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Evolution PDE’s

Let us introduce the notion p-evolution operator. For this reason
we consider for a fixed integer p ≥ 1, the linear partial
differential equation

Dm
t u +

m∑
j=1

Aj(t , x ,Dx)D
m−j
t u = f (t , x),

where where Dt = −i∂t , Dxk = −i∂xk , k = 1, · · · ,n, i2 = −1,
Aj = Aj(t , x ,Dx) =

∑jp
k=0 Aj,k (t , x ,Dx) are linear partial

differential operators of order jp and, Aj,k = Aj,k (t , x ,Dx) are
linear partial differential operators of order k . The principal part
of this linear partial differential operator in the sense of
Petrovsky is defined by

Dm
t +

m∑
j=1

Aj,jp(t , x ,Dx)D
m−j
t .
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Definition1

The given linear partial differential operator

Dm
t +

m∑
j=1

Aj(t , x ,Dx)D
m−j
t

is called a p-evolution operator if the principal symbol in the
sense of Petrovsky

τm +
m∑

j=1

Aj,jp(t , x , ξ)τm−j

has only real and distinct roots
τ1 = τ1(t , x , ξ), · · · , τm = τm(t , x , ξ) for all points (t , x) from the
domain of definition of coefficients and for all ξ 6= 0.
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Remark

The set of 1-evolution operators coincides with the set of strictly
hyperbolic operators. The p-evolution operators with p ≥ 2
represent generalizations of Schrödinger operators

i∂tu +4u = 0,

and plate equation
∂2

t u +42u = 0.

Remark

One of the later goals is to study Cauchy problems for
p-evolution equations. Taking account of the Lax-Mizohata
theorem, the assumption that the characteristic roots are real in
Definition 1, is necessary for proving well-posedness for the
Cauchy problem.
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Function Spaces

Definition

Let 0 < p ≤ ∞. Then the Lebesgue space Lp(Rn) is the set of
all Lebesgue measurable complex-valued functions f on Rn

such that
‖f‖Lp =

( ∫
Rn
|f (x)|p dx

) 1
p
<∞ for p ∈ [1,∞),

‖f‖L∞ = ess supx∈Rn |f (x)| <∞.

Now we define Sobolev spaces of integer and fractional order:

Definition

Let 1 ≤ p ≤ ∞ and m ∈ N. Then the Sobolev spaces W m
p (Rn)

are defined as
W m

p (Rn) :=
{

f ∈ Lp(Rn) : ‖f‖W m
p
:=

∑
|α|≤m

‖∂αx f‖Lp <∞
}
.

If p = 2, then we also use the notation W s(Rn).
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We recall the classical definition of Fourier transformation in Lp

spaces for p ∈ [1,∞):

F (f )(ξ) :=
1

(2π)
n
2

∫
Rn

e−ix ·ξf (x)dx .

Definition

Let 1 < p <∞ and s ∈ R1. Then the Sobolev spaces of
fractional order Hs

p(Rn) are defined as

Hs
p(Rn) :=

{
f ∈ S′(Rn) : ‖f‖Hs

p
:=
∥∥F−1(〈ξ〉sF (f )

)∥∥
Lp <∞

}
.

Here 〈ξ〉 denotes the Japanese brackets with 〈ξ〉2 := 1 + |ξ|2.
If p = 2, then we also use the notation Hs(Rn).
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Phase space analysis for the heat equation

Theorem 1

Let us consider the Cauchy problem

ut −4u = 0, u(0, x) = ϕ(x).

Then we have the following estimates for the derivatives
∂k

t ∂
α
x u(t , ·) of the solution u (k + |α| ≥ 0):

‖∂k
t ∂

α
x u(t , ·)‖L2 ≤ Ck ,αt−k− |α|2 ‖ϕ‖L2 ,

‖∂k
t ∂

α
x u(t , ·)‖L2 ≤ Ck ,α(1 + t)−k− |α|2 ‖ϕ‖H2k+|α| .

Remark

The first estimate requires only L2 regularity for ϕ. We get for
large t the decay t−k− |α|2 . But this term becomes unbounded for
t → +0. To avoid this singular behavior we assume additional
regularity H2k+|α|.
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Proof.
Using the properties of the Fourier transformation it holds

∂k
t ∂

α
x u(t , x) = F−1

ξ→x
(
(−1)k i |α||ξ|2kξαe−|ξ|

2tF (ϕ)(ξ)
)
.

By Parseval-Plancharel formula we get for t > 0

‖∂k
t ∂

α
x u(t , ·)‖2L2 =

∥∥∥|ξ|2kξαe−|ξ|
2tF (ϕ)

∥∥∥2

L2
≤
∥∥∥|ξ|2k+|α|e−|ξ|

2tF (ϕ)
∥∥∥2

L2

=
∥∥∥ |ξ|2k+|α|tk+ |α|2

tk+ |α|2

e−|ξ|
2tF (ϕ)

∥∥∥2

L2
.

The conclusion follows thanks to

|ξ|2k+|α|tk+ |α|2 e−|ξ|
2t =

(
|ξ|2t

)k+ |α|2 e−|ξ|
2t

be uniformly bounded.
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Lemma 1 (Young’s inequality)

Let f ∈ Lr (Rn) and g ∈ Lp(Rn) be two given functions. Then the
following estimates hold for the convolution u := f ∗ g:

‖u‖Lq ≤ ‖f‖Lr ‖g‖Lp for all 1 ≤ p ≤ q ≤ ∞ and 1 +
1
q
=

1
r
+

1
p
.

Lemma 2

The following estimates hold in Rn for n ≥ 1:∥∥F−1(|ξ|ae−|ξ|
2κt)∥∥

Lr (Rn)
≤ Ct−

n
2κ

(1− 1
r )−

a
2κ

for κ > 0, r ∈ [1,∞] and t > 0 provided that

a + n
(
1− 1

r

)
> 0.

In particular, if a > 0, then the statement is true for all r ∈ [1,∞]
and for r = 1 if a = 0.
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By using the representation of solution

u(t , x) = F−1
ξ→x

(
e−|ξ|

2tF (ϕ)(ξ)
)
= F−1

ξ→x
(
e−|ξ|

2t) ∗ ϕ
and Lemmas 1 and 2, one can also derive:

Theorem 2

We study the Cauchy problem

ut −4u = 0, u(0, x) = ϕ(x).

Then we have the following estimates for the derivatives
∂k

t ∂
α
x u(t , ·) of the solution u (k + |α| ≥ 0):

‖∂k
t ∂

α
x u(t , ·)‖Lq ≤ Ck ,αt−k− |α|2 −

n
2 (1−

1
r )‖ϕ‖Lp

for all 1 ≤ p ≤ q ≤ ∞ and 1 + 1
q = 1

r + 1
p .
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Corollary

Under the assumptions of Theorem 2 we conclude the
estimates

‖∂k
t ∂

α
x u(t , ·)‖Lq ≤ Ck ,αt−k− |α|2 ‖ϕ‖Lq

for all 1 ≤ q ≤ ∞.

This corollary is used to derive, for example, Lp − Lq decay
estimates with decay function 1 + t instead of t .
Indeed, using the embedding

W
n( 1

p−
1
q )

p (Rn) ↪→ Lq(Rn) for 1 ≤ p ≤ q <∞.

and the Lq − Lq decay estimate from Corollary gives

‖u(t , ·)‖Lq ≤ C‖ϕ‖
W

n( 1
p−

1
q )

p

, ‖∂k
t ∂

α
x u(t , ·)‖Lq ≤ C‖ϕ‖

W
n( 1

p−
1
q )+2k+|α|

p

,

respectively, for 1 ≤ p ≤ q <∞.
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Summarizing all these estimates implies the following
statement.

Theorem 3

We study the Cauchy problem

ut −4u = 0, u(0, x) = ϕ(x).

Then we have the following estimates for the derivatives
∂k

t ∂
α
x u(t , ·) of the solution u (k + |α| ≥ 0):

‖∂k
t ∂

α
x u(t , ·)‖Lq ≤ Ck ,α(1 + t)−k− |α|2 −

n
2 (1−

1
r )‖ϕ‖

W
n(1− 1

r )+2k+|α|
p

for all 1 ≤ p ≤ q <∞ and 1 + 1
q = 1

r + 1
p .
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Phase space analysis for the Schrödinger equation

Let us consider the Cauchy problem for the Schrödinger
equation

i∂tu +4u = 0, u(0, x) = ϕ(x).

After application of inverse Fourier transformation (we assume
the validity of Fourier’s inversion formula) we obtain

u(t , x) = F−1
ξ→x

(
e−i|ξ|2tF (ϕ)(ξ)

)
.

Theorem 4

We study the Cauchy problem

i∂tu +4u = 0, u(0, x) = ϕ(x).

Then we have the following estimates for the derivatives
∂k

t ∂
α
x u(t , ·) of the solution u (k + |α| ≥ 0):
‖∂k

t ∂
α
x u(t , ·)‖L2 = ‖|D|2k∂αx ϕ‖L2 ≤ ‖ϕ‖H2k+|α| .



Basics Heat equation Schrödinger equation Wave models Diffusion phenomenon

Using the representation of solution

u(t , x) =
1

(2
√
πit)n

∫
Rn

ei |x−y|2
4t ϕ(y)dy

we immediately obtain ‖u(t , ·)‖L∞ ≤ Ct−
n
2 ‖ϕ‖L1 . Moreover,

using that ∂k
t ∂

α
x u solves the Cauchy problem

i∂t
(
∂k

t ∂
α
x u
)
+4

(
∂k

t ∂
α
x u
)
= 0,

(
∂k

t ∂
α
x u
)
(0, x) = ik4k∂αx ϕ(x)

we conclude:
Theorem 5

We study the Cauchy problem

i∂tu +4u = 0, u(0, x) = ϕ(x).

Then we have the following L1 − L∞ estimates for the
derivatives ∂k

t ∂
α
x u(t , ·) of the solution u (k + |α| ≥ 0):

‖∂k
t ∂

α
x u(t , ·)‖L∞ ≤ Ct−

n
2 ‖|D|2k∂αx ϕ‖L1 .
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Interpolation argument implies the following:

Theorem 6

We study the Cauchy problem

i∂tu +4u = 0, u(0, x) = ϕ(x).

Then we have the following Lp − Lq estimates on the conjugate
line for the derivatives ∂k

t ∂
α
x u(t , ·) of the solution u (k + |α| ≥ 0)

for q ∈ [2,∞]

‖∂k
t ∂

α
x u(t , ·)‖Lq ≤ Ct−

n
2 (

1
p−

1
q )‖|D|2k∂αx ϕ‖Lp ,

where 1
p + 1

q = 1.

Remark

Contrary to the heat equation, one may not expect Lp − Lp

estimates for p 6= 2 for solutions to the Schrödinger equation.
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Phase space analysis for Wave models

We are interested in the Cauchy problem

utt −4u = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x), x ∈ Rn, n ≥ 1.

We arrive at the following representation for u:

u(t , x) = F−1
ξ→x

(
cos(|ξ|t)F (ϕ)(ξ)

)
+ F−1

ξ→x

(sin(|ξ|t)
|ξ|

F (ψ)(ξ)
)
.

We denote the total energy by

EW (u)(t) :=
1
2

∫
Rn

(
|ut(t , x)|2 + |∇u(t , x)|2

)
dx

=
1
2
‖ut(t , ·)‖2L2 +

1
2
‖∇u(t , ·)‖2L2 .
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Theorem 7 (Conservation of energy)

Let
u ∈ C

(
[0,T ],H1(Rn)

)
∩ C1([0,T ],L2(Rn)

)
be a Sobolev solution of

utt −4u = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x)

with data ϕ ∈ H1(Rn) and ψ ∈ L2(Rn). Then it holds

EW (u)(t) = EW (u)(0) =
1
2
(
‖ψ‖2L2 + ‖∇ϕ‖2L2

)
for all t ≥ 0.

Moreover,
‖u(t , ·)‖L2 ≤ C(t‖ψ‖L2 + ‖ϕ‖L2).

The goal to derive Lp − Lq decay estimates for solutions to the
Cauchy problem for the wave equation requires a deeper
understanding of oscillating integrals with localized amplitudes
in different parts of the extended phase space. One basic tool
to get such estimates is the method of stationary phase.
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Phase space analysis for damped wave model

Let us turn to the Cauchy problem

utt −4u + ut = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x).

We know that the wave energy EW (u)(t) of Sobolev solutions is
a decreasing function if EW (u)(0) is finite.
Applying phase space analysis allows to verify that the energy
EW (u)(t) is even decaying for t →∞. We are able to derive for
EW (u)(t) an optimal decay behavior with an optimal decay rate.
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Step 1 Transformation of the dissipation into a mass term
We introduce a new function w = w(t , x) by
w(t , x) := e

1
2 tu(t , x). Then w satisfies the Cauchy problem

wtt −4w − 1
4

w = 0, w(0, x) = ϕ(x), wt(0, x) =
1
2
ϕ(x) + ψ(x).

Applying Fourier transform v = v(t , ξ) = Fx→ξ(w(t , x))(t , ξ):

vtt +
(
|ξ|2 − 1

4

)
v = 0, v(0, ξ) = v0(ξ) := F (ϕ)(ξ),

vt(0, ξ) = v1(ξ) :=
1
2

F (ϕ)(ξ) + F (ψ)(ξ).

We make a distinction of cases for {ξ ∈ Rn : |ξ| > 1
2} and for

{ξ ∈ Rn : |ξ| < 1
2}:
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Step 2 Representation of solutions in the phase space
Case 1 {ξ : |ξ| > 1

2}
Using |ξ|2 > 1

4 we obtain immediately the following
representation of solution v(t , ξ):

v(t , ξ) = cos
(√
|ξ|2 − 1

4
t
)

v0(ξ) +
sin
(√
|ξ|2 − 1

4 t
)

√
|ξ|2 − 1

4

v1(ξ).

Case 2 {ξ : |ξ| < 1
2}

The solution to the transformed differential equation is

v(t , ξ) =
(

v0(ξ)
2 − v1(ξ)√

1−4|ξ|2

)
e−

1
2

√
1−4|ξ|2 t

+
(

v0(ξ)
2 + v1(ξ)√

1−4|ξ|2

)
e

1
2

√
1−4|ξ|2 t

= v0(ξ) cosh
(

1
2

√
1− 4|ξ|2 t

)
+ 2v1(ξ)√

1−4|ξ|2
sinh

(
1
2

√
1− 4|ξ|2 t

)
.
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Theorem 8

The solution to the Cauchy problem

utt −4u + ut = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x)

with data ϕ ∈ H1(Rn) and ψ ∈ L2(Rn) satisfies the following
estimates for t ≥ 0:

‖u(t , ·)‖L2 ≤ C
(
‖ϕ‖L2 + ‖ψ‖H−1

)
,

‖∇u(t , ·)‖L2 ≤ C(1 + t)−
1
2
(
‖ϕ‖H1 + ‖ψ‖L2

)
,

‖ut(t , ·)‖L2 ≤ C(1 + t)−1(‖ϕ‖H1 + ‖ψ‖L2
)
.

Consequently, the wave energy satisfies the estimate

EW (u)(t) ≤ C(1 + t)−1(‖ϕ‖2H1 + ‖ψ‖2L2

)
.
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Proof.
Let us discuss the estimate only for ‖∇u(t , ·)‖L2 .
It is clear that there exists δ ∈ (0,1) such that

‖∇u(t , ·)‖2L2(|ξ|≥ 1
4 )
≤ Ce−δt

∫
Rn

(
|ξ|2|v0(ξ)|2 + |v1(ξ)|2

)
dξ.

By using the property
√

x + y ≤
√

x +
y

2
√

x
for any x > 0 and y ≥ −x

it follows the inequality

−4|ξ|2 ≤ −1 +
√

1− 4|ξ|2 ≤ −2|ξ|2 for |ξ| < 1
2
.

With this inequality we proceed as follows:∫
|ξ|< 1

4

|ξ|2|û(t , ξ)|2 dξ ≤ Ce−t
∫
|ξ|< 1

4

(
|v0(ξ)|2|ξ|2 + |v1(ξ)|2|ξ|2

)
dξ

+ C
∫
|ξ|< 1

4

(
|v0(ξ)|2 + |v1(ξ)|2

)
|ξ|2e−2|ξ|2t dξ.



Basics Heat equation Schrödinger equation Wave models Diffusion phenomenon

Decay behavior under additional regularity of data

Theorem 9

Under the regularity assumption

(ϕ,ψ) ∈ H1(Rn) ∩ Lm(Rn)× L2(Rn) ∩ Lm(Rn), m ∈ [1,2)

the solution to the Cauchy problem

utt −4u + ut = 0, u(0, x) = ϕ(x), ut(0, x) = ψ(x),

satisfies the following estimates for t ≥ 0:

‖u(t , ·)‖L2 ≤ Cm(1 + t)−
n(2−m)

4m
(
‖ϕ‖H1∩Lm + ‖ψ‖L2∩Lm

)
,

‖∇u(t , ·)‖L2 ≤ Cm(1 + t)−
1
2−

n(2−m)
4m

(
‖ϕ‖H1∩Lm + ‖ψ‖L2∩Lm

)
,

‖ut(t , ·)‖L2 ≤ Cm(1 + t)−1− n(2−m)
4m

(
‖ϕ‖H1∩Lm + ‖ψ‖L2∩Lm

)
.
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Proof.
Let us discuss the estimate only for ‖∇u(t , ·)‖L2 .
Setting

1
2
=

1
r
+

1
m′

and after using Hölder’s inequality we get

‖|ξ|û(t , ξ)‖2L2{|ξ|< 1
4}
≤ C

∫
|ξ|< 1

4

|ξ|2e−|ξ|
2t(|v0(ξ)|2 + |v1(ξ)|2

)
dξ

≤ C
(
‖v0‖2Lm′ + ‖v1‖2Lm′

)( ∫
|ξ|< 1

4

(
|ξ|2e−|ξ|

2t) r
2 dξ

) 2
r

≤ C
(
‖ϕ‖2Lm + ‖ψ‖2Lm

)( ∫
|ξ|< 1

4

(
|ξ|2e−|ξ|

2t) m
2−m dξ

) 2−m
m

≤ Cm(1 + t)−
n(2−m)

2m −1(‖ϕ‖2Lm + ‖ψ‖2Lm
)
.
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The diffusion phenomenon for damped wave models

Let us turn to the Cauchy problems

utt −4u + ut = 0
u(0, x) = ϕ(x), ut(0, x) = ψ(x)

and
wt −4w = 0
w(0, x) = ϕ(x) + ψ(x).

Then we have the following remarkable result:

Theorem 10

The difference of solutions to the above Cauchy problems
satisfies the following estimate:∥∥∥F−1

ξ→x

(
χ(ξ)Fx→ξ

(
u(t , x)− w(t , x)

))∥∥∥
L2
≤ C(1 + t)−1‖(ϕ,ψ)‖L2 .

Here χ ∈ C∞0 (Rn) is a cut-off function, with χ(s) = 1 for
|s| ≤ ε

2 � 1 and χ(s) = 0 for |s| ≥ ε which localizes to small
frequencies.
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Proof.

We use for small frequencies |ξ| < 1
2 the following

representation for the solutions u = u(t , x)
Fx→ξ(u)(t , ξ)

= e−
1
2 t
((1

2
F (ϕ)(ξ)−

1
2F (ϕ)(ξ) + F (ψ)(ξ)√

1− 4|ξ|2

)
e−

1
2

√
1−4|ξ|2 t

+
(1

2
F (ϕ)(ξ) +

1
2F (ϕ)(ξ) + F (ψ)(ξ)√

1− 4|ξ|2

)
e

1
2

√
1−4|ξ|2 t

)
.

and
Fx→ξ(w)(t , ξ) = e−|ξ|

2t(F (ϕ)(ξ) + F (ψ)(ξ)
)
.

Then we take into consideration
√

1 + s = 1 +
s
2
− s2

8
+ O(s3)

and
1√

1 + s
= 1− s

2
+ O(s2) for s → +0.
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Thanks for your
attention!
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