Phase Space Analysis for Evolution PDE's and Applications ${ }^{1}$

The Method of Stationary Phase and Applications

Marcelo Rempel Ebert - University of São Paulo

XIII ENAMA

UFSC, Florianópolis, November, 2019
${ }^{1}$ This work was partially supported by FAPESP

Summary

(1) The Method of Stationary Phase

2 $L^{p}-L^{q}$ estimates for the Wave equation

3 $L^{p}-L^{q}$ estimates for the Plate equation

The Method of Stationary Phase

In order to derive $L^{p}-L^{q}$ estimates on the conjugate line
$\frac{1}{p}+\frac{1}{q}=1$ for the wave equation

$$
u_{t t}-\triangle u=0
$$

Schrödinger equation

$$
i \partial_{t} u+\triangle u=0
$$

or plate equation

$$
\partial_{t}^{2} u+\triangle^{2} u=0
$$

one has to deal with the convolution

$$
F_{\xi \rightarrow x}^{-1}\left(e^{-i|\xi|^{\sigma} t}\right) * \varphi, \quad \sigma=1,2
$$

Even if we choose φ very smooth, there is no hope to just apply Young's inequality.

The main ideas are the followings:
(1) We add an amplitude function in our model Fourier multiplier. Instead, our model Fourier multiplier takes the form

$$
F_{\xi \rightarrow x}^{-1}\left(e^{-\left.i|\xi|\right|^{\sigma} t} \frac{1}{|\xi|^{2 r}} F(\varphi)(\xi)\right),
$$

where the parameter r is determined later.
(2) We decompose the extended phase space $(0, \infty) \times \mathbb{R}_{\xi}^{n}$ into two zones. For this reason we introduce a function $\chi \in C^{\infty}\left(\mathbb{R}_{\xi}^{n}\right)$ satisfying $\chi(\xi) \equiv 0$ for $|\xi| \leq \frac{1}{2}, \chi(\xi) \equiv 1$ for $|\xi| \geq \frac{3}{4}$, and $\chi(\xi) \in[0,1]$. Then we define the pseudo-differential zone

$$
Z_{p d}=\left\{(t, \xi) \in(0, \infty) \times \mathbb{R}_{\xi}^{n}: t|\xi|^{\sigma} \leq 1\right\},
$$

and the evolution zone

$$
Z_{\text {hyp }}=\left\{(t, \xi) \in(0, \infty) \times \mathbb{R}_{\xi}^{n}: t|\xi|^{\sigma} \geq 1\right\}
$$

To derive $L^{p}-L^{q}$ estimates for the model Fourier multiplier

$$
F_{\xi \rightarrow x}^{-1}\left(e^{-i|\xi|^{\sigma} t} \frac{1-\chi\left(t|\xi|^{\sigma}\right)}{|\xi|^{2 r}} F(\varphi)(\xi)\right),
$$

we use the following result about translation invariant operators in $L^{p}=L^{p}\left(\mathbb{R}^{n}\right)$ spaces: ${ }^{2}$

Lemma 1

Let f be a measurable function. Moreover, we suppose the following relation with suitable positive constants C and $b \in(1, \infty)$:

$$
\text { meas }\left\{\xi \in \mathbb{R}^{n}:|f(\xi)| \geq \ell\right\} \leq C \ell^{-b} .
$$

Then $f \in M_{p}^{q}$ if $1<p \leq 2 \leq q<\infty$ and $\frac{1}{p}-\frac{1}{q}=\frac{1}{b}$.

[^0]
Theorem 1

Let us consider for $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ the Fourier multiplier

$$
F_{\xi \rightarrow x}^{-1}\left(e^{-i|\xi|^{\sigma} t} \frac{1-\chi\left(t|\xi|^{\sigma}\right)}{|\xi|^{2 r}} F(\varphi)(\xi)\right)
$$

We assume $1<p \leq 2 \leq q<\infty$ and $0 \leq 2 r \leq n\left(\frac{1}{p}-\frac{1}{q}\right)$. Then we have the $L^{p}-L^{q}$ estimates

$$
\left\|F_{\xi \rightarrow X}^{-1}\left(e^{-i|\xi|^{\sigma} t} \frac{1-\chi\left(t|\xi|^{\sigma}\right)}{|\xi|^{2 r}} F(\varphi)(\xi)\right)\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C t^{\frac{2 r}{\sigma}-\frac{n}{\sigma}\left(\frac{1}{p}-\frac{1}{q}\right)}\|\varphi\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

for all admissible p, q. The constant C depends on p and q.

Proof.

After the change of variables $\eta:=t^{\frac{1}{\sigma}} \xi$ and $t^{\frac{1}{\sigma}} y:=x$, applying Lemma 1 with $b=\frac{n}{2 r}$ we conclude

$$
m(\eta)=e^{-i|\eta|} \frac{1-\chi(|\eta|)}{|\eta|^{2 r}} \in M_{p}^{q}
$$

Lemma 2 (Littman' type)

Let us consider for $\tau \geq \tau_{0}, \tau_{0}$ is a large positive number, the oscillating integral

$$
F_{\eta \rightarrow x}^{-1}\left(e^{-i \tau \rho(\eta)} v(\eta)\right) .
$$

The amplitude function $v=v(\eta)$ is supposed to belong to $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with support in $\left\{\eta \in \mathbb{R}^{n}:|\eta| \in\left[\frac{1}{2}, 2\right]\right\}$. The function $\rho=\rho(\eta)$ is C^{∞} in a neighborhood of the support of v. Moreover, the rank of the Hessian $H_{\rho}(\eta)$ is supposed to satisfy the assumption rank $H_{\rho}(\eta) \geq \kappa$ on the support of v. Then the following $L^{\infty}-L^{\infty}$ estimate holds ${ }^{\text {a }}$:

$$
\left\|F_{\eta \rightarrow x}^{-1}\left(e^{-i \tau \rho(\eta)} v(\eta)\right)\right\|_{L \infty\left(\mathbb{R}_{x}^{n}\right)} \leq C(1+\tau)^{-\frac{\kappa}{2}} \sum_{|\alpha| \leq L}\left\|D_{\eta}^{\alpha} v(\eta)\right\|_{L \infty\left(\mathbb{R}_{\eta}^{n}\right)},
$$

where L is a suitable entire number.
${ }^{a} H$. Pecher, L^{p}-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen. I. Math. Z. 150 (1976), 159-183.

If $\rho(\eta)=|\eta|^{\sigma}$ in Lemma 2, then
$\kappa \doteq \operatorname{rank} H_{\rho}(\eta)=\left\{\begin{array}{l}n, \quad \sigma>1 \\ n-1, \quad \sigma=1\end{array}\right.$.
By using Littman's type lemma we derive:

Theorem 2

Let us consider for $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ the Fourier multiplier

$$
F_{\xi \rightarrow x}^{-1}\left(e^{-i|\xi|^{\sigma} t} \frac{\chi\left(t|\xi|^{\sigma}\right)}{|\xi|^{2 r}} F(\varphi)(\xi)\right)
$$

We assume $\left(n-\frac{\kappa \sigma}{2}\right)\left(\frac{1}{p}-\frac{1}{q}\right) \leq 2 r$. Then we have the following $L^{p}-L^{q}$ estimates on the conjugate line:

$$
\left\|F_{\xi \rightarrow x}^{-1}\left(e^{-i|\xi|^{\sigma} t} \frac{\chi\left(t|\xi|^{\sigma}\right)}{|\xi|^{2 r}} F(\varphi)(\xi)\right)\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C t^{2 r-n\left(\frac{1}{p}-\frac{1}{q}\right)}\|\varphi\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

for all admissible $1<p \leq 2, \frac{1}{p}+\frac{1}{q}=1$.

Proof of Theorem 2: 1/3

$L^{1}-L^{\infty}$ estimates: Apply Young's inequality

$$
\begin{aligned}
& \left\|F_{\xi \rightarrow x}^{-1}\left(e^{-i|\xi|^{\sigma} t} \frac{\chi\left(t|\xi| \sigma^{\sigma}\right.}{\left.|\xi|\right|^{r}} F(\varphi)(\xi)\right)\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \\
\leq & C \| F_{\xi \rightarrow x}^{-1}\left(e^{-i|\xi|^{\sigma}} t \frac{\chi\left(t|\xi|^{\sigma}\right)}{|\xi|^{2}}\right)
\end{aligned}\left\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}\right\| \varphi \|_{L^{1}\left(\mathbb{R}^{n}\right)} .
$$

The last oscillating integral is estimated by the Littman type lemma. We choose $0 \leq \phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ supported in $\left\{\xi \in \mathbb{R}^{n}:|\xi| \in\left[\frac{1}{2}, 2\right]\right\}$. We set $\phi_{k}(\xi):=\phi\left(2^{-k}|\xi|\right)$ for $k \geq 1$ and $\phi_{0}(\xi):=1-\sum_{k=1}^{\infty} \phi_{k}(\xi)$. We put $t^{\frac{1}{\sigma} \xi}=: 2^{\frac{k}{\sigma}} \eta$ to obtain

$$
\left\|F_{\xi \rightarrow x}^{-1}\left(e^{-i|\xi| \sigma^{\sigma} t} \frac{\chi\left(t|\xi|^{\sigma}\right) \phi_{k}\left(t|\xi|^{\sigma}\right)}{|\xi|^{2 r}}\right)\right\|_{L^{\infty}}
$$

$$
\begin{aligned}
& =2^{\frac{k}{\sigma}(n-2 r)} t^{\frac{1}{\sigma}(2 r-n)} \| F_{\eta \rightarrow x}^{-1}\left(e^{\left.-i 2^{k}|\eta|^{\sigma} \frac{\phi_{k}\left(2^{k}|\eta|^{\sigma}\right)}{|\eta|^{2 r}}\right) \|_{L^{\infty}}} \begin{array}{l}
=2^{\frac{k}{\sigma}(n-2 r)} t^{\frac{1}{\sigma}(2 r-n)}\left\|F_{\eta \rightarrow x}^{-1}\left(e^{-i 2^{k}|\eta|^{\sigma}} \frac{\phi\left(|\eta|^{\sigma}\right)}{|\eta|^{2 r}}\right)\right\|_{L^{\infty}}
\end{array} .\right.
\end{aligned}
$$

Proof of Theorem 2: 2/3

Now we aplly Lemma 2 with $\tau:=2^{k}$. Taking into account of the properties of ϕ (smoothness and compact support) we may conclude

$$
\left\|F_{\eta \rightarrow x}^{-1}\left(e^{-i 2^{k}|\eta|^{\sigma}} \frac{\phi\left(|\eta|^{\sigma}\right)}{|\eta|^{2 r}}\right)\right\|_{L^{\infty}} \leq C\left(1+2^{k}\right)^{-\frac{\kappa}{2}}, \quad \kappa=\left\{\begin{array}{l}
n, \quad \sigma>1 \\
n-1, \quad \sigma=1
\end{array}\right.
$$

Summarizing all estimates gives
$\left\|F^{-1}\left(e^{-i|\xi|^{\sigma} t} \frac{\chi\left(t|\xi|^{\sigma}\right) \phi_{k}\left(t|\xi|^{\sigma}\right)}{|\xi|^{2 r}} F(\varphi)(\xi)\right)\right\|_{L^{\infty}} \leq C 2^{\frac{k}{\sigma}\left(n-2 r-\frac{\kappa \sigma}{2}\right)} t^{\frac{1}{\sigma}(2 r-n)}\|\varphi\|_{L^{1}}$
$L^{2}-L^{2}$ estimates:
After application of the formula of Parseval-Plancherel we immediately get the desired $L^{2}-L^{2}$ estimate

$$
\begin{aligned}
& \left\|F_{\xi \rightarrow X}^{-1}\left(e^{-\left.i|\xi|\right|^{\sigma} t} \frac{\chi\left(t|\xi|^{\sigma}\right) \phi_{k}\left(t|\xi|^{\sigma}\right)}{|\xi|^{2 r}} F(\varphi)(\xi)\right)\right\|_{L^{2}} \\
& \quad \leq C 2^{-\frac{2 \kappa r}{\sigma}} t^{\frac{2 r}{\sigma}}\|\varphi\|_{L^{2}} .
\end{aligned}
$$

Proof of Theorem 2: 3/3

$L^{p}-L^{q}$ estimates on the conjugate line:
Using the $L^{1}-L^{\infty}$ and $L^{2}-L^{2}$ estimates the application of the Riesz-Thorin interpolation theorem yields $L^{p}-L^{q}$ estimates on the conjugate line

$$
\begin{aligned}
& \left\|F_{\xi \rightarrow x}^{-1}\left(e^{-\left.i \xi\right|^{\sigma}} \frac{\chi\left(t|\xi|^{\sigma}\right) \phi_{k}\left(t|\xi|^{\sigma}\right)}{|\xi|^{2 r}} F(\varphi)(\xi)\right)\right\|_{L^{q}} \\
& \quad \leq C 2^{\frac{\kappa}{\sigma}\left(\left(n-\frac{\kappa \sigma}{2}\right)\left(\frac{1}{\rho}-\frac{1}{q}\right)-2 r\right)} t^{\frac{2 r}{\sigma}-\frac{n}{\sigma}\left(\frac{1}{\rho}-\frac{1}{q}\right)}\|\varphi\|_{L \rho},
\end{aligned}
$$

where $p \in(1,2]$.
After choosing $\left(n-\frac{\kappa \sigma}{2}\right)\left(\frac{1}{p}-\frac{1}{q}\right) \leq 2 r$ and using the dyadic decomposition, the desired $L^{p}-L^{q}$ estimates follow. This completes the proof.

$L^{p}-L^{q}$ estimates for the Wave equation

Now, let us come back to the representation of solutions to the Cauchy problem for the free wave equation

$$
\begin{array}{r}
u(t, x)=F_{\xi \rightarrow x}^{-1}\left(\left(e^{i \xi \mid t}+e^{-i|\xi| t}\right) \frac{1}{2} F(\varphi)(\xi)\right) \\
+F_{\xi \rightarrow x}^{-1}\left(\left(e^{i \xi \mid t}-e^{-i|\xi| t}\right) \frac{1}{2 i|\xi|} F(\psi)(\xi)\right) .
\end{array}
$$

Remark

If $\varphi \neq 0$, we have $L^{2}-L^{2}$ estimates for $u(t, x)$, but not $L^{p}-L^{q}$ with $p \neq 2$ and $q \neq 2$ (see Theorem 2 for the conjugate line). If $\varphi \equiv 0$, for small frequencies it is helpful to use recall

$$
u(t, x)=F_{\xi \rightarrow x}^{-1}\left(\frac{\sin (|\xi| t)}{|\xi|} F(\psi)(\xi)\right) .
$$

By putting $\sigma=1, r=0$ in Theorem 1 and $r=\frac{1}{2}$ in Theorem 2 we conclude:

Theorem 3

Let ψ belong to $L^{p}\left(\mathbb{R}^{n}\right)$. Then we have the following $L^{p}-L^{q}$ decay estimates on the conjugate line:
$\left\|F_{\xi \rightarrow x}^{-1}\left(\frac{e^{i \xi \mid t}-e^{-i|\xi| t}}{2 i|\xi|} F(\psi)(\xi)\right)\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C t^{1-n\left(\frac{1}{\rho}-\frac{1}{q}\right)}\|\psi\|_{L^{\rho}\left(\mathbb{R}^{n}\right)}$,
where $\frac{n+1}{2}\left(\frac{1}{p}-\frac{1}{q}\right) \leq 1,1<p \leq 2$ and $\frac{1}{p}+\frac{1}{q}=1$.
Indeed, (1) holds ${ }^{3}$ uniformly for any $t>0$, if, and only if, the point $\left(\frac{1}{p}, \frac{1}{q}\right)$ belongs to the closed triangle with vertices

$$
\begin{gathered}
P_{1}=\left(\frac{1}{2}+\frac{1}{n+1}, \frac{1}{2}-\frac{1}{n+1}\right), P_{2}=\left(\frac{1}{2}-\frac{1}{n-1}, \frac{1}{2}-\frac{1}{n-1}\right) \\
\quad \text { and } P_{3}=\left(\frac{1}{2}+\frac{1}{n-1}, \frac{1}{2}+\frac{1}{n-1}\right)
\end{gathered}
$$

${ }^{3}$ J. Peral, L^{p} estimates for the Wave Equation, J. Funct. Anal. 36, 114-145 (1980).

$L^{p}-L^{q}$ estimates for the Plate equation

Let us consider the Cauchy problem for the plate equation,

$$
\begin{cases}u_{t t}+(-\triangle)^{\sigma} u=0, & t \geq 0, x \in \mathbb{R}^{n} \tag{2}\\ u(0, x)=\varphi(x), \quad u_{t}(0, x)=\psi(x) . & \end{cases}
$$

Theorem 4

Let $\sigma>1$. If $\varphi \equiv 0$ and $\psi \in L^{p}$, then the solution u to the Cauchy problem (2) satisfies the following estimate ${ }^{a}$

$$
\begin{equation*}
\|u(t, \cdot)\|_{L^{q}} \lesssim t^{1-\frac{n}{\sigma}\left(\frac{1}{p}-\frac{1}{q}\right)}\|\psi\|_{L^{p}\left(\mathbb{R}^{n}\right)}, \quad \forall t>0 \tag{3}
\end{equation*}
$$

for all $1 \leq p \leq q<\infty$, with $\frac{1}{p}+\frac{1}{q} \leq 1$ and $\frac{1-\sigma}{p}-\frac{1}{q} \leq \sigma\left(\frac{1}{n}-\frac{1}{2}\right)$ or $\frac{1}{p}+\frac{1}{q} \geq 1$ and $\frac{1}{p}+\frac{\sigma-1}{q} \leq \sigma\left(\frac{1}{n}+\frac{1}{2}\right)$.

[^1]

$\sigma>1$
Figure : $L^{p}-L^{q}$ estimates

Notation

By $L_{p}^{q}=L_{p}^{q}\left(\mathbb{R}^{n}\right)$ we denote the space of tempered distributions T satisfying the estimate

$$
\|T * f\|_{L^{q}} \leq C\|f\|_{L^{p}}
$$

for all f in the Schwartz space $S\left(\mathbb{R}^{n}\right)$ with a constant C which is independent of f.
The set of Fourier transforms \hat{T} of distributions $T \in L_{p}^{q}$ is denoted by $M_{p}^{q}=M_{p}^{q}\left(\mathbb{R}^{n}\right)$. The elements in M_{p}^{q} are called multipliers of type (p, q). We define in $M_{p}^{q}\left(\mathbb{R}^{n}\right)$ the following norm

$$
\|m\|_{M_{p}^{q}}:=\sup \left\{\left\|\mathfrak{F}^{-1}(m \mathfrak{F}(f))\right\|_{q}: f \in \mathcal{S},\|f\|_{p}=1\right\}
$$

In the case $p=q$, we denote M_{p}^{p} by M_{p}.

Proof of Theorem 4: 1/4

After applying the Fourier transform, the solution to (2) can be written as

$$
u(t, x)=\mathfrak{F}_{\xi \rightarrow x}^{-1}\left(\left(e^{i \xi| |^{\sigma} t}-e^{-i|\xi|^{\sigma} t}\right) \frac{1}{2 i|\xi|^{\sigma}} \mathfrak{F}(\psi)(\xi)\right),
$$

or

$$
u(t, x)=\mathfrak{F}_{\xi \rightarrow x}^{-1}\left(\sin \left(t|\xi|^{\sigma}\right) \frac{1}{|\xi|^{\sigma}} \mathfrak{F}(\psi)(\xi)\right) .
$$

By homogeneity, it is sufficient to prove (3) for $t=1$. By using that $\frac{\sin \left(\mid \xi \xi^{\sigma}\right)}{\mid \xi \xi^{\sigma}}$ is a bounded function, similar to Theorem 1 , one may conclude the following:

Proposition 1

For $1<p \leq 2 \leq q<\infty$, we have

$$
\begin{equation*}
\frac{(1-\chi(\xi)) \sin \left(|\xi|^{\sigma}\right)}{|\xi|^{\sigma}} \in M_{p}^{q} . \tag{4}
\end{equation*}
$$

Proof of Theorem 4: 2/4

Theorem (Mikhlin-Hörmander)

Let $1<p<\infty$ and $k=\max \{[n(1 / p-1 / 2)]+1,[n / 2]+1\}$. Suppose that $m \in \mathcal{C}^{k}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ and

$$
\left|\partial_{\xi}^{\beta} m(\xi)\right| \leq C|\xi|^{-|\beta|}, \quad|\beta| \leq k .
$$

Then $m \in M_{p} \doteq M_{p}^{p}$.
As a consequence of the Mikhlin-Hörmander multiplier theorem we have:

Proposition 2

For all $1<q<\infty$ we have

$$
\begin{equation*}
m(\xi):=\frac{(1-\chi(\xi)) \sin \left(|\xi|^{\sigma}\right)}{|\xi|^{\sigma}} \in M_{q}^{q} \tag{5}
\end{equation*}
$$

Proof of Theorem 4: 3/4

Proposition 3

Let us consider Fourier multiplier

$$
m(\xi)=\frac{\chi(\xi) e^{i|\xi|^{\sigma}}}{|\xi|^{\sigma}}, \quad \xi \in \mathbb{R}^{n}, \quad \sigma>0, \sigma \neq 1, \quad b \in \mathbb{R}
$$

If $p \leq q, \frac{1}{p}+\frac{1}{q} \geq 1$ and $\frac{1}{p}+\frac{\sigma-1}{q}<\sigma\left(\frac{1}{n}+\frac{1}{2}\right)$, then $m \in M_{p}^{q}$.
The same conclusion is true if $p \leq q, \frac{1}{p}+\frac{1}{q} \leq 1$ and
$\frac{1-\sigma}{p}-\frac{1}{q}<\sigma\left(\frac{1}{n}-\frac{1}{2}\right)$.

Proof of Theorem 4: 3/4

Proposition 3

Let us consider Fourier multiplier

$$
m(\xi)=\frac{\chi(\xi) e^{i|\xi|^{\sigma}}}{|\xi|^{\sigma}}, \quad \xi \in \mathbb{R}^{n}, \quad \sigma>0, \sigma \neq 1, \quad b \in \mathbb{R}
$$

If $p \leq q, \frac{1}{p}+\frac{1}{q} \geq 1$ and $\frac{1}{p}+\frac{\sigma-1}{q}<\sigma\left(\frac{1}{n}+\frac{1}{2}\right)$, then $m \in M_{p}^{q}$.
The same conclusion is true if $p \leq q, \frac{1}{p}+\frac{1}{q} \leq 1$ and
$\frac{1-\sigma}{p}-\frac{1}{q}<\sigma\left(\frac{1}{n}-\frac{1}{2}\right)$.

Remark

By using duality argument, it is sufficient to prove Proposition 3 for $\frac{1}{p}+\frac{1}{q} \geq 1$.

Proof of Theorem 4: 4/4

Let us sketch the proof of Proposition 3. By Littman' lemma

$$
\left\|\phi_{k} \cdot m\right\|_{M_{p}^{q}} \leq C 2^{k\left(-\sigma+\left(\frac{1}{p}-\frac{1}{2}\right)(n(2-\sigma))\right)}, \quad \frac{1}{p}+\frac{1}{q}=1
$$

Applying the Berstein's inequality ${ }^{4}$ for $M>\frac{n}{2}$ we get

$$
\left\|\phi_{k} \cdot m\right\|_{M_{1}} \leq\left\|\phi_{k} \cdot m\right\|_{L^{2}}^{\left(1-\frac{n}{2 M}\right)}\left\|D^{M}\left(\phi_{k} \cdot m\right)\right\|_{L^{2}}^{\frac{n}{2 M}} \leq C 2^{k \sigma\left(\frac{n}{2}-1\right)} .
$$

Hence, by Riesz-Thorin interpolation theorem we conclude that

$$
\left\|\phi_{k} \cdot m\right\|_{M_{p}^{q}} \leq C 2^{k n\left(\frac{1}{p}+\frac{\sigma-1}{q}-\sigma\left(\frac{1}{n}+\frac{1}{2}\right)\right)}
$$

and the series in k is convergent if $\frac{1}{p}+\frac{\sigma-1}{q}-\sigma\left(\frac{1}{n}+\frac{1}{2}\right)<0$ and the proof is concluded.
${ }^{4}$ Bernstein' result: Let $n \geq 1$ and $N>n\left(\frac{1}{p}-\frac{1}{2}\right)$. Assume that $\hat{a} \in H^{N}$, then $F^{-1}(\hat{a}) \in L^{p}$ and there exists a constant $C>0$ such that

$$
\left\|F^{-1}(\hat{a})\right\|_{L^{p}} \leq C\|\hat{a}\|_{L^{2}}^{1-\frac{n}{N}\left(\frac{1}{\rho}-\frac{1}{2}\right)}\left\|D^{N} \hat{a}\right\|_{L^{2}}^{\frac{n}{N}\left(\frac{1}{\rho}-\frac{1}{2}\right)}
$$

Thanks for your attention!

[^0]: ${ }^{2}$ L. Hörmander, Estimates for translation invariant operators in L^{p} spaces. Acta Mathematica 104 (1960), 93-140.

[^1]: ${ }^{a}$ M. R. Ebert, L. M. Lourenço, The Critical Exponent for Evolution Models with Power Non-linearity.New Tools for Nonlinear PDEs and Application. Trends in Mathematics. Birkhäuser, Cham 2019, p. 153-177.

