≥ 3 with 0 < θ ≤ 1, there exist positive constants

C1, C2 depending on n, θ and m > 0 such that

C1|P1|t−
n−2θ

4 ≤ ∥u(t, ·)∥ ≤ C2

(
∥u1∥1 + ∥u1∥1,θ

)
t−

n−2θ
4 , t≫ 1,

(ii) for n = 1 and 1
2 < θ ≤ 1, there exist positive constants C1, C2 such that

C1

(1 +m2)
1
4θ

|P1|t
2θ−1
2θ ≤ ∥u(t, ·)∥ ≤ C2

m

1√
2θ − 1

(
∥u1∥1 + ∥u1∥1,θ

)
t
2θ−1
2θ , t≫ 1,

(iii) and for n = 1 and θ = 1
2 or n = 2 and θ = 1, there exist positive constants C1, C2 such that

C1√
2 +m2

|P1|
√

log t ≤ ∥u(t, ·)∥ ≤ C2

m

(
∥u1∥1 + ∥u1∥1,θ

)√
log t, t≫ 1

Remark 2.1. The result of (i) in Theorem 2.2 implies decay estimates, and this comes from the stronger effect

with decay order t−
n
4 from the Gauss kernel e−t|ξ|

2/2 in the low frequency zone, and the osscilation part gives a

small effect with growth order t
θ
2 , while (ii) and (iii) of Theorem 1.2 reflect a stronger effect of the osscilation part

sin
(
t
√

|ξ|2 +m2 log(1 + |ξ|2θ)
)√

|ξ|2 +m2 log(1 + |ξ|2θ)
,

of the profile, and the diffusion part is no effective. As a result one can get infinite time blow up results as t→ ∞
in (ii) and (iii). This reflects a singularity included in the solution itself. This kind of growth property has been

newly discovered to the equation (1.1).
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Abstract

In this manuscript we investigate a nonlocal transport β-1D model with supercritical dissipation in which

velocity is coupled via a composition of the Hilbert transform and Riesz potentials. We show blow-up in finite

time in part of the supercritical range based on suitable weighted estimates.

1 Introduction

In the present text we consider the initial value problem (IVP) for the β-1D transport equation with nonlocal

velocity {
∂tθ − (Λ−βHθ)∂xθ + µΛγθ = 0 in T× (0,∞)

θ(0, x) = θ0(x) in T,
(1)

where 0 < β < 1, 0 < γ < 2, µ > 0, and T is the 1D torus. The study of the IVP (1) is divided into three basic

cases that reflect the balance between the nonlinearity and dissipation: subcritical 1−β < γ < 2, critical γ = 1−β
and supercritical γ < 1− β.

This IVP was initially considered by Bae, Granero-Belinchón e Lazar [1] that proved the global existence of

weak solutions in the critical and subcritical cases with nonnegative initial data θ0 ∈ L1 ∩ L∞. Silvestre and Vicol

[4] obtained blow-up of solutions with µ = 0 and 0 < β < 1. In addition, they analyzed some possible Hölder

regularization effects and their consequences to and (1) with µ > 0. Li and Rodrigo [3] obtained new pointwise and

weighted estimates for the Hilbert transform as well as a number of nonlinear versions and reobtained blow-up of

solutions for (1) with µ = 0 and 0 < β < 1.

In this work we focus on supercritical values of γ contained in the range 0 < γ < 1−β
2 with 0 < β < 1 and we

conclude blow-up of solutions in finite time via an approach inspired by [3].

2 Main Results

Here, for simplicity, we consider µ = 1.

Theorem 2.1. Let 0 < β < 1 and 0 < γ < 1− β. Assume that 0 < γ < 1−β
2 and let the initial data θ0 be an even

Schwartz function. There exists a constant A(β, γ) > 0 depending only on β and γ such that if∫ ∞

0

θ0(0)− θ0(x)

x
e−xdx ⩾ A(β, γ) (∥θ0∥L∞ + 1) , (1)

then the corresponding solution θ of (1) blows up in finite time.

Firstly, we recalling two weighted estimates whose proofs can be found in [3]. Let g : R → R be an even Schwartz

function. Then

−
∫ ∞

0

Λ−βHg(x) · g′(x)
x

e−xdx ⩾ C1(β)

∫ ∞

0

(g(0)− g(x))2

x2−β
dx− C2(β)∥g∥2L∞ 0 < β < 1 (2)
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and ∣∣∣∣∫ ∞

0

Λγg(0)− Λγg(x)

x
e−xdx

∣∣∣∣ ⩽ C3(γ)

∫ ∞

0

|g(0)− g(x)|
x1+γ

log

(
10 +

1

x

)
dx 0 < γ < 1, (3)

where C1(β), C2(β) and C3(γ) are positive constants depending only on β or γ.

Proof Applying (3) and using assumption 0 < γ < 1−β
2 , we can estimate∣∣∣∣ ∫ ∞

0

Λγθ(0, t)− Λγθ(x, t)

x
e−xdx

∣∣∣∣ ⩽ C(γ)

∫ ∞

0

|θ(0, t)− θ(x, t)|
x1+γ

log

(
10 +

1

x

)
dx

⩽ C(γ)∥θ0∥L∞ + C(γ)

(∫ 1

0

(θ(t, 0)− θ(t, x))2

x2−β
e−xdx

) 1
2

(∫ 1

0

ex

x2γ+β

(
log

(
10 +

1

x

))2

dx

) 1
2

⩽ C(γ)∥θ0∥L∞ + C(β, γ)

(∫ 1

0

(θ(t, 0)− θ(t, x))2

x2−β
e−xdx

) 1
2

, (4)

where C(γ) > 0 depending only γ and C(β, γ) > 0 depending only on β and γ.

Consider J(t) =

∫ ∞

0

θ(0, t)− θ(x, t)

x
e−xdx. Computing J ′(t) and applying (2) and (4), we conclude

J ′(t) ⩾
C1(β)

2

∫ ∞

0

(θ(0, t)− θ(x, t))2

x2−β
dx− C2(β)∥θ0∥2∞ − C(γ)∥θ0∥L∞

+
C1(β)

2

∫ 1

0

(θ(0, t)− θ(x, t))2

x2−β
e−xdx− C(β, γ)

(∫ 1

0

(θ(t, 0)− θ(t, x))2

x2−β
e−xdx

) 1
2

.

By Hölder inequality, we obtain C(β)[J(t)]2 ⩽
∫ ∞

0

(θ(0, t)− θ(x, t))2

x2−β
dx where C(β) > 0 depends only on β.

Since that the function f(z) = C1(β)
2 z − C(β, γ)

√
z reaches the minimum at z0 =

(
C(β,γ)
C1(β)

)2
and f(z0) = −C(β,γ)2

2C1(β)
,

we conclude that

J ′(t) ⩾ C(β)[J(t)]2 − C(β, γ)(∥θ0∥L∞ + 1)2, (5)

where C(β) > 0 depends only on β and C(β, γ) > 0 depends only on β and γ.

Now, choosing A(β, γ) >

√
C(β, γ)

C(β)
and considering J(0) ≥ A(β, γ) (∥θ0∥L∞ + 1) (see (1)), estimate (5) implies

J ′(0) > 0 and that J blows up in finite time. Since J(t) ⩽ ∥θx(t, ·)∥L∞ , we conclude that ∥θx(t, ·)∥L∞ must blow

up in finite time, as requested.
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Abstract

The goal of this note is to find a critical exponent for a class of a semilinear evolution equations with effective

scale-invariant time-dependent dissipation

utt + (−∆)σu+
µ

1 + t
ut = |u|p, u(0, x) = 0, ut(x, 0) = u1(x), t ≥ 0, x ∈ Rn. (1)

where µ > 1, p > 1 and σ > 1. A exponent pc is critical when it is possible to prove global existence (in time)

of small data energy solutions to p > pc and blow up in a finite time for 1 < p ≤ pc. To achieve this goal we

use a fixed point argument in a special operator defined on a suitable function space. So we shall derive optimal

Lp − Lq decay estimates, 1 ≤ p ≤ 2 ≤ q ≤ ∞, for the solutions to (1).

The critical exponent pc for the global (in time) existence of small data solutions to the Cauchy problem

(1) is related to the long time behavior of solutions, which changes accordingly with µ. In this presentation,

we consider effective dissipation, this means we suppose µ > 1. Under the assumption of small initial data

u1 ∈ L1 ∩ L2, we find the critical exponent pF (σ, n) = 1 + 2σ
n
, which is known as a Fujita type exponent.

1 Introduction

Let us consider the following Cauchy problem for the semilinear σ-evolution equations with scale-invariant time-

dependent effective dissipation

utt + (−∆)σu+
µ

1 + t
ut = |u|p, u(0, x) = 0, ut(0, x) = u1(x), t ≥ 0, x ∈ Rn. (2)

where µ > 1, σ > 1 and p > 1. We discuss the global (in time) existence of small data energy solutions and blow

up results to (2).

It is well known that the size of the parameter µ is relevant to describe the asymptotic behavior of solutions.

When µ > 1, this model is related to the semilinear corresponding heat type equation. This can be explain by the

diffusion phenomenon.

For σ = 1 and constant coefficient case, in [6] the authors proved global existence of small data solutions for

the semilinear damped wave equation utt −∆u + ut = |u|p, u(0, x) = u0(x), ut(0, x) = u1(x), in the supercritical

range p > 1+2/n, by assuming small initial data with compact support from the energy space. The compact support

assumption on the initial data can be weakened. By only assuming initial data in Sobolev spaces, the existence result

was proved in space dimensions n = 1 and n = 2 in [4], by using energy methods, and in space dimensions n ≤ 5

in [5], by using Lr − Lq estimates, 1 ≤ r ≤ q ≤ ∞. Nonexistence of the global small data solution is proved in [6]

for 1 < p < 1+2/n and in [8] for p = 1+2/n. The exponent pF (n)
.
= 1+2/n is well known as Fujita exponent and

it is the critical index for the semilinear parabolic problem [3]: vt − △v = vp v(0, x) = v0(x) ≥ 0 . The diffusion

phenomenon between linear heat and linear classical damped wave models, see [5], explains the parabolic nature

of classical damped wave models with power nonlinearities from the point of view of decay estimates of solutions.

In [7] the author considered a more general model utt −∆u + b(t)ut = 0, u(0, x) = u0(x), ut(0, x) = u1(x), with

133



134

a class of time dependent damping b(t)ut for which the critical exponent is still Fujita exponent 1 + 2/n for the

associate semilinear Cauchy problem with power nonlinearity |u|p (see [2] and [1]).

The main goals in this presentation are to derive Lp − Lq estimates and energy estimates for solutions to the

linear Cauchy problem associated to ((2)) and to obtain the critical exponent for the global (in time) existence of

small initial data energy solutions.

2 Main Results

The following results show us that for µ > 1 the critical exponent for the Cauchy problem (2) is given by a Fujita

type exponent pF (σ, n) = 1 + 2σ
n .

Theorem 2.1. Let σ > 1, n < 2σ and µ > max
{
n
σ + 2n

n+2σ ; 1
}
, µ ̸= 2n

σ and µ ̸= n
σ +2. If 1+ 2σ

n < p ≤ n
[2n−σµ]+

.
=

q0
2 , then there exists ϵ > 0 such that for any initial data u1 ∈ A = L2(Rn) ∩ L1(Rn), ||u1||A ≤ ϵ, there exists a

unique energy solution u ∈ C([0,∞), Hσ(Rn) ∩ L∞(Rn)) ∩ C1([0,∞), L2(Rn)) to (2). Moreover, for 2 ≤ q ≤ q0

the solution satisfies the following estimates

||u(t, ·)||Lq ≲ (1 + t)−
n
2σ (1−

1
q )||u1||A, ||u(t, ·)||L∞ ≲ (1 + t)−min{ n

2σ ,
µ
2 }||u1||A,

∥u(t, ·)∥Ḣσ + ∥∂tu(t, ·)∥L2 ≲ (1 + t)−min{ n
2σ+1,µ2 }||u1||A, ∀t ≥ 0.

For the sake of simplicity, in the next result we restrict our analysis for integer σ.

Theorem 2.2. Let σ ∈ N, µ > 1 and 1 < p ≤ 1 + 2σ
n . If u1 ∈ L1(Rn) such that

∫
Rn u1(x) dx > 0, then there exists

no global (in time) weak solution u ∈ Lploc([0,∞)× Rn) to (2).
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Abstract

This work aims to present a study of the dimensional correction in fractional order diffusion equations by the

insertion of a new parameter. Fractional versions of classical integer-order equations are obtained by including

a fractional-order derivative or by replacing an integer-order derivative with a fractional one. Such procedures

generate an imbalance in the modeling that needs to be corrected.

1 Introduction

In the literature there are several well-established formulations for fractional derivatives, for example those of

Riemann-Liouville, Grünwald-Letnikov, Caputo, Riesz, among others [1]. The appropriate choice of the fractional

derivative in a given model involves a detailed analysis of the operators and their adequacy to the characteristics

of the phenomena studied. However, in order to choose the formulation, it is not enough to introduce a fractional

derivative, or substitute an integer derivative for a non-integer one, in the classical equation under examination. The

fractional approach also requires considering the necessary adjustments in order to maintain the correct dimension

of the equations. [2].

The fractional differential equation (2) is somehow proposed from the classical equation of integer-order diffusion

∂u(x, t)

∂t
= K∂

2u(x, t)

∂x2
+ f(x, t), 0 < x < L, 0 < t ≤ T, (1)

where K is the thermal diffusivity, and this parameter in the international system (SI) has a dimension equal to

[K] = m2/s.

The formulation of the fractional diffusion equation (2) is done by applying the fractional derivative to the

diffusion term, as follows:

∂u(x, t)

∂t
=

1

τ−α
∂α

∂tα

(
K∂

2u(x, t)

∂x2

)
+ f(x, t), 0 < x < L, 0 < t ≤ T, (2)

where the unit of the parameter τ is time.

The introduction of the fractional order α in (2) generates a dimensional imbalance, since the integer-order

differential operators d
dt ,

d2

dx2 , and the arbitrary dα

dtα in the SI have respectively the dimensions
[
d
dt

]
= s−1,[

d2

dx2

]
= m−2 and

[
dα

dtα

]
= s−α. Therefore, the dimensional adjustment performed in (2) was performed by

introducing 1
τ−α together with the fractional derivative operator, which generates dimension cancellation fraction

in the equation.
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2 Main Results

A numerical approach by the finite difference method to the problem of initial values and boundary with (2) leads

us to the study of the influence of the parameter τ on stability, convergence and uniqueness. Here we will stick to

the Fractional Diffusion Equation (FDS) with fractional derivative according to Riemann-Liouville

RLD
α
a,tf(t) :=

1

Γ(m− α)

dm

dtm

∫ t

a

(t− s)m−α−1f(s)ds , (3)

where m is the positive integer that satisfies m− 1 < α ≤ m.

We apply the backward and centered differences to (2) to approximate the integer derivatives, while the

Grünwald-Letnikov operator approximates the Riemann-Liouville operator. We thus obtain a regressive Euler

method [4]. The computational mesh in the domain of (4a) is defined by xi := i∆x, i = 0, 1, . . . ,M, L =M∆x ,

tn := n∆t, n = 0, 1, . . . , N, T = N∆t , being the discrete system of evolution determined with the

Uni − Un−1
i

∆t
=

Kτα

∆tα

n∑
k=0

ω(k)

(
Un−ki−1 − 2Un−ki + Un−ki+1

∆x2

)
+ fni (n = 0, 1, . . . , N ; i = 0, 1, . . . ,M), (4a)

U0
i = ϕ(xi) (i = 0, 1, . . . ,M), (4b)

Un0 = l(tn) (n = 0, 1, . . . , N), (4c)

UnM = r(tn) (n = 0, 1, . . . , N), (4d)

where Uni is the approximation of u(xi, tn), ω(k) = (−1)k
(
α
k

)
e fni = f(xi, tn).

Theorem 2.1. The implicit regressive Euler method (4) is unconditionally stable.

The proof of this theorem was accepted for presentation at the XLI National Congress of Applied and

Computational Mathematics (CNMAC 2022). By replacing backward differences with advanced differences in

(4a) we have an explicit scheme, the progressive Euler method.

Theorem 2.2. The explicit progressive Euler-type method is stable if

K ∆t

∆x2

( τ

∆t

)α
≤ 1

21+α
.

The proof of this theorem was submitted to the XLIII Ibero-Latin American Congress on Computational

Methods in Engineering (CILAMCE 2022).
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Abstract

In this work, we will present the self-affine fractals, introduced in [1], as a generalization of the concept of self-

similar fractals, discussed in [2], and then we will state Falconer’s theorem, which presents a method to calculate

the Hausdorff dimension of self-affine fractals (demonstrated in [1]). Finally, as a main result of this work, we

will also show a python code that facilitates the computational implementation of the method described by

Falconer and we will apply it to the example of Barnsley’s fern.

1 Introduction: self-affine fractals

A iterated function system (IFS) consists of a complete metric space (X, d) equipped with a finite collection

{S1, . . . , Sk} of contractions Sj : X → X, with j = 1, . . . , k, and will be denoted by {(X, d);S1, . . . , Sk}. In general,

fractals are defined as fixed points of a IFS. Defining fractals using IFS makes it easier to calculate the dimension,

since many fractals are made up of a collection of copies of themselves. Associated with an IFS, we will consider

the Hutchinson operator H : K(X) → K(X), where K(X) = {A ⊂ X : A is compact}, and, for each K ∈ K(X),

H(K) :=
⋃k
j=1 Sj(K). An elegant application of Banach’s fixed point theorem shows that there exists a unique

non-empty compact set F ⊂ Rn such that F =
⋃k
i=1 Si(F). The set F is called an invariant set (self-similar

fractal) by IFS. The Moran-Hutchinson theorem assures us that if S1, . . . , Sk are similarities that satisfy the open

set condition (see [1]), then the similarity dimension — which is the unique real number s such that
∑k
i=1 λi = 1

— coincides with the Hausdorff dimension of F , which we will denote by dimH F .

In order to generalize this result, instead of considering only similarities, we will consider that the applications

Si are affines, that is, that, for each x ∈ Rn, Si(x) = Ti(x) + ai, where Si : Rn → Rn is a linear transformation,

and ai is a vector of Rn. In this context, for each a := (a1, a2, . . . , ak) ∈ Rnk, the invariant set F (a) (which is the

self-affine fractal) is such that F (a) =
⋃
i∈J∞ xi(a), where J∞ := {(i1, i2, i3, . . .) : ∀ l ∈ N, 1 ≤ iℓ ≤ k}, and, for

each i ∈ J∞, xi(a) := limr→∞(Ti1 + ai1)(Ti2 + ai2) . . . (Tir + air )(0).

2 Falconer’s theorem: the method for calculating the Haudorff dimension of self-affine fractals

In this section, we will enunciate important definitions and results for understanding Falconer’s theorem. In what

follows, we will consider linear transformations from Rn to Rn, which we will assume to be non-singular. We

will denote the singular values of a linear transformation T ∈ L(Rn) by α1, . . . , αk. Furthermore, we will adopt

the convention that 1 > α1 ≥ . . . ≥ αk > 0 to sort the k singular values of the transformation. For r ≥ 1, let

Jr := {(w1, . . . , wr) : 1 ≤ wℓ ≤ k} be the set of sequences of size r formed by the integers from 1 to k. We denote

the set of all finite sequences by J (note that J :=
⋃∞
r=0 Jr), the member (w1, . . . , wr) of J by w and the number

of terms in w ∈ J by |w|. Next, we will define the singular value function, which will be important to construct an

exterior measure on the set J∞.
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Definition 2.1. The singular value function ϕ(·)(T ) : [0,+∞[→ R+ is defined so that, for every s ∈ [0,+∞[,

ϕs(T ) =


1, if s = 0

α1 · α2 · . . . · αm−1 · αs−m+1
m , where m ∈ N is such that m− 1 < s ≤ m, if 0 < s ≤ n

(α1 · α2 · . . . · αn)
s
n , if s > n

. (1)

From the singular value function, it is possible to construct an outer measure in J∞ in a similar way to the

construction of the Hausdorff measure. Let u ∈ Jr, u = (u1, u2, . . . , ur), r ∈ N. We define the cylinder Nu of size

u as follows: Nu := {j ∈ J∞;u < j} (u ∈ J is said to be a shortening of j ∈ J∞ if there exists a j′ ∈ J∞ such that

j = u · j′, in this case, we also say that u < j); furthermore, we say that a set of finite sequences A is a cover for

J∞ if J∞ ⊂
⋃
u∈ANu. Fixed s, and given U ∈ P(J∞) (where P(J∞) is the set of parts of J∞), for each r ∈ Z,

define Ms
r(U) := inf

{∑
u ϕ

s(Tu) : U ⊂
⋃
u∈ANu, |u| ≥ r

}
, where Tu := Tu1 ◦ Tu2 ◦ . . . ◦ Tur . We will use the outer

measure Ms
r to define a dimension d(T1, . . . , Tk), called the Falconer dimension of F .

Proposition 2.1. The following numbers exist and are all the same.

1. inf{s : Ms
r(J∞) = 0} = sup{s : Ms

r(J∞) = ∞},

2. The unique s > 0 such that limr→∞[
∑
u∈Jr ϕ

s(Tu)]
1
r = 1,

3. inf{s :
∑
u∈J ϕ

s(Tu) <∞} = sup{s :
∑
u∈J ϕ

s(Tu) = ∞}.

We denote this common value by d(T1, . . . , Tk).

Theorem 2.1. (Falconer). Suppose that ||Tℓ|| < 1
2 for any 1 ≤ ℓ ≤ k. Then, for almost all a ∈ Rnk (relative to

the nk−dimensional Lebesgue measure), dimH F (a) = min{n, d(T1, . . . , Tk)}.

3 Application to the Barnsley’s fern example

Barnsley’s fern is generated by the applications S1, . . . , S4 : R2 → R2 such that, for each (x, y) ∈ R2,

S1(x, y) =

[
0 0

0 0.16

][
x

y

]
+

[
0

0

]
, S2(x, y) =

[
0.85 0.04

−0.04 0.85

][
x

y

]
+

[
0

1, 6

]
,

S3(x, y) =

[
0.2 −0.26

0.23 0.22

][
x

y

]
+

[
0

1, 6

]
e S4(x, y) =

[
−0, 16 0, 28

0, 26 0, 24

][
x

y

]
+

[
0

0.44

]
.

Inserting the values into the implemented algorithm, we observe that, for values of s between 1 and 2, ranging

from 0.1, and for k=5, the Hausdorff dimension of the Barnsley’s fern converges very fastly to values between 1.7

and 1.8. Taking the values for s between 1.7 and 1.8, varying from 0.01, we conclude that the Hausdorff dimension

is between 1.74 and 1.75. Finally, using values of s between 1.74 and 1.75, ranging from 0.001, we conclude that

the Hausdorff dimension is approximately 1.742.
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2Faculdade de Matemática, Universidade Federal de Uberlãndia, MG, Brasil, ariel-oliveir@ufu.br

Abstract

The main purpose of this work is to give a detailed proof of the fact that the space of regular multilinear

operators between Banach lattices with Dedekind complete target space is a Banach lattice with the usual

operator order and the regular norm. In [1] D. H. Fremlin showed that this result holds for spaces of bilinear

operators using the (Fremlin) positive projective tensor product. We prove the general case of multilinear

operators using a different approach by induction, in which the use of the positive projective tensor product is

not necessary.

1 Introduction

For Riesz spaces E1, . . . , En and F , an n-linear operator A : E1 × · · · × En −→ F is positive if A(x1, . . . , xn) ≥ 0

for all x1, . . . , xn ≥ 0. And A is said to be regular if A is the difference of two positive n-linear operators. The

vector space of all such regular n-linear operators is denoted by Lr(E1, . . . , En;F ). When E1, . . . , En and F are

normed Riesz spaces, we denote the space of all continuous regular n-linear operators by Lr(E1, . . . , En;F ), where

the norm of E1 × · · · × En is any of the usual equivalent norms ∥ · ∥2, ∥ · ∥1, ∥ · ∥∞.

Fremlin developed in [2] the theory of tensor products of Riesz spaces to show that Lr(E1, E2;F ) is a Dedekind

complete Riesz space when F is Dedekind complete. Since then this space is referred to as the Fremlin tensor

product. In [1], under the assumption that E1, E2 and F are Banach lattice, he showed that the space Lr(E1, E2;F )

of regular bilinear operators is a Banach lattice with the regular norm, which is defined by

∥A∥r := ∥ |A| ∥ = sup{∥ |A|(x1, x2)∥ : ∥xi∥ ≤ 1, i = 1, 2}

for any A ∈ Lr(E1, E2;F ). He did so by considering the completion of the Fremlin tensor product endowed with

the positive projective tensor norm.

The general case of multilinear operators is also true and it is usually proved through the Fremlin tensor product

in the case of Riesz spaces and the positive projective tensor product in the case of Banach lattices. Another way

to show these results is apply induction starting with the linear case, as Loane did in [3] to provee that the space of

regular multilinear operators between Riesz spaces is a Riesz space. In this work we follow this induction approach

to prove that the space of regular multilinear operators between Banach lattices is a Banach lattice with the regular

norm. It is worth mentioning that the corresponding result for the space of homogeneous polynomials can also be

proved by induction, for details see [4].

2 Main Results

The starting point of our induction process is the following linear result. For a proof, see [1] or [4].

Theorem 2.1. If E and F are Banach lattices with F Dedeking complete, then the space Lr(E;F ) of regular linear

operators is a Banach lattice with the regular norm.
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To pass from the linear case to the multilinear case by induction, the following canonical isomorphism between

linear spaces is essential. Let E1, . . . , En and F be linear spaces. For each fixed 1 ≤ i ≤ n define

Φi : L(E1, . . . , En;F ) −→ L(Ei;L(E1, . . . , Ei−1, Ei+1, . . . , En;F )) , Φi(A) = LiA,

where LiA is the linear operator given by

LiA(xi)(x1, . . . , xi−1, xi+1, . . . , xn) = A(x1, . . . , xn).

Recall that a norm ∥ · ∥ on a Riesz space E is a lattice norm if the following holds:

x, y ∈ E and |x| ≤ |y| =⇒ ∥x∥ ≤ ∥y∥.

In this case, E is called normed Riesz space. If the norm ∥ · ∥ is complete, then we say that E is a Banach lattice.

The following classical spaces are Banach lattices with their usual orders: c0, ℓp, Lp(µ), 1 ≤ p ≤ ∞, C(K).

Proposition 2.1. Let E1, . . . , En be Banach lattices and let F be a normed Riesz space. Then

Lr(E1, . . . , En;F ) = Lr(E1, . . . , En;F ),

that is, every regular multilinear operator A : E1 × · · · × En −→ F is continuous.

Note that if E1, . . . , En and F are ordered linear spaces, then the linear space L(E1, . . . , En;F ), equipped with

the partial order

A ≤ B ⇐⇒ (B −A) is positive,

is an ordered linear space.

Corollary 2.1. Let E1, . . . , En be Banach lattices and let F be a Dedekind complete normed Riesz space. Then

Lr(E1, . . . , En;F ) is a Dedekind complete Riesz space.

Theorem 2.2. Let E1, . . . , En be Banach lattices and let F be a normed Riesz space. Then

Lr(E1, . . . , En;F ) e Lr(E1;Lr(E2, . . . , En;F ))

are canonically isomorphic as linear spaces.

Theorem 2.3. Let E1, . . . , En and F be Banach lattices with F Dedekind complete. Then Lr(E1, . . . , En;F ) is a

Banach lattice with the regular norm (r-norm)

∥A∥r := ∥|A|∥ = sup{∥|A|(x1, . . . , xn)∥ : ∥xi∥ ≤ 1, 1 ≤ i ≤ n}.
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Abstract

This is a summary of the main results that are being developed in a master’s thesis in the field of Functional

Analysis. The central direction of study is to detail a theorem and its corollaries from the recent paper [1] by

Marrakchi and de la Salle (2020). These authors show that for every locally compact group G, there is a critical

constant pG ∈ [0,∞] such that G admits a continuous affine isometric action in an Lp-space (0 < p < ∞) with

unbounded orbits if, and only if, p ≥ pG (or p > pG).

1 Introduction

Studies such as [2],[3],[4] and [5] led us to expect that for a given topological group G, it should be “easier” to act

isometrically on an Lp-space when the value of p gets larger. This is what the main theorem in [1] states.

As shown in the paper, for every locally compact group G, there is a critical constant pG ∈ [0,∞] such that

G admits a continuous affine isometric action in an Lp-space (0 < p < ∞) with unbounded orbits if, and only if,

p ≥ pG (or p > pG).

Such result is the leading object of study of the master’s thesis.

Here, Lp space means Lp(X,µ), for (X,µ) a fixed standard measure space. Also, isometries are considered

affine, not necessarily linear.

2 Main Results

The main following theorem was proved by Marrakchi and de la Salle in [1].

Theorem 2.1. Let G be a topological group and 0 < p ≤ q <∞. Then, for every continuous affine isometic action

α : G ↷ Lp, there is a continuous affine isometric action β : G ↷ Lq such that ||αg(0)||pLp
= ||βg(0)||qLq

, for all

g ∈ G.

Such theorem implies that if a group G has a continuous action by isometries on an Lp space with unbounded

(resp. metrically proper) orbits, then it has the same action on the corresponding Lq space for q > p.

Corollary 2.1. Let G be a topological group. Then,

1. The set of values of p ∈ (0,∞) such that G admits a continuous action by isometries on an Lp space with

unbounded orbits is an interval of the form (pG,∞) or [pG,∞) for some pG ∈ {0} ∪ [2,∞].

2. The set of values of p ∈ (0,∞) such that G admits a proper continuous action by isometries on an Lp space

is an interval of the form (p′G,∞) or [p′G,∞) for some p′G ∈ {0} ∪ [2,∞].

Theorem 2.1 also can be applied to the group of affine isometries of Lp and we get the following

Corollary 2.2. Let 0 < p ≤ q < ∞. Then Isom(Lp) is isomorphic as a topological group to a closed subgroup of

Isom(Lq).
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For a topological group G and p > 0, Kp(G) denotes the set of all continuous functions ψ : G→ R+ of the form

ψ(g) = ||αg(0)||pLp
for some continuous affine isometric action α of G on some Lp space.

If π : G ↷ V is a continuous linear representation of a topological group G on a topological vector space V ,

we denote by Z1(G, π, V ) the set of all continous 1-cocycles, that means, all continuous maps c : G→ V such that

c(gh) = c(g) + πg(c(h)), for all g, h ∈ G.

To prove Theorem 2.1, the following proposition is necessary

Proposition 2.1. Let G be a topological group, p > 0 and ψ ∈ Kp(G). Then, there exists a continuous nonsingular

action σ : G↷ (X,µ) and a cocycle c ∈ Z1(G, σp,µ, Lp(X,µ)) such that ψ(g) = ∥c(g)∥pLp
, for all g ∈ G.

First we prove this proposition for p = 2 and then separately for p ̸= 2. Also, σp,µ is a continuous linear

isometric representation of the group G on Lp which is given by

σp,µg (f) =

(
d [(σg)∗µ]

dµ

) 1
p

σg(f)

for every g ∈ G and f ∈ Lp(X,µ), where
d[(σg)∗µ]

dµ is the Rado-Nikodym derivative of the pushforward measure

(σg)∗µ with respect to µ.
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NON-LINEAR TERMS

LUCAS LISBOA LEÃO1 & EDUARDO ALEX HERNÁNDEZ MORALES1
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Abstract

We introduce a class of Lq,α-Hölder and Lq,α
β -Hölder functions and study the regularity of mild solutions for

abstract differential equations assuming that the non-linear term is a function cited above.

1 Introduction

We introduce the class of Lq,αβ -Hölder functions and study the regularity of the mild solution to abstract ordinary

differential equation described by:

u′(t) = Au(t) + f(t), t ∈ [0, a], u(0) = x0 ∈ X (1)

where X is a Banach space, A : D(A) ⊂ X → X is the generator of an analytic C0-semigroup of bounded linear

operators (T (t))t≥0 on X and f : [0, a] → X is a Lp,α-Hölder function.

Using the notations above, we admit, for sake of simplicity, that 0 ∈ ρ(A), and for η > 0 we denote (−A)η and

Xη the η-order fractional power of A and his domain with the norm defined by ∥x∥η = ∥(−A)η∥, respectively. We

also assume that Ci, Cη (i ∈ N ) are constants such that ∥AiT (t)∥ ≤ Ci

ti and ∥(−A)ηT (t)∥ ≤ Cη

tη for all t ∈ (0, a].

2 Main Results

To begin we introduce the mentioned function class, next we state the regularity of mild solution to problem (1).

2.1 Lq,α-Hölder, Lq,α
β -Hölder and Lq

Lip-Lipschitz functions.

In the next definitions (Yi, ∥ · ∥Yi
), i = 1, 2 are Banach spaces and q ≥ 1.

Definition 2.1. Let P : [c, d] × Y1 7→ Y2 be a function. Assume that there is α ∈ (0, 1], a integrable function

[P ](·,·) : [c, d] × [c, d] → R+ and a non-decreasing function WP : R+ → R+ such that [P ](·,·), [P ](t,·) and [P ](·,0)

belongs to Lp([c, t];R+) for all t ∈ (c, d], and

∥P (t, x)− P (s, y)∥Y2 ≤ WP (max{∥x∥Y1 , ∥y∥Y1})[P ](t,s)(|t− s|α + ∥x− y∥Y1),

for all x, y ∈ Y1 and c ≤ s ≤ t ≤ d. If α ∈ (0, 1), we say that P (·) is a Lq,α-Hölder function and a LqLip-function if

α = 1.

Next, we use the notations Lp,α([c, d]×Y1;Y2) and LpLip([c, d]×Y1;Y2) for the sets formed by all the Lq,α-Hölder

functions and by all the LqLip- Hölder functions defined from [0, a]× Y1 into Y2.

Definition 2.2. Let P : [c, d]×Y1 7→ Y2be a function and α, θ ∈ (0, 1). We said that P (·) is a Lq,αθ -Hölder function

if there is an integrable function [P ](·,·) : [c, d] × [c, d] → R+ and a non-decreasing function WP : R+ → R+ such

that the function s 7→ [P ](t,s)
sθ

belongs to Lp([c, t];R+) and [P ](·,0) ∈ Lp([c, t];R+) for all t ∈ (c, d], and

∥P (t, x)− P (s, y)∥Y2
≤ WP (max{∥x∥Y1

, ∥y∥Y1
})

[P ](t,s)

sθ
(|t− s|α + ∥x− y∥Y1

),

for all x, y ∈ Y1 and c ≤ s ≤ t ≤ d.
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Next, Lp,αθ ([c, d]× Y1;Y2) denotes the space formed by all the Lq,αθ -Hölder function in C([c, d]× Y1;Y2).

Example 2.1. We now cite several examples concerning the definitions above.

� For p > 1, f : [0, a] 7→ R given by f(t) = p
√
t, belongs to LqLip([0, a];R) if q ∈ (1, p′).

� Let f : [0, 1] 7→ R be the function defined by f(t) = t sin( 1
p√t ) for t > 0 and f(0) = 0 therefore f ∈ LqLip([0, 1];R)

for all 1 < q < p.

� Let f : [0, 1] 7→ R be the function given by f(t) = t−
1
p and f(0) = 0 with p > 1. Then f ∈ Lq,

1
p ([0, 1]) if

p > 2q.

� Assume that f ∈ Lq,α([a, b]) and that G ∈ C(X;X) is locally Lipschitz. Then H(t, x) = f(t)G(x) ∈
Lq,α([a, b]×X;X).

� The sets Lq,α([c, d]×X;Y ), Lq,αβ ([c, d]×X;Y ) and LqLip([c, d]×X;Y ) are vectorial spaces.

2.2 Regularity of mild solutions to abstract differential equations with Lq,α non-linear terms

To finish we only cite on regularity result that we proved and is going to be submitted to publication soon.

Consider the abstract ordinary differential equation

u′(t) = Au(t) + f(t), t ∈ [0, a], u(0) = x0 ∈ X. (1)

If f ∈ Lq,α([0, a];X) ∩ Lp([0, a];X), it obvious that there exists a unique mild solution u ∈ C([0, a] : X) of the

problem (1) defined on [0, a].

Proposition 2.1. Let f ∈ Lq,α([0, a];X) and u(·) be the mild solution of (1) on [0, a].

(a) If x0 ∈ X and supt∈[0,a] ∥
[f ](t,·)

(t−·)1−α ∥L1([0,t]) <∞, then u(·) is a strong solution and u′ ∈ Lq([0, a];X).

If in addition to the conditions in (a), f ∈ C([0, a];X), [f ](t,s)(t − s)α → 0 as s ↑ t for all t ∈ [0, a] and

Λ := sups∈[0,a] ∥[f ](s,·)∥Lq([0,s]) is finite, then we get:

(b) If µ = (1 − 2(1 − α)q′) > 0 and AT (·)x0 ∈ Cβ([0, a];X), then u(·) is a classical solution and u′ ∈
L
q,min{β,α,1−α, ν

q′ }
min{α,β} ([0, a];X).

(c) If µ = (1− 2(1−α)q′) > 0, x0 ∈ D(A) and Ax0+ f(0) ∈ Xβ for some β ∈ (0, 1), then u(·) is a strict solution

on [0, a] and u′ ∈ L
q,min{β,α,1−α, ν

q′ }([0, a];X).
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Abstract

In this work we found an estimate for the number of solutions for a Schrödinger-Bopp-Podolsky system −ε2∆w + V (x)w + ψw = f(w)

−ε2∆ψ + ε4∆2ψ = 4πεw2
(Pε)

where ε > 0, and V : R3 → R, f : R → R satisfying certain conditions. Using variational techniques,we

prove that the number of solutions is rated lower by the Ljusternik-Schnirelmann category of M , i.e., the set of

minima of the potential V .

1 Introduction

In this work, using the original ideas developed in [1], [2] and [3], we show the existence and multiplicity of solutions

for the following problem in R3

 −∆u+ V (εx)u+ ϕu = f(u),

−∆ϕ+∆2ϕ = 4πεu2.
(P ∗
ε )

which is obtained after a change of variables.

The hypotheses of the problem about the potential V and the non linearity f is

V1 V : R3 → R a continuous function such that

0 < min
R3

V := V0 < V∞ := lim inf
|x|→+∞

V ∈ (V0,+∞],

with M = {x ∈ R3 : V (x) = V0} smooth and bounded,

f1 f : R → R a C1-function and f(t) = 0 for t ≤ 0,

f2 limt→0
f(t)
t = 0,

f3 exists q0 ∈ (3, 2∗ − 1) such that limt→+∞
f(t)
tq0 = 0, where 2∗ = 6,

f4 exist K > 4 such that 0 < KF (t) := K
∫ t
0
f(τ)dτ ≤ tf(t) for all t > 0,

f5 the function t 7→ f(t)
t3 is strictly increasing in (0,+∞).

Such hypotheses are very common for working with variational methods, the Nehari manifold and Palais-Smale

sequences.
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2 Main Results

Theorem 2.1. Under the assumptions (V1), (f1)-(f5), there exists an ε∗ > 0 such that for every ε ∈ (0, ε∗],

problem (Pvarepsilon) possesses at least catM solutions. Moreover, if catM > 1, then (for a suitably small ε) there

exist at least catM + 1 solutions.

Proof The first step to demonstrate the Theorem 2.1 is the definition of a functional associated to the problem

(Pvarepsilon) for the search of weak solutions, namely

Iε(u, ϕ) =
1

2
∥∇u∥22 +

1

2

∫
V (εx)u2 +

1

2

∫
ϕu2 − 1

16π
∥∇ϕ∥22 −

1

16π
∥∆ϕ∥22 −

∫
F (u),

and the next step is through a usual reduction argument, treat the functional as a functional of just one ”variable”

Iε(u) :=
1

2
∥∇u∥22 +

1

2

∫
V (εx)u2 +

1

4

∫
ϕuu

2 −
∫
F (u).

After that, several properties of compactness and the existence of solutions for the functionals involved are

demonstrated, where one of the most important results is the existence of a ground state solution for the problem

(Pε).

An important application in the proof of the 2.1 theorem is the barycenter map

βε(x) :=

∫
χ(εx)u2(x)∫

u2
∈ R3,

which will serve in the analysis of certain sections of the Nehari manifold and in the homotopic equivalence relation

between M and a given set containing M , denoted M+.

Using results from the Ljusternik-Schnirelmann theory, together with the validity of the Palais-Smale sequences,

the existence of cat(M) critical points of Iε restricted to the Nehari manifold of the problem, guarantees the existence

of at least cat(M) solutions of (Pε).

Finally, considering cat(M) > 1, the existence of another critical point of Iε comes from showing the existence

of a set that is not contractible in one sublevel of the Nehari manifold, but contractible in another level. Which

guarantees the existence of at least cat(M) + 1 solutions of (Pε).
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Abstract

In this work, we analyze the behavior of the solutions of a nonlinear parabolic problem, when some reaction

terms are concentrated in a neighborhood of the domain boundary and this neighborhood shrinks to the boundary

as a parameter goes to zero. More precisely, we prove the continuity of the equilibrium set of the nonlinear

parabolic problem. The equilibrium points are the solutions of a nonlinear elliptic problem associated to the

parabolic problem. Moreover, some numerical simulations will be presented to illustrate the behavior of these

solutions.

1 Introduction

Let Ω ⊂ Rn, n ≥ 2, be an open bounded smooth set with a C2 boundary ∂Ω. We define the strip with width ϵ and

base ∂Ω, as

ωϵ = {x− σn⃗(x) : x ∈ ∂Ω e σ ∈ [0, ϵ)}

for ϵ small enough, say 0 < ϵ ≤ ϵ0, where n⃗(x) is the outward unit normal vector at x ∈ ∂Ω.

The set ωϵ has Lebesgue measure |ωϵ| = O(ϵ) with |ωϵ| ≤ kϵ|∂Ω|, for some k > 0 independent of ϵ. Also, for

small ϵ, ωϵ is a neighborhood of the boundary ∂Ω in Ω, that shrinks to ∂Ω when the parameter ϵ→ 0, see Figure 1.

png

Figure 1: The bounded open set Ω and the ϵ-strip ωϵ.
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In [1,2] was studied the behavior, for small ϵ, of the solutions of the nonlinear parabolic problem with

homogeneous Neumann boundary conditions, given by

∂uϵ

∂t
−∆uϵ + λuϵ = f(x, uϵ) +

1

ϵ
χωϵ(x)g(x, u

ϵ), in (0,∞)× Ω

∂uϵ

∂n⃗
= 0, on (0,∞)× ∂Ω

uϵ(0) = φ0 ∈ H1(Ω),

(1)

where λ > 0 and χωϵ
is the characteristic function of the set ωϵ.

We refer to the term
1

ϵ
χωϵ(x)g(x, u

ϵ) as the reaction (which is not linear) concentrated in the strip ωϵ.

Assuming that the nonlinearities f, g : Ω× R → R satisfy critical growth, sign and dissipative conditions given

in [1,2], the authors proved that the limiting problem of the concentrated problem (1) is given by the following

parabolic problem with nonlinear Neumann boundary conditions

∂u0

∂t
−∆u0 + λu0 = f(x, u0), in (0,∞)× Ω

∂u0

∂n⃗
= g(x, u0), on (0,∞)× ∂Ω

u0(0) = φ0 ∈ H1(Ω).

(2)

The authors showed the global existence and uniqueness of solutions uϵ of (1) and (2), 0 ≤ ϵ ≤ ϵ0, in Sobolev space

H1(Ω) with initial condition φ0 ∈ H1(Ω).

Thus, we pretend to continue the work [1,2], proving the continuity of the family of equilibria in H1(Ω), which we

will denote by {Eϵ}ϵ∈[0,ϵ0], of the nonlinear parabolic problems (1) and (2). Moreover, some numerical simulations

will be presented to illustrate the behavior of the set {Eϵ}ϵ∈[0,ϵ0] as ϵ goes to zero. As far as we know, these

simulations are the first of their kind and represent one of the great contributions in this research. This work is in

partnership with Gleiciane da Silva Aragão.
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Abstract

In the present work we are concerned with the following Kirchhoff-Choquard-type equation

−M(||∇u||22)∆u+Q(x)u+ µ(V (| · |) ∗ u2)u = f(u) in R2,

for M : R → R given by M(t) = a + bt, µ > 0, V a sign-changing and possible unbounded potential, Q a

continuous external potential and a nonlinearity f with exponential critical growth. We prove existence and

multiplicity of solutions in the nondegenerate case and guarantee the existence of solutions in the degenerate

case.

1 Introduction

Equations of Kirchhoff type have been exaustively studied by mathematicians since its importance and applications.

In this work we combine Kirchhoff and Choquard equations and consider a general indefinite internal potential than

the logaritmic one. We will denote R+ = {t ∈ R ; t > 0}, V − = max{−V, 0}, V + = max{V, 0} and, in order to

prove the existence and multiplicity results, we ask for:

(M) M : R → R given by M(t) = a+ bt , for all t ∈ R , with a > 0 and b ≥ 0 or a = 0 and b > 0.

(V1) There are real functions a1, a2 : R+ → R such that a2 ∈ L∞(R+), a1,0 = inf
t≥2

a1(t) > 0, a2,0 = inf
t∈R+

a2(t) >

0 and

a1(t) ln(1 + t) ≤ V +(t) ≤ a2(t) ln(1 + t),∀ t > 0.

(V2) There exists a real function a3 : R+ → R such that a3(t) > 0 in a subset of R+ with positive measure,

V −(t) ≤ a3(t)

t
∀ t > 0 and


a3 ∈ L∞(R),

or

a3(t) = t−λ, for some λ ∈ [1, 3) and for all t > 0,

(V3) There exists an open subset I ⊂ R+ such that V (t) < 0 for all t ∈ I.
(Q) Q ∈ C(R2,R), inf

x∈R2
Q(x) = Q0 > 0 and there exists p ∈ (1,∞] such that Q ∈ Lp(R2).

(f1) f ∈ C(R,R), f(0) = 0 and has critical exponential growth with α0 = 4π.

(f2) lim
|t|→0

|f(t)|
|t|τ

= 0, for some τ > 1.

(f3) There exists θ ≥ 4 such that f(t)t ≥ θF (t) > 0, for all t ∈ R \ {0}.
(f4) There exist q > 4 and Cq > 0 such that F (t) ≥ Cq|t|q, for all t ∈ R.

Then, in order to get multiple solutions for (P), we are going to apply a symmetric version of mountain pass

theorem. To do so, we need to change condition (f1) by the following.

(f ′1)f ∈ C(R,R), f(0) = 0, f is odd and has critical exponential growth with α0 = 4π.

In the degenerate case we also need some changes in the hypotheses for f .

(f ′2) lim
|t|→0

|f(t)|
|t|τ

= 0, for some τ > 3.

(f ′3) There exists θ ≥ 8 such that f(t)t ≥ θF (t) > 0, for all t ∈ R \ {0}.
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2 Main Results

In this section we present our main results, concerning the existence and multiplicity results for equation

−M(||∇u||22)∆u+Q(x)u+ µ(V (| · |) ∗ u2)u = f(u) in R2 (1)

in the cases nondegenerate and degenerate, respectively. The full proof for these results can be found in [1].

Theorem 2.1. Suppose (V1) − (V3), (Q), (f1) − (f4), a > 0, b ≥ 0, µ > 0, q > 4 and Cq > 0 sufficiently large.

Then,

(a) problem (P) has a nontrivial solution at the mountain pass level, that is, there exists u ∈ X \ {0} such that u

is a critical point for I and I(u) = cmp, where

cmp = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)), (2)

with Γ = {γ ∈ C([0, 1], X) ; γ(0) = 0 and I(γ(1)) < 0}.
(b) Problem (P) has a nontrivial ground state solution, in the sense that, there is u ∈ X \ {0} that is a critical

point to I and satisfies

I(u) = cg = inf{I(v) ; v ∈ K}, where K = {v ∈ X \ {0} ; I ′(v) = 0}.

Theorem 2.2. Suppose (V1) − (V3), (Q), (f ′1), (f2) − (f4), a > 0, b ≥ 0, µ > 0, q > 4 and Cq > 0 sufficiently

large. Then, problem (P) has infinitely many solutions.

Theorem 2.3. Suppose (V1) − (V3), (Q), (f1), (f
′
2), (f

′
3), (f4), a = 0, b > 0, q > 4 and Cq > 0 sufficiently large.

Then,

(a) there exists a value µ∗ > 0 such that, for all µ ∈ (0, µ∗), problem (P) has a nontrivial solution at the mountain

pass level, i.e., there exits u ∈ X \ {0} a critical point for I satisfying I(u) = cmp, where

cmp = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

with Γ = {γ ∈ C([0, 1], X) ; γ(0) = 0 and I(γ(1)) < 0}.
(b) There exists a value µ∗∗ ∈ (0, µ∗] such that, for all µ ∈ (0, µ∗∗), problem (P) has a nontrivial ground state

solution, in the sense that, there is u ∈ X \ {0} that is a critical point to I and satisfies

I(u) = cg = inf{I(v) ; v ∈ K}, where K = {v ∈ X \ {0} ; I ′(v) = 0}.

References
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2 Instituto de Matemática e Estat́ıstica, UFG, GO, Brasil, edcarlos@ufg.br,
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Abstract

In this work we consider existence of positive solutions for the following nonlocal elliptic problem:−m
(
∥∇u∥22

)
∆u+ V (x)u = λa(x)|u|q−2u+ b(x)|u|p−2u in RN ,

u ∈ H1(RN ),
(1)

where N ≥ 3, λ > 0, 1 ≤ q < 2; 2(σ+1) < p < 2∗ = 2N/(N−2), a ∈ Lr1(RN ), b ∈ Lr2(RN ) where a(x), b(x) > 0

in RN and r1, r2 > 1 are suitable exponents. The potential V : RN → R is bounded from below by a positive

constant and m(t) = α1 + α2t
σ with α1, α2 > 0, t ∈ R+ and σ ∈ (0, 2/(N − 2)). Hence, by using the nonlinear

Rayleigh quotient our main objective is to apply the minimization method on the Nehari manifold finding at

least two positive solutions for our main problem whenever λ ∈ (0, λ∗) for some suitable λ∗ > 0. In fact, λ∗ is

the greatest positive number where the Nehari method can be applied for λ ∈ (0, λ∗).

1 Introduction

The main objective in the present work is to investigate existence of positive solutions for elliptic problems with

concave-convex nonlinearities involving Kirchhoff equations. More specifically, we consider the elliptical problem

given in (1). As a consequence, we will show that there exists at least one ground state solution, that is, a solution

with the minimal energy among any other nontrivial solutions for the Problem (1). Furthermore, we shall prove

existence of another solutions which is a bound state solution, that is, a solution with finite energy for the Problem

(1). The main idea is to introduce the concepts of the nonlinear Rayleigh Quotient and the Nehari manifold. To

this end, we shall consider the following hypotheses:

(m1) The function m(t) = α1 + α2t
σ with t ∈ R+ and α1, α2 > 0;

(a1) 1 ≤ q < 2; 2(σ + 1) < p < 2∗, where 2∗ =
2N

N − 2
, N ≥ 3 and 0 < σ <

2

N − 2
;

(a2) The functions a, b : RN → R are defined such that a ∈ Lr1(RN ) and b ∈ Lr2(RN ) where

(
2∗

q

)′

< r1 ≤
(
2

q

)′

,(
2∗

p

)′

< r2 ≤
(
2

p

)′

and a(x), b(x) > 0 a.e. in RN ;

(V1) There exists a constant V0 > 0 such that V (x) ≥ V0 > 0 for all x ∈ RN .

It is important to mention that the working space is defined by

X :=

{
u ∈ H1(RN ) :

∫
RN

V (x)u2dx < +∞
}
.

Throughout the work, we shall use the following inner product and the following norm in the space X defined as
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⟨u, φ⟩ =
∫
RN

[α1∇u∇φ+ V (x)uφ] dx and ∥u∥ :=

( ∫
RN

[
α1|∇u|2 + V (x)u2

]
dx

) 1
2

.

Through variational methods, we can define the energy functional J : H1(RN ) → R associated to Problem (1) is

given by

J(u) =
1

2
∥u∥2 + α2

2(σ + 1)
∥∇u∥2(σ+1)

2 − λ

q

∫
RN

a(x)|u|qdx− 1

p

∫
RN

b(x)|u|pdx. (2)

It is important to emphasize that, u ∈ X is a critical point of J if, and only if, u is a critical point for J . In view of

hypothesis (V1) it follows that the embedding X ↪→ Lr(RN ) is continuous for each r ∈ [2, 2∗). Here we borrow some

ideas discussed in [2] and [3]. Hence we consider the nonlinear generalized Rayleigh quotients Rn, Re : X\{0} → R
associated with the parameter λ > 0 in the following form:

Rn(u) :=
∥u∥2 + α2∥∇u∥2(σ+1)

2 − ∥u∥pp,b
∥u∥qq,a

, u ∈ X\{0} (3)

and

Re(u) :=

1
2∥u∥

2 + α2

2(σ+1)∥∇u∥
2(σ+1)
2 − 1

p∥u∥
p
p,b

1
q∥u∥

q
q,a

, u ∈ X\{0}. (4)

Define Sn(u) := sup
t>0

Rn(tu) and Se(u) := sup
t>0

Re(tu). As a consequence, we shall consider the extreme as follows:

λ∗ := inf
u∈X\{0}

Sn(u) and λ∗ := inf
u∈X\{0}

Se(u). (5)

2 Main Results

Theorem 2.1. Suppose that (m1), (a1)-(a2) and (V1) hold. Then 0 < λ∗ < λ∗ < +∞ and for each λ ∈ (0, λ∗)

the Problem (1) admits at least two distinct positive solutions u, v ∈ X\{0} satisfying the following properties:

J ′′(u)(u, u) > 0, J ′′(v)(v, v) < 0, J(u) < 0, u ∈ N+ and v ∈ N−. Moreover, u is a ground state solution and v is

a bound state solution which it satisfies:

(a) For each λ ∈ (0, λ∗), we deduce that J(v) > 0;

(b) For λ = λ∗ it holds that J(v) = 0;

(c) For each λ ∈ (λ∗, λ
∗), we obtain that J(v) < 0.
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SOLUTIONS TO CONSTRAINED SCHRÖDINGER–BOPP–PODOLSKY SYSTEMS IN R3

GUSTAVO DE PAULA RAMOS1 & GAETANO SICILIANO2
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Abstract

We are interested in the following constrained Schrödinger–Bopp–Podolsky system in R3,
−∆u+ ωu+ ϕu = u|u|p−2,

−∆ϕ+ a2∆2ϕ = 4πu2,

∥u∥L2 = ρ,

(SBPa,ρ)

where a, ρ > 0 are fixed parameters and our unknowns are ω ∈ R and u, ϕ : R3 → R. We prove that if 2 < p < 3

(resp., 3 < p < 10/3) and ρ > 0 is sufficiently small (resp., sufficiently large), then (SBPa,ρ) admits a least

energy solution. Moreover, we show that if 2 < p < 14/5 and ρ > 0 is sufficiently small, then least energy

solutions are radially symmetric up to translation and as a→ 0, they converge to a least energy solution of the

constrained Schrödinger–Poisson–Slater system.

1 Introduction

The wave function ψ : R3 ×R → C of a free quantum particle of mass m and electrical charge q under electrostatic

self-interaction solves the following nonlinear Schrödinger equation:

iℏ∂tψ = − ℏ2

2m
∆xψ + qϕψ − 2

p
ψ|ψ|p−2,

where ℏ, p > 0 are fixed and ϕ denotes the corresponding electrostatic potential. Under convenient normalizations,

standing waves, i.e., wave functions of the form ψ(x, t) = u(x)eiωt, which solve this equation subject to an L2-

norm constraint and such that ϕ satisfies Maxwell’s electromagnetic theory (resp., Bopp–Podolsky theory) can be

obtained by searching for solutions to the Schrödinger–Poisson–Slater system (resp., to (SBPa,ρ)),
−∆u+ ωu+ ϕu = u|u|p−2,

−∆ϕ = 4πu2,

∥u∥L2 = ρ.

(SPSρ)

In this context, we aim to use variational methods to prove that some well known facts about (SPSρ) also hold

for (SBPa,ρ). Indeed, (SBPa,ρ) admits the following variational characterization: u is a weak solution to (SBPa,ρ)

in H1(R3) if, and only if, u is a critical point of Ja : H1(R3) → R restricted to Sρ := {u ∈ H1(R3) : ∥u∥L2 = ρ},
where Ja is given by

Ja(v) =
1

2
∥∇v∥2L2 +

1

4

∫
ϕvav

2 − 1

p
∥v∥pLp ;

ϕva is the unique weak solution to −∆v + a2∆2v = 4πv2 in X (R3) and H1(R3),X (R3) are obtained as the

respective Hilbert space completions of C∞
c (R3) with respect to the inner products ⟨u, v⟩H1 :=

∫
⟨∇u,∇v⟩ + uv

and ⟨u, v⟩X :=
∫
⟨∇u,∇v⟩ + ∆u∆v. We remark that it is proved in [2, Appendix A.1] that weak solutions in

H1(R3)×X (R3)× R are, in fact, classical solutions to (SBPa,ρ).
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2 Main Results

We say that (u, ϕ, ω) ∈ H1(R3) × X (R3) × R is a least energy solution to (SBPa,ρ) when (u, ϕ, ω) is a solution to

(SBPa,ρ) and Ja(u) = infSρ
Ja. Therefore, it suffices to obtain relatively compact minimizing sequences of Ja|Sρ

in order to obtain such solutions. The challenge behind this procedure resides on the fact that Ja is translation

invariant, so it follows from Lions’ concentration-compactness principle that if (un)n∈N is a bounded minimizing

sequence for Ja|Sρ
, then dichotomy could occur, i.e., un ⇀ u ̸= 0 and ∥u∥L2 < ρ, or the sequence could vanish, i.e.,

un → 0.

To avoid these phenomena, we use Bellazzini and Siciliano’s abstract framework for minimization introduced in

[3] to obtain the existence of least energy solutions to (SBPa,ρ):

Theorem 2.1 ([1, Theorems A, B). ] If 2 < p < 3 (resp., 3 < p < 10/3), then there exists Rp > 0 such that given

a > 0 and ρ ∈]0, Rp[ (resp., ρ > Rp), the system (SBPa,ρ) admits a least energy solution.

Slight changes to the arguments in [4] allow us to conclude that least energy solutions are radial whenever

2 < p < 14/5:

Theorem 2.2 ([1, Theorem C). ] Given p ∈]2, 14/5[, there exists Rp > 0 such that if a > 0, ρ ∈]0, Rp[ and
(u, ϕ, ω) ∈ Sρ ×X (R3)× R is a least energy solution to (SBPa,ρ), then u is radially symmetric up to translation.

To finish, we prove that (SPSρ) admits a least energy solution to which least energy solutions to (SBPa,ρ)

converge as a→ 0:

Theorem 2.3 ([1, Theorem D). ] If 2 < p < 14/5, then there exists Rp > 0 such that given ρ ∈]0, Rp[ and a set

{(ua, ϕa, ωa) ∈ H1(R3)×X (R3)× R : a > 0 and (ua, ϕa, ωa) is a least energy solution to (SBPa,ρ)},

we conclude that (SPSρ) admits a least energy solution, (u0, ϕ0, ω0) ∈ H1
rad(R3)×D1,2

rad(R3)×]0,∞[, such that

(ua, ϕa, ωa) → (u0, ϕ0, ω0) in H
1(R3)×D1,2(R3)× R as a→ 0

up to translations and subsequences, where D1,2(R3) is the Hilbert space completion of C∞
c (R3) with respect to

⟨u, v⟩D1,2 :=
∫
⟨∇u,∇v⟩.
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Abstract

Our work concerns the existence of solutions to a class of elliptic problems involving supercritical Sobolev

growth without the (AR) condition and with a mixed boundary Dirichlet-Neumann type condition. We also

study non-existence of solutions for a class of elliptic problems and present a comparison result inspired by the

case of Dirichlet boundary conditions.

1 Introduction

What we present here was taken from our submitted paper [2]. Consider the following elliptic problem
−∆u = λuq−1 + f(u), x ∈ Ω,

u > 0, x ∈ Ω,

B(u) = 0, x ∈ ∂Ω,

(P )

where 1 < q < 2, λ > 0, Ω ⊂ RN is a bounded domain, with N ≥ 3. The boundary condition is given by the mixed

operator

B(u) = uχΣ1
+
∂u

∂ν
χΣ2 , (BC)

where both Σ1,Σ2 are smooth (N-1)-dimensional submanifolds of ∂Ω with positive measure and such that

Σ1 ∪ Σ2 = ∂Ω, Σ1 ∩ Σ2 = ∅ and Σ1 ∩ Σ2 = Γ is a smooth (N-2)-dimensional submanifold. Furthermore, ν is

the outward unitary normal vector to the boundary ∂Ω and χA is the characteristic function of the set A.

We will consider here f to be a continuous function satisfying the following conditions:

(H1) It has the sign property, namely:

0 ≤ f(t)t , t ∈ R ;

(H2) It has a critical or supercritical growth at infinite, in the sense that

lim inf
t→∞

f(t)

tr
= ∞ , ∀ r ∈

(
1,
N + 2

N − 2

]
;

(H3) We assume that there exists a number θ > 0 such that

lim sup
t→∞

f(t)

t2∗−1+θ
<∞ ;

(H4) At last, we assume that there exists a sequence (Mn) with Mn → ∞ and such that, for every r ∈ (0, N+2
N−1 ),

t ∈ [0,Mn] ⇒ f(t)

tr
≤ f(Mn)

(Mn)r
.
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The suitable choice for the space in which we look for solutions in this mixed boundary formulation is

EΣ1(Ω) :=
{
v ∈ H1(Ω); v = 0 on Σ1

}
,

which can also be identified as the closure of C1
c (Ω ∪ Σ2) with the norm of H1(Ω).

2 Main Results

Our main result is this

Theorem 2.1. If f : [0,∞) −→ R is a continuous function satisfying the growth conditions (H1) - (H4), then there

exists γ > 0 and Λ > 0 such that problem (P) has a weak solution uλ ∈ EΣ1
(Ω) ∩W 2, 2∗

2∗−1 (Ω) whenever 0 < θ < γ

and 0 < λ < Λ.

Additionally, we have obtained the following

Theorem 2.2. If f is a continuous function satisfying the supercrititcal growth of (H3) and it is above the quadratic

power function, meaning that

s2 ≤ f(s),

then the set of parameters λ for which problem (P) has a solution is bounded from above.

Lastly, we would like to mention the quite interesting comparison lemma we have obtained, adapting for our

purposes the previous result found in [3].

Theorem 2.3. If u, v ∈ EΣ1
(Ω) are, respectively, a weak supersolution and a weak subsolution to the problem

−∆u = g(u), in Ω,

u > 0, in Ω,

B(u) = 0, on ∂Ω,

(1)

with g satisfying g(s) ≥ 0 for s ≥ 0 and g(s)/s is a decreasing function, then u ≥ v in Ω.
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Abstract

It is establish existence and multiplicity of solutions to the nonlocal elliptic problem with sign changing

nonlinearities given by{
(−∆)spu + V (x) |u|p−2 u = λf(x) |u|q−2 u + g(x) |u|r−2 u, in RN ,

u ∈W s,p(RN ),

where λ ∈ (0, λ∗), λ∗ > 0, N > ps with s ∈ (0, 1) fixed, 1 < q < p < r < p∗s and p∗s = Np
N−ps

. The potential V is

a continuous function. Here we consider the functions f and g that can be sign changing functions. Hence, we

prove existence and multiplicity of solutions via nonlinear Rayleigh quotient. More precisely, there exists λ∗ > 0

such that our main problem has at least two solutions for each λ ∈ (0, λ∗). The λ∗ parameter is optimal in the

sense that we can apply the Nehari method.

1 Introduction

In this work, we consider the elliptical problem given by{
(−∆)spu + V (x) |u|p−2

u = λf(x) |u|q−2
u + g(x) |u|r−2

u, in RN ,
u ∈W s,p(RN ),

(1)

where λ ∈ (0, λ∗), λ∗ > 0, N > ps with s ∈ (0, 1) fixed, 1 < q < p < r < p∗s and p∗s = Np
N−ps . Since f and g can

be sign changing functions some considerable difficulties in order to apply the Rayleigh method is verified. This

fact occurs due to the fact that the Raleigh quotient may not be well defined for all functions. The main idea

here is to consider a open set where the quotients are well defined. Hence we prove that the fibering maps have

exactly two critical points in the appropriate open where λ ∈ (0, λ∗). Throughout this work we assume the following

assumptions:

(F ) There holds f ∈ Lq̃(RN ), with q̃ = r
r−q ;

(G) Suppose that g ∈ L∞(RN );

(A1) There exists an open Ω ⊂ RN such that f and g are positive, for all x ∈ Ω;

(V1) V ∈ C(RN ,R) and there exists a constant V0 > 0 such that V0 = inf
x∈RN

V (x);

(V2) There holds µ{x ∈ RN \ V (x) ≤M} <∞ for each M > 0.

Let X = {u ∈ W s,p(RN );
∫
RN V (x)|u|pdx < ∞} be the working space. Consider the energy functional J : X → R

given by

J(u) =
1

p
∥u∥p − λ

q

∫
RN

f(x)|u|qdx− 1

r

∫
RN

g(x)|u|rdx
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Under our hypotheses we observe that J is well defined and it belongs C1(X,R). Note that X is our working space

and given u ∈ X it follows that u is a critical point of J if and only if u is a weak solution for (1). In order to use

the Rayleigh Quotient method [1,2,3], we introduce the important set

A =

{
u ∈ X \ {0} :

∫
RN

f(x)|u|qdx > 0,

∫
RN

g(x)|u|rdx > 0

}
.

In order state our main results we need to consider auxiliaries functionals, Rn, Re : A → R associated with the

parameter λ as follows:

Rn(u) =

∥u∥p −
∫
RN

g(x)|u|rdx∫
RN

f(x)|u|qdx
, Re(u) =

1

p
∥u∥p − 1

r

∫
RN

g(x)|u|rdx

1

q

∫
RN

f(x)|u|qdx
. (2)

Define Λn(u) := sup
t>0

Rn(tu) and Λe(u) = sup
t>0

Re(tu). As a consequence, we have

λ∗ = inf
u∈A

Λn(u), λ∗ = inf
u∈A

Λe(u).

2 Main Results

Theorem 2.1. Suppose (F ), (G), (V1), (V2) and (A1). Then 0 < λ∗ < λ∗ < ∞. Furthermore, assume that

inf
w∈N−∩A

J(w) < inf
w∈N−∩∂A

J(w). Therefore, for each λ ∈ (0, λ∗) the Problem (1) has at least one solution v ∈ N−∩A
satisfying the following properties:

i) For each λ ∈ (0, λ∗), we obtain that J(v) > 0;

ii) For each λ = λ∗, we see that J(v) = 0;

iii) For each λ ∈ (λ∗, λ
∗), we deduce that J(v) < 0.

Theorem 2.2. Assume (F ), (G), (V1), (V2) and (A1). Then 0 < λ∗ < λ∗ < ∞. Furthermore, suppose that

inf
w∈N+∩A

J(w) < inf
w∈N+∩∂A

J(w). Therefore, for each λ ∈ (0, λ∗) the Problem (1) has at least one solution u ∈ N+∩A
such that J(u) < 0.

Corollary 2.1. Assume (V1) and (V2). Moreover, suppose f ≥ 0, f ̸≡ 0, f ∈ Lq̃(RN ), g > 0, g ∈ L∞(RN ). Then,

for each λ ∈ (0, λ∗), the Problem (1) has at least two solutions. Furthermore, assuming that λ ∈ (0, λ∗) hods,

Problem (1) admits at least two positive solutions.
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Abstract

We study a thermoviscoelastic plate system with modificated Timoshenko equation. We prove unicity and

exponential stability of total energy as time approaches to infinity.

1 Introduction

In this paper we consider three scalar functions u(x, t), q(x, t) and θ(x, t) satifying the coupled system


utt − µuxxtt + uxxxx −M

(∫ L

0

u2xdx

)
uxx + δθxx = 0, 0 < x < L; t > 0

θt + kqx − δuxxt = 0, 0 < x < L; t > 0

τqt + q + kθx = 0, 0 < x < L; t > 0

(1)

in Ω = (0, L) with initial conditions

u(x, 0) = u0(x);ut(x, 0) = u1(x); θ(x, 0) = θ0(x); q(x, 0) = q0(x) (2)

and boundary conditions

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = θ(0, t) = θ(L, t) = 0, (3)

such that µ, δ, k and τ are positive constants experimentally provided and u := u(x, t) com x ∈ R e t ∈ [0,∞].

Furthermore, the constants we are considering in (1) are usually associated with the following: τ is the ”relaxation”

time, δ is a coupling constant for (1) and θ and q denotes the difference to a fixed temperature.

The total energy is associated to (1) is

E(t) =

(∫ L

0

u2t + µu2xt + u2xx + θ2 + τq2

)
+M

(∫ L

0

u2xdx

)
(4)

where M =

∫ λ

0

M(s)ds for all s ≥ 0 with M(s) ≥ 0 is a C1(Ω) real function.

The model (1) describes thermoviscoelastic deformations of a linear plate equation under the presence of thermal

effects modeled by Cattaneo’s Law (see [1] and [3]). Our main result says that the total energy given in [4] decays

exponentially as time approaches to ∞.

2 Main Results

We consider the following spaces: D = H2(0, L) × H1(0, L) × L2(0, L) × L2(0, L) if µ ̸= 0. Now, if µ = 0 we have

D = H2 × L2 × L2 × L2.

Using the semigroup theory (see for instance [2] ) techniques we prove the following theorem
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Theorem 2.1. Let us consider the Cauchy problem described in (1) given initial date U0 = {u0, v0, θ0, q0} ∈ D
then there exists a unique function U(t) = {u, v, θ, q} ∈ C([0,+∞] ∩ D).

Using a convenient Lyapunov function we prove the following result.

Theorem 2.2. Consider the global solution of problem (1) - (3) given by theorem (2.1). Then the total energy

given in (2) satisfies:

� E(t) ≤ C ·E(0)e−γt , if µ ≥ 0 for allt > 0, where C and γ are positive constants independently of initial date.

� For the case µ = 0 we have:

E(t) ≤ C

t
· E(0)

for all t ≥ 0 and C a positive constant independent of initial date.
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1Departamento de Matemática, UnB, DF, Brasil, mfurtado@unb.br,
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Abstract

In this work, we study a critical elliptic problem in RN
+ with concave-convex nonlinearities on the boundary.

For solving this problem, we use weighted Sobolev spaces which has compact embeddings in weighted Lebesgue

spaces. We obtain two nonnegative and nontrivial solutions for our equation.

1 Introduction

We consider the problem 
−∆u− 1

2

(
x · ∇u

)
= 0, in RN+

∂u

∂η
= µa(x′)|u|q−2u+ b(x′)|u|2∗−2u, on RN−1

(1)

where 1 < q < 2, 2∗ := 2(N − 1)/(N − 2), µ > 0 is a real parameter and a, b : RN−1 → R are potentials satisfying

mild conditions.

This type of problem arises naturally when looking for self-similar solutions to the heat equation [2]. The

boundary condition in the problem (1) portrays a concave-convex behavior, since it contains sublinear and

superlinear terms. Ambrosetti et al [1] studied the effects of these two nonlinearities in the interior of a bounded

domain and obtained a result of multiplicity of solutions. Also in the bounded domain case, Furtado et al [6]

obtained two nonnegative solutions when the nonlinearities were at the boundary. Furtado et al [5] considered the

problem in RN . For the upper-half space case we can cite the work of Furtado and Sousa [4] where they obtained

infinitely many solutions under some symmetry assumptions.

2 Main Results

The conditions for potentials a and b are similar to those used in [4,5,6], namely

(a1) a ∈ L
σq

K (RN−1), where (
p

q

)′

< σq ≤
(
2

q

)′

, (1)

(a2) Ω+
a = {x ∈ RN−1 : a(x) > 0} has interior point,

(b1) b ∈ L∞(RN−1),

(b2) Ω+
b = {x ∈ RN−1 : b(x) > 0} has interior point.
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(b3) there exists δ > 0 such that BN−1
δ (0) := Bδ(0) ∩ RN−1 ⊂ Ω+

a ∩ Ω+
b and

|b|L∞(RN−1) − b(x′) ≤M |x′|γ , (2)

for a.e. x′ in BN−1
δ (0), with M > 0 and γ > N − 1.

We shall prove the following:

Theorem 2.1. If a, b satisfy the conditions (a1)− (a2) and (b1)− (b3), respectively, then problem (1) has at least

two nontrivial and nonnegative solutions if µ > 0 is small.

Proof (Sketch) After a modification on the problem, we show that the nonnegative solutions of (1) are given by

critical points of class C1 functional:

I(u) =

∫
RN

+

K(x)|∇u|2dx− µ

q

∫
RN−1

K(x′, 0)a(x′)(u+)qdx′ − 1

2∗

∫
RN−1

K(x′, 0)b(x′)(u+)2∗dx′, (3)

where K(x) = exp(|x|2/4). The first solution u1 is obtained by classical arguments of minimization and has negative

energy. For the second solution, we argue by contradiction as follows: if the only critical points of I are 0 and u1,

then I satisfies (PS)c for every level c < c̄ given by

c̄ := I(u1) +
1

2(N − 1)

1

|b|N−2
L∞(RN−1)

SN−1
2∗

, (4)

where S2∗ is the best constant of weighted trace embedding studied in [3]. After that, we show that the mountain

pass level of I belongs in range (−∞, c̄), which is contradiction since I(u1) < 0.
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Abstract

In this work, we study the systems of 1−Laplacian equations. In the first part we study the subcritical

system and in the second part we deal with a system with homogeneous nonlinearities with critical growth. In

both cases the solutions are obtained as limit of solutions to p-Laplacian type problems.

1 Introduction

Problems involving the 1-Laplacian operator have been extensively studied in the last years. The interest in this

setting comes, on the one hand, from an optimal design problem in the theory of torsion and related geometrical

problems and, on the other, from the variational approach to image restoration . 1- Laplacian problems also appear

in game theory.

In the first part of this work, we shall extend the results of [1] for the following system 1-Laplacian equations

with subcritical growth. 
-div

(
Du
|Du|

)
= Fu(x, u, v) in Ω,

-div
(
Dv
|Dv|

)
= Fv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

(1)

where N ≥ 2, Ω ⊂ RN is an open bounded set, and F a function satisfying some hypotheses.

Problems with critical growth has received lots of attention in the last years, beginning by the pioneering work

of Brezis and Niremberg [2]. In the second part of this work, we deal with the following system of elliptic equations

with critical growth 
-div

(
Du
|Du|

)
= Qu(u, v) +

2α
α+βu|u|

α−2|v|β in Ω,

-div
(
Dv
|Dv|

)
= Qv(u, v) +

2β
α+β |u|

αv|v|β−2 in Ω,

u = v = 0 on ∂Ω,

u, v ≥ 0; u, v ̸= 0 in Ω,

(2)

where α + β = 1∗, N ≥ 2, Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω and Qu, Qv are the partial

derivates of C1−function Q.

2 Main Results

Our first main result is the following.

Theorem 2.1. Suppose that F satisfies appropriate growth conditions then, system (1) has a nontrivial solution.

The proof of Theorem 2.1 follows the method employed by Alexis Molino and Sergio Segura [5].

Our second main result is the following.
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Theorem 2.2. Let Q be a C1(R+ × R+,R) function such that

Q(λu, λv) = λQ(u, v) for all λ > 0; u, v ≥ 0 and (3)

Qu(0, 1) = 0, Qv(1, 0) = 0. (4)

Suppose also that

µ2(1) < λ1(1), (5)

where µ2(1) = max{Q(u, v) : u, v ≥ 0, u+ v = 1} and λ1(1) = inf
u∈W 1,1

0 (Ω)\0

∫
Ω
|∇u|dx∫

Ω
|u|dx

.

Moreover,

S̃H > 2, (6)

where

S̃H = inf
(u,v)∈W 1,1

0 (Ω)×W 1,1
0 (Ω)

∫
Ω
(|∇u|+ |∇v|)dx

(
∫
Ω

2
1∗ |u|α|v|βdx)

1
1∗
.

Then system (2) has a nontrivial solution.

Our method to prove the Theorem 2.2 is a combination of ideas found in [4] and [3].
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equations . BirkhÃ¤user, 2002, 309–323.

[2] Brezis, H and Nirenberg, L Positive solutions of nonlinear elliptic equations involving critical Sobolev

exponents Communications on pure and applied mathematics , 36 (1987), 437–477.

[3] Demengel, Françoise On some nonlinear partial differential equations involving the 1-Laplacian and

critical Sobolev exponent ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences , 4 (1999),

667–686.

[4] Morais Filho, DC de and Souto Systems ofp-laplacean equations involving homogeneous nonlinearities

with critical sobolev exponent degrees Communications in partial differential equations,Taylor & Francis , 24

(1999),1537–1553.

[5] Salas, Alexis Molino and de León, Sergio Segura Elliptic equations involving the 1-Laplacian and a

subcritical source term Nonlinear Analysis, Elsevier , 168 (2017), 50–66.



ENAMA - Encontro Nacional de Análise Matemática e Aplicações
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Abstract

This work is addressed to showing the existence of insensitizing controls for a quasilinear parabolic equation

with homogeneous Dirichlet boundary conditions. We will define a functional associated with the solution of the

equation in question and we will look for a control function which is locally insensitive to small perturbations

in the initial condition.

1 Introduction

Let N ∈ N \ {0}, T > 0 and Ω a limited domain of RN with boundary ∂Ω of class C3. Let us denote by Q the

cylinder Ω× (0, T ) with side boundary Σ = ∂Ω× (0, T ). Assume ω and O to be two given nonempty open subsets

of Ω and by 1ω the characteristic function of the set ω. We consider the following controlled quasilinear parabolic

equation:


yt −∇.(a(x, t; y)∇y) = ξ + v1ω in Q,

y = 0 on Σ,

y(x, 0) = y0 + τ ŷ0 in Ω.

(1)

where a : Ω× [0, T ]× R → R is regular enough and satisfying 0 < m ≤ a(x, t; r) ≤M , for all (x, t; r) ∈ Q× R.
The goal of this is to show the existence of insensitizing controls for the quasilinear parabolic equation. When

the function a depends only on y, that is, a = a(y) the problem of insensitizing controls was developed in [3].

In this work we intend to generalize this result to a(x, t; y). As usual, this insensitizing problem is reduced to a

nonstandard null controllability problem of a nonlinear coupled cascade system governed by a quasilinear parabolic

equation and a linear parabolic equation. To establish the null controllability of the nonlinear cascade parabolic

system we will use fixed point techniques, nevertheless, to do this, it is first necessary to solve the null controllability

of the linearized cascade parabolic system in the framework of classical solutions.

The crucial part is to find a desired control function in a Hölder space for data with certain regularities. More

specifically, let’s consider ξ ∈ Cθ,
θ
2 (Q) and y0 ∈ C2+θ(Ω) satisfyng certain conditions and we will assume that the

insensitizing control v dependent on ξ and y0 but independent of τ and ŷ0 satisfies the following condition:

(H) There exists a τ0 > 0 such that for any |τ | < τ0 and any ŷ0 ∈ C∞
0 (Ω) with |ŷ0|C2+θ(Ω) = 1, the equation (1)

admits a unique solution y(., ., τ, v) ∈ C2+θ,1+ θ
2 (Q). Moreover,

|y|
C2+θ,1+ θ

2 (Q)
≤ C(N,Ω, ∂Ω, T, a)(|ξ|

Cθ, θ
2 (Q)

+ |v|
Cθ, θ

2 (Q)
+ |y0 + τ ŷ0|C2+θ(Ω)).

Define the following functional

ϕ(y) =
1

2

∫ T

0

∫
O
|y(x, t; τ, v)|2dxdt, (2)
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where y = y(x, t; τ, v) is the corresponding solution of (1) associated with τ and v. For ξ ∈ Cθ,
θ
2 (Q) and

y0 ∈ C2+θ(Ω), we say that a control function v ∈ Cθ,
θ
2 (Q) with supp u ⊆ ω × [0, T ] insensitizing the functional (2)

if v satisfies the condition (H), and

∂ϕ(y(., .; τ, v))

∂τ

∣∣∣∣
τ=0

= 0, ∀ŷ0 ∈ C∞
0 (Ω) with |ŷ0|C2+θ(Ω) = 1.

2 Main Results

Proposition 2.1. Assume that ξ ∈ Cθ,
θ
2 (Q) satisfies

|ξ|
Cθ, θ

2 (Q)
+

∣∣∣∣exp( M

t(T − t)

)
ξ

∣∣∣∣
L2(Q)

≤ δ, (1)

and y0 = 0. If a control function v ∈ Cθ,
θ
2 (Q) satisfies condition (H) and the corresponding solution (y, q) ∈(

C2+θ,1+ θ
2 (Q)

)2
of the following nonlinear cascade system:


yt −∇.(a(x, t; y)∇y) = ξ + v1ω in Q,

y = 0 on Σ,

y(x, 0) = 0 in Ω

and 
−qt −∇.(a(x, t; y)∇q) + ∂ra(x, t; y)∇y∇q = y1O in Q,

q = 0 on Σ,

q(x, T ) = 0 in Ω

satisfies q(., 0) = 0 in Ω, then v insensitizes the functional (2).

Theorem 2.1. Assume that ω∩O ̸= 0 and y0 = 0. Then, there exist two positive constantsM and δ depending only

on N,Ω, ∂Ω, T and a, such that for any ξ ∈ Cθ,
θ
2 (Q) satisfying (1), one can find a control functional v ∈ Cθ,

θ
2 (Q),

which insensitizes the functional (2).
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Abstract

In this work, we present a study of Nash Equilibria for quasi-linear parabolic problem 2D via Fixed-Point

technique.

1 Introduction

Let us consider T > 0, Ω ⊂ R2 be a nonempty bounded connected open set whose boundary Γ is regular enough,

ωi ⊂ Ω, for i = 1, 2. We consider the following system
ut −∇ · (a(u)∇u) = v1χω1

+ v2χω2
in Ω×]0, T [,

u(x, t) = 0 on Γ×]0, T [,

u(x, 0) = u0(x) in Ω.

(1)

The existence and uniqueness results are proved using the same ideas of [2] and [3]. We consider the functionals Ji,

with i = 1, 2, given by

Ji(v1, v2) =
αi
2

∫
Oi

|u(x, T )− uid|2dx+
ηi
2

∫ T

0

∫
ωi

|vi|2dxdt. (2)

Definition 1.1. (v1, v2) is a Nash equilibrium for functionals J1, J2 if

J1(v1, v2) ≤ J1(v̂1, v2),∀v̂1 ∈ L2(ω1 × (0, T )), (3)

J2(v1, v2) ≤ J2(v1, v̂2),∀v̂2 ∈ L2(ω2 × (0, T )). (4)

Definition 1.2. (v1, v2) is a quasi-equilibrium for functionals J1, J2 if

∂J1
∂v1

(v1, v2)(v
′
1, 0) = 0,∀v′1 ∈ L2(ω1 × (0, T )), (5)

∂J2
∂v2

(v1, v2)(0, v
′
2) = 0,∀v′2 ∈ L2(ω2 × (0, T )). (6)

Since that

∂J1
∂v1

(v1, v2)(v
′
1, 0) = α1

∫
O1

(u(x, T )− u1d)Y
1(T ) + η1

∫ T

0

∫
ω1

v1v
′
1, (7)

∂J2
∂v2

(v1, v2)(0, v
′
2) = α2

∫
O2

(u(x, T )− u2d)Y
2(T ) + η2

∫ T

0

∫
ω2

v2v
′
2. (8)

where Y i, with i = 1, 2, satisfies
−Y it −∇ · (a′(u)Y i∇u)−∇ · (a(u)∇Y i) = v′iχωi

in Ω×]0, T [,

Y i(x, t) = 0 on Γ×]0, T [,

Y i(x, 0) = 0 in Ω,

(9)
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consider the system adjoint of (9)
−φit −∇ · (a(u)∇φi) + a′(u)∇u∇φi = 0 in Ω×]0, T [,

φi(x, t) = 0 on Γ×]0, T [,

φi(x, T ) = u(T )− uid in Ω,

(10)

We obtain the optimal system

ut −∇ · (a(u)∇u) = v1χω1 + v2χω2 in Ω×]0, T [,

u(x, t) = 0 on Γ×]0, T [,

u(x, 0) = u0(x) in Ω,

−φit −∇ · (a(u)∇φi) + a′(u)∇u∇φi = 0 in Ω×]0, T [,

φi(x, t) = 0 on Γ×]0, T [,

φi(x, T ) = u(T )− uid in Ω,

v1 = −α1

η1
φ1,

v2 = −α2

η2
φ2.

(11)

2 Main Results

Let U := L2(ω1 × (0, T ))× L2(ω2 × (0, T )), define Λ : U −→ U, Λ(ṽ1, ṽ2) := (−α1

η1
φ1,−α2

η2
φ2)

Lemma 2.1. Let ṽ1, ṽ2 and ũ solution of (1) associated ṽ1, ṽ2 and let v̄1, v̄2 and ū solution of (1) associated v̄1,

v̄2 then

|ũ− ū|L∞(0,T,L2) + |ũ− ū|L2(0,T,H1
0 )

≤ C|(ṽ1, ṽ2)− (v̄1, v̄2)|U (1)

Lemma 2.2. Under the hypotheses of Lemma 2.1, for φ̃i solution of (10) associated ṽ1, ṽ2 and φ̄i solution of (10)

associated v̄1, v̄2 then

|φ̃i − φ̄i|L∞(0,T,L2) + |φ̃i − φ̄i|L2(0,T,H1
0 )

≤ C(|ũ(T )− ū(T )|L2 + |(ṽ1, ṽ2)− (v̄1, v̄2)|U ) (2)

Theorem 2.1. The system (1) admit quasi-equilibrium .
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Abstract

The goal of this work is to discuss an alternative proof to the estimates in [7] and [8] for the following Cauchy

problem 
utt −∆u = 0, x ∈ Rn, t > 0

u(0, x) = 0

ut(0, x) = u1(x),

(1)

u1 ∈ Lp, p ≥ 1

1 Introduction

The Cauchy problem 
utt + (−∆)σu = 0, x ∈ Rn, t > 0

u(0, x) = f(x)

ut(0, x) = g(x)

(2)

involves a σ-evolution equation in the sense of Petrovsky, since its principal symbol is −τ2 + |ξ|2σ, whose roots are

the distinct real τ = ±|ξ|σ. If s ≥ σ, f ∈ Hs(Rn) and g ∈ Hs−σ(Rn), the Cauchy problem (2) is well-posed, that

is, there exists a uniquely determined solution u ∈ C([0, T ], Hs(Rn)) ∩ C1([0, T ], Hs−σ(Rn)).
The study of the long-time asymptotics of the solution and, more in general, the study of long-time behavior of

suitable energies, has been a topic of interest in the recent years. For example, the case σ = 2 in (2) is an important

model in the literature, it is known as Germain-Lagrange operator, as well as beam operator and plate operator in

the case of space dimension n = 1 and n = 2, respectively.

If f ̸= 0 in (2), one may not expect Lq−Lq estimates for q ̸= 2 for solutions to the wave and Germain-Lagrange

equation, neither for solutions to the Cauchy problem for the Schrödinger equation.

The authors in [1] show that, if σ > 1, f ≡ 0 and g ≡ u1 ∈ Lp, p ≥ 1, the solution to the Cauchy problem (2)

satisfies the following Lp − Lq estimates

∥u(t, ·)∥Lq ≲ t1−
n
σ (

1
p−

1
q ) ∥u1||Lp