
INTRODUCTION TO THE
CONTROLLABILITY OF COUPLED
PARABOLIC EQUATIONS
XIII ENAMA-FLORIANÓPOLIS

Luz de Teresa

November 2019

ldeteresa@im.unam.mx



Idea of the minicourse

# background of controllability in the ode case

# present some of the problems and techniques used in the
controllability of pde’s
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(LINEAR) ORDINARY DIFFEREN-
TIAL EQUATIONS FRAMEWORK



Controllability of systems: The finite dimensional case

{
∂ty = Ly + Bv
y(0) = y0 (1)

L ∈ Mn(R), B ∈Mn,m(R), m ≤ n.

Definition
System (1) is controllable at time T > 0 if

∀y0, y1 ∈ Rn,∃ v ∈ L2(0,T )m such that y(T ; y0, v) = y1



Example


dy1
dt = −1

L y1 + v(t)
dy2
dt = −1

L y2

(y1(0), y2(0)) = (y0
1 , y

0
2 )

y(t) =

[
e−t/Ly0

1
e−t/Ly0

2

]
+

[
e−t/L 0

0 e−t/L

][ ∫ t
0 eτ/Lv(τ)dτ

0

]
this implies that the solution is:

y1(t) = e−t/Ly0
1 + e−t/L

∫ t

0
eτ/Lv(τ)dτ,

y2(t) = e−t/Ly0
2 .

System is not exactly controllable!

We cannot act on y2.
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Controllability of systems: The finite dimensional case

{
∂ty = Ly + Bv
y(0) = y0 (2)

L ∈ Mn(R), B ∈Mn,m(R).

Proposition (Kalman rank condition )

System (2) (or (L,B)) is controllable if and only if

rank [B|L] = n,

where
[B |L] =

[
B, LB, · · · , Ln−1B

]
∈Mn×nm(R)



Controllability of systems: The finite dimensional case

{
∂ty = Ly + Bv
y(0) = y0 (2)

L ∈ Mn(R), B ∈Mn,m(R).

Proposition

System (2) is controllable at time T > 0 if and only if it is controllable
at any time.



Finite dimensional systems

{
∂ty =−k2 (D + A) y + Bv
y(0)=y0

D =

(
1 0
0 d

)
, A=

(
0 1
0 0

)
, B =

(
b1

b2

)

rank [B|L] = 2⇔ b2[−k2(d − 1)b1 − b2] 6= 0



Null controllability

Linearity of the system allows to consider instead of ANY final state
y1 = 0.

In fact, let us assume that
dy
dt = Ay + Bv(t)

y(0) = y0

is exactly controllable at time T > 0. That means that for every
y0 ∈ Rn and y1 ∈ Rn it exists v ∈ Uad such that y(T ) = y1. We can
choose in particular y1 = 0.



Null controllability

Reciprocally, let us assume that for every y0 it exists v such that

y(T ) = 0.

We consider the equationdz
dt = Az

z(T ) = y1 the target state



Null controllability

If I choose v such that the solution todx
dt = Ax + Bv

x(0) = y0 − z(0)

satisfies
x(T ) = 0,

we get that
y(t) = x(t) + z(t)

verifies 
dy
dt = Ay + Bv

y(0) = y0

y(T ) = y1



Using the adjoint

Let A∗ be the adjoint matrix to A that is, the matrix satisfying

(Ax , y) = (x ,A∗y)

for every x , y ∈ Rn and (·, ·) denotes the inner product in Rn. We
consider the adjoint system:

(Adj)

−ϕ̇ = A∗ϕ

ϕ(T ) = ϕT



Controllability condition

Lemma

An initial datum y0 ∈ Rn can be driven to zero at time T > 0 with
v ∈ L2(0,T ) if and only if∫ T

0
(v ,B∗ϕ)dt + (y0, ϕ(0)) = 0

for every ϕT ∈ Rn and ϕ the corresponding solution to (Adj).



Objective: minimize a quadratic functional J : Rn → Rn,

J(ϕT ) =
1
2

∫ T

0
|B∗ϕ|2dt + (y0, ϕ(0))

where ϕ is the solution to (Adj) corresponding to the datum ϕT . Recall
that we are looking for∫ T

0
(v ,B∗ϕ)dt + (y0, ϕ(0)) = 0



We say that

(Adj)

−ϕ̇ = A∗ϕ

ϕ(T ) = ϕT

is B∗-observable if it exists C > 0 such that for every ϕT ∈ Rn we get

(DO)

∫ T

0
|B∗ϕ|2dt ≥ C|ϕ(0)|2.



Equivalences

We have that ∫ T

0
|B∗ϕ|2dt ≥ C|ϕ(0)|2.

if and only if

(DOT )

∫ T

0
|B∗ϕ|2dt ≥ C|ϕT |2.

for every ϕT and ϕ the corresponding solution (Adj) .

Proposition

The observability inquequality (DO) is equivalent to the following
unique continuation property:

(CU) B∗ϕ(t) = 0, ∀t ∈ [0,T ]⇒ ϕT = 0.



SINGLE ONE-DIMENSIONAL HEAT
EQUATION



Heat Equation

We consider for y0 ∈ L2(0, π),

(H)


yt − yxx = 0 (t , x) ∈ (0,T )× (0, π) = ΩT ,

y(t ,0) = y(t , π) = 0, t ∈ (0,T ),

y(0, x) = y0, x ∈ (0, π) = Ω.

y0

y(T )

r
r



# χω is the characteristic function of ω ⊂ (0, π)

# h ∈ L2((0,T )× (0, π)) is a control to be determined.

(Hc)


yt − yxx = hχω (t , x) ∈ ΩT ,

y(t ,0) = y(t , π) = 0, t ∈ (0,T ),

y(0, x) = y0, x ∈ Ω.

y0

y(T )

r
r

y(T ; h)r
q

0 π

ω
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Approximate control

We say that (Hc) is approximately controllable at time T > 0 in L2(0, π)

if for every y0, y1 ∈ L2(0, π) and ε > 0 there exists h = h(y0, y1, ε)

such that
‖y(T ; h)− y1‖L2 ≤ ε.

In other words, if for every y0 ∈ L2(0, π) the set of reachable states

R(y0; T ) = {y(T ; h), y solution to (Hc) with h ∈ L2((0,T )× ω)}

is dense in L2(0, π).

y(T ; h)

y1&%
'$r

ry0

r



We say that (Hc) is null controllable if it exists h = h(y0) such that

y(T ; h) = 0.

y0
r

y(T ; h) = 0

r



We say that (Hc) is exactly controllable if for every pair
y0, y1 ∈ L2(0, π) it exists h = h(y0) such that

y(T ; h) = y1.

y0
r

y(T ; h) = y1r



Exact controllability?

Is it possible to control exactly the heat equation?

Given y0, y1 ∈ L2(0, π) does it exist h such that the solution to (Hc)
satisfies y(T ; h) = y1?



Exact controllability?

Is it possible to control exactly the heat equation?

Given y0, y1 ∈ L2(0, π) does it exist h such that the solution to (Hc)
satisfies y(T ; h) = y1?

In general NO



Exact controllability?

Regularizing effects of the heat equation.



Exact controllability?

Let us control on the whole interval (0, π). Let us study the set

R(0; T ) = {y(T ; h), y solution to (Hc) with h ∈ L2((0,T )× (0, π))}

That is, we want to describe the solutions at time T to

(Hc)


yt − yxx = h (t , x) ∈ ΩT ,

y(t ,0) = y(t , π) = 0, t ∈ (0,T ),

y(0, x) = 0, x ∈ Ω.

when h ∈ L2(ΩT ).



Exact controllability?

(Hc)


yt − yxx = h (t , x) ∈ ΩT ,

y(t ,0) = y(t , π) = 0, t ∈ (0,T ),

y(0, x) = 0, x ∈ Ω.

when h ∈ L2(ΩT ).

y(T ; h) =
∞∑

k=1

yk (T ) sin kx =
∞∑

k=1

e−Tk2
∫ T

0
ek2thk (t)dt sin kx

with hk (t) =
∫ π

0 h(t , x) sin kxdx



Exact controllability?

y(T ; h) =
∞∑

k=1

yk (T ) sin kx =
∞∑

k=1

e−Tk2
∫ T

0
ek2thk (t)dt sin kx

with hk (t) =
∫ π

0 h(t , x) sin kxdx

|yk (T )|2 = |e−Tk2
∫ T

0
ek2thk (t)dt |2 ≤ (

∫ T

0
h2

k (t)dt)
1

2k2

so
∞∑

k=1

k2|yk (T )|2 <∞.

That means that y(T ; h) ∈ H1
0 (0, π).

Much more regular!



Null controllability: ω = (0, π).

Given T > 0 we take η(t) ∈ C1(0,T ) such that η(0) = 1, η(T ) = 0.

T

1 η(t)



Explicit construction

Given y0 ∈ L2(0, π) let z(t , x) solve
zt − zxx = 0 (t , x) ∈ ΩT ,

z(t ,0) = z(t , π) = 0, t ∈ (0,T ),

z(0, x) = y0, x ∈ (0, π).



Explicit construction

We define y(x , t) = η(t)z(t , x).

Observe that y(x ,0) = y0, y(x ,T ) = 0 and y solves


yt − yxx = h(t , x), (t , x) ∈ ΩT ,

y(t ,0) = y(t , π) = 0, t ∈ (0,T ),

y(0, x) = y0, x ∈ (0, π).

with h(t , x) = η′(t)z(t , x) .



Heat equation: Null and approximate controllability

1. There is not exact controllability (regularizing effect).

2. Approximate controllability⇐⇒ null controllability.

3. There is not minimal control time, not geometric conditions on the
control set.



Approximate controllability and the adjoint equation

Lemma
Consider the adjoint system

(Adj)


vt + vxx = 0 (t , x) ∈ ΩT ,

v(t ,0) = v(t , π) = 0, t ∈ (0,T ),

v(T , x) = vT , x ∈ (0, π).

Suppose that
v(t , x) = 0 a.e. in (0,T )× ω

implies
vT = 0

Then (Hc) is approximately controllable at time T > 0.



Approximate controllability and the adjoint equation
Proof.

Take vT ∈ R(0; T )⊥ , vT 6= 0 and v the corresponding solution to
(Adj). Multiplying (Hc) (with initial datum y0 = 0) by v and integrating
by parts in (0,T )× (0, π). We get

∫ π

0
vT (x)y(T , x)dx =

∫ T

0

∫
ω

h(t , x)v(t , x).

vT ∈ R(0; T )⊥ ⇒
∫ T

0

∫
ω

h(t , x)v(t , x)dxdt = 0

for every h ∈ L2(0,T )× ω and then v(t , x) ≡ 0 in (0,T )× ω. Since
we are assuming Unique Continuation true vT = 0 we got a contra-
diction.



Unique continuation: analiticity of the solution

Proof of the Unique Continuation Property.

v(t , x) =
∞∑

n=1

vT
n e−n2(T−t) sin nx , vT

n =

∫ π

0
vT (x) sin nxdx .

(Adj)


vt + vxx = 0 (t , x) ∈ ΩT ,

v(t ,0) = v(t , π) = 0, t ∈ (0,T ),

v(T , x) = vT , x ∈ (0, π).



Unique continuation: analiticity of the solution

Proof of the Unique Continuation Property.

v(t , x) =
∞∑

n=1

vT
n e−n2(T−t) sin nx , vT

n =

∫ π

0
vT (x) sin nxdx .

We need to prove that v = 0 in (0,T )× ω ⇒vT
n = 0,∀n.



Unique continuation: analiticity of the solution

Proof of the Unique Continuation Property.

Since v is analytic in t , we take the analytic extension to t ∈ (−∞,0),
and ṽ(t , x) = 0, (t , x) ∈ (−∞,T )× ω.



Unique continuation: analiticity of the solution

Proof of the Unique Continuation Property.

Since v is analytic in t , we take the analytic extension to t ∈ (−∞,0),
and ṽ(t , x) = 0, (t , x) ∈ (−∞,T )× ω.
Suppose that vT

1 6= 0. Then, for every t ∈ (−∞,T )

−vT
1 χω sin x =

∞∑
n=2

vT
n e−(n2−1)(T−t) sin nxχω



Unique continuation: analiticity of the solution

Proof of the Unique Continuation Property.

−vT
1 χω sin x =

∞∑
n=2

vT
n e−(n2−1)(T−t) sin nxχω → 0, t → −∞

Then vT
1 sin xχω = 0 but sin x 6= 0 in ω so vT

1 = 0.
Inductively we get vT

n = 0 for every n.



Observability inequality

Lemma
Back to the adjoint equation

(Adj)


vt + vxx = 0 (t , x) ∈ ΩT ,

v(t ,0) = v(t , π) = 0, t ∈ (0,T ),

v(T , x) = vT , x ∈ (0, π).

Then (Hc) is null controllable iff there exists C > 0 such that v any
solution to (Adj) satisfies∫ π

0
|v(0, x)|2dx ≤ C

∫ T

0

∫
ω
|v(t , x)|2dxdt .



Minimization

Given y0 ∈ L2(0, π) we define

J(vT ) =
1
2

∫ T

0

∫
ω
|v |2dxdt +

∫ T

0
y0(x)v(0, x)dx .

Observability inequality⇒ existence of a minimum v̂T


yt − yxx = v̂χω v̂t + v̂xx = 0 (t , x) ∈ ΩT ,

y(t ,0) = y(t , π) = 0, v̂(t ,0) = v̂(t , π) = 0, t ∈ (0,T ),

y(0, x) = y0, y(T ) = 0 v̂(T , x) = v̂T , x ∈ Ω.



Carleman inequalities

Carleman inequalities are weighted in-
equalities which relate a differential opera-
tor with the local weighted norm of the so-
lution.
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Carleman inequalities are weighted in-
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lution.

Carleman in 1939, introduced energy estimates with exponential
weights to show uniqueness of solutions to PDE’s with smooth
coefficients on subsets of R2.



Carleman inequalities

Carleman inequalities are weighted in-
equalities which relate a differential opera-
tor with the local weighted norm of the so-
lution.

Carleman in 1939, introduced energy estimates with exponential
weights to show uniqueness of solutions to PDE’s with smooth
coefficients on subsets of R2.

Nowadays this kind of inequalities have been generalized and are a
very useful technique for inverse and control problems.



Kind of function

η0

0 πω



Kind of function

η0

0 πω

Theorem (Fursikov-Imanuvilov)

Let Ω ⊂ Rn be a open and bounded set of class C2. Let ω ⊂ Ω be
a non empty open set and Bδ an open ball centered at x0 ∈ ω with
Bδ ⊂ ω. Then there exists η0 ∈ C∞(ΩT ) such that η0(x) > 0 in Ω,
∂η0
∂ν < 0 on ∂Ω , |∇η0| > 0 in Ω\Bδ .



Carleman: weighted inequality

Given η0 as before, we define

α(x , t) =
eλ(2‖η0‖∞+η0(x)) − e2λ‖η0‖∞

t(T − t)
,

ξ(x , t) =
eλ(2‖η0‖∞+η0(x))

t(T − t)
, ρ(x , t) = eα(x ,t),

(3)

with λ > 0 .

Key fact lim
s→0+,T−

ρ−1 = 0.



Now......... Carleman inequality


vt + ∆v = F0 in ΩT ,

v = 0 on Σ,

v(x ,T ) = vT (x) in Ω,

with vT ∈ L2(Ω), F0 ∈ L2(ΩT ),



Now......... Carleman inequality


vt + ∆v = F0 in ΩT ,

v = 0 on Σ,

v(x ,T ) = vT (x) in Ω,

with vT ∈ L2(Ω), F0 ∈ L2(ΩT ),

Theorem
Ω ⊂ Rn smooth. There exists constants s0, λ0 and C such that, for
every s ≥ s0 and λ ≥ λ0, the solutions satisfy∫∫

ΩT

ρ−2s(sλ2ξ|∇v |2 + s3λ4ξ3v2) ≤ C

(
s3λ4

∫ T

0

∫
ω
ρ−2sξ3|v |2

+

∫∫
ΩT

ρ−2s|F0|2
)
.



Observability inequality from Carleman

For every s ≥ s0(T + T 2). We got lower and upper bounds:

ρ−2s(x , t)ξ3(x , t) ≥ e−2C(1+1/T ) 1
T 6 in Ω× (T/4,3T/4),

ρ−2s(x , t)ξ3(x , t) ≤ M in Ω× (0,T ).

Then, x

Ω×(T/4,3T/4)

|v |2 ≤ C
x

ω×(0,T )

|v |2

Classical energy estimates give:

‖v(0)‖2L2(Ω) ≤
2
T

x

Ω×(T/4,3T/4)

|v |2



Some numerics (Franck Boyer)


yt − 0.1yxx = 0
y(t ,0) = y(t ,1) = 0
y(0, x) = sin10(πx)

T = 1

0.5

1

0

Uncontrolled heat equation



Some numerics (Franck Boyer)


yt − 0.1yxx = hχω, ω = (0.3,0.8)

y(t ,0) = y(t ,1) = 0
y(0, x) = sin10(πx)

T = 1

0.5

1

0

Controlled heat equation



SINGLE PARABOLIC EQUATION:
BOUNDARY CONTROL



One-dimensional boundary control

rv(t)

0 π



The method of moments

We consider the operator −∂xx on (0, π) with homogeneous Dirichlet
conditions. We have a Hilbert basis of L2(0, π) given by

λk = k2, φk (x) =

√
2
π

sin kx , k ≥ 1, x ∈ (0, π) (4)

For every y ∈ L2(0, π) there exists a sequence {yk}k≥1 ⊂ R such that

y =
∑
k≥1

ykφk .



Control problem
yt − yxx = 0 in ΩT = (0, π)× (0,T ),

y(0, t) = v(t), y(π, t) = 0 t ∈ (0,T ),

y(x ,0) = y0(x) x ∈ (0, π),

with y0 ∈ H−1(0, π) and v ∈ L2(0,T ).

Given y0 ∈ H−1(0, π), there exists v ∈ L2(0,T ) such that the solution
satisfies y(x ,T ) = 0, x ∈ (0, π) iff there exists v ∈ L2(0,T ) such that

−〈y0,e−λk Tφk 〉H−1(0,π),H1
0 (0,π) =

∫ T

0
v(t)e−k2(T−t)∂xφk (0) dt , ∀k ≥ 1.



Given y0 ∈ H−1(0, π), there exists v ∈ L2(0,T ) such that the solution
satisfies y(x ,T ) = 0, x ∈ (0, π) iff there exists v ∈ L2(0,T ) such that

−〈y0,e−λk Tφk 〉H−1(0,π),H1
0 (0,π) =

∫ T

0
v(t)e−k2(T−t)∂xφk (0) dt , ∀k ≥ 1.

By Fourier y0 =
∑

k≥1 y0,kφk , this is equivalent to the existence of
v ∈ L2(0,T ) such that

k

√
2
π

∫ T

0
e−k2(T−t)v(t) dt = −e−k2T y0,k ∀k ≥ 1.

We define ṽ(t) = v(T − t), then we have to solve

∫ T

0
e−k2t ṽ(t) dt = −

√
πe−k2T

k
√

2
y0,k := ck ∀k ≥ 1. (5)

This problem is known as a problem of moments.



We have:

Theorem (Fattorini-Russell 1971.)

For every y0 ∈ L2(0, π) and T > 0, there exists ṽ ∈ L2(0,T ) solution
to the problem of moments. That is, v(t) = ṽ(T−t) is a null boundary
control for the one-dimensional heat equation.



Idea of the proof.

We say that a family {pk}k≥1 ⊂ L2(0,T ) is biorthogonal to {e−k2t}k≥1

if it satisfies ∫ T

0
e−k2tpl(t) = δkl , ∀(k , l) : k , l ≥ 1.

Fattorini-Russell that there exists {pk}k≥1 biorthogonal to {e−k2t}k≥1

that has an additional property: ∀ε > 0 there exists a constant

C(ε,T ) > 0 such that ‖pk‖L2(0,T ) ≤ C(ε,T )eεk
2
. We define

v(T − s) = ṽ(s) =
∑
k≥1

ckpk (s) :=

√
π

2

∑
k≥1

1
k

e−k2T y0,kpk (s)

the given bounds prove the convergence in L2(0,T ).



COUPLED EQUATIONS



Models: competitive models between species

Lotka-Volterra-like equations

# u and v two species

# predator prey models, radiation to new habitats

∂tu − d1∆u + r1u = a11u2 + a12uv , in Ω

∂tv − d2∆v + r2v = a22v2 + a21uv in Ω

+BC on ∂Ω

+ID in Ω

Gives two coupled parabolic non linear equations.



Models: T. Hillen; K. J. Painter

Keller-Seller type (chemotaxis)

# u denotes de cell or organism density

# v describes the concentration of the chemical signal.

∂tu = ∇(k1(u, v)∇u − k2(u, v)∇v) + k3(u, v), in Ω

∂tv = Dv ∆v + k4(u, v)− k5(u, v)v in Ω

+BC on ∂Ω

+ID in Ω

Gives two coupled parabolic non linear equations.



Models: Clair Poignard

Cell migration modelling: Patlak-Keller-Segel type.

# u1(t , x , y) the density of endothelial cells, at any point (x , y) and
at time t , that can freely move.

# Cells that are adhering on the substrate are tracked through their
density u2.

# v represents the density of the chemoattractant.

The equations governing the endothelial cell migration are

∂tu1 = d1∆u1 − λ1Ω̃u1(1− u2)−∇ · (ξ(u1, v)u1∇v), in Ω

∂tu2 = d2∆u2 − λ1Ω̃u1(1− u2) in Ω̃

∂tv = ∆v − ηv + γ1u1 + γ2u2 in Ω

∂νu1 = ∂νu2 = ∂νv = 0 on ∂Ω

u1(0, x , y) = u0
1 , u2(0, x , y) = u0

2 , v(0, x , y) = 0 in Ω



Models: Clair Poignard

Cell migration modelling: Patlak-Keller-Segel type.

# u1(t , x , y) the density of endothelial cells, at any point (x , y) and
at time t , that can freely move.

# Cells that are adhering on the substrate are tracked through their
density u2.

# v represents the density of the chemoattractant.

The equations governing the endothelial cell migration are

∂tu1 = d1∆u1 − λ1Ω̃u1(1− u2)−∇ · (ξ(u1, v)u1∇v), in Ω

∂tu2 = d2∆u2 − λ1Ω̃u1(1− u2) in Ω̃

∂tv = ∆v − ηv + γ1u1 + γ2u2 in Ω

∂νu1 = ∂νu2 = ∂νv = 0 on ∂Ω

u1(0, x , y) = u0
1 , u2(0, x , y) = u0

2 , v(0, x , y) = 0 in Ω



Models: Clair Poignard

Cell migration modelling: Patlak-Keller-Segel type.

# u1(t , x , y) the density of endothelial cells, at any point (x , y) and
at time t , that can freely move.

# Cells that are adhering on the substrate are tracked through their
density u2.

# v represents the density of the chemoattractant.

The equations governing the endothelial cell migration are

∂tu1 = d1∆u1 − λ1Ω̃u1(1− u2)−∇ · (ξ(u1, v)u1∇v), in Ω

∂tu2 = d2∆u2 − λ1Ω̃u1(1− u2) in Ω̃

∂tv = ∆v − ηv + γ1u1 + γ2u2 in Ω

∂νu1 = ∂νu2 = ∂νv = 0 on ∂Ω

u1(0, x , y) = u0
1 , u2(0, x , y) = u0

2 , v(0, x , y) = 0 in Ω



Model: Clair Poignard

Three nonlinear parabolic coupled equations.



LINEARIZED MODELS



Linearized Models

(S)


∂ty = (D∆ + A)y in ΩT = Ω× (0,T ),

y = Bv(x , t)χγ on Σ = ∂Ω× (0,T ), γ ⊂ ∂Ω

y(·,0) = y0 in Ω,

y(x , t) = (y1(x , t), · · · , yn(x , t))

D =


d1 0 · · · 0
0 d2 · · · 0
... · · · . . .

...
0 · · · 0 dn


A ∈Mn×n,B ∈Mn×m



INTERNAL CONTROLLABILITY OF
TWO COUPLED PARABOLIC EQUA-
TIONS



Preliminaries

Let Ω ⊂ Rn open and smooth set. Let ω,O ⊂ Ω be a nonempty subset
and ΩT = Ω× (0,T ); Σ = ∂Ω× (0,T ) We consider

yt −∆y + f (y ,u) = hχω; ut − α∆u + g(u) = yχO in ΩT ,

y = 0; u = 0 on Σ,

y(0) = y0; u(0) = u0 in Ω

Control problem: For every y0,u0 ∈ L2(Ω) and T > 0

does there exists h ∈ L2(ΩT ) such that simultaneously y(T ) = u(T ) = 0?

González-Burgos; de T. Yes;

When O ∩ ω 6= ∅

Techniques used: Carleman inequalities for the adjoint system, local
energy estimates, fixed point arguments.
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Numerical example (Franck Boyer)


yt − (0.1)yxx = hχω ut − (0.1)uxx = yχO in ΩT ,

y(t ,0) = y(t , π) = 0 u(t ,0) = u(t , π) = 0 in (0,T ) ,

y(·,0) = sin(3πx) u(·,0) = sin10(πx) in (0,1) ,

ω = (0.1,0.5) O = (0.2,0.9) ω ∩ O 6= ∅

T = 3

0.5

1

0

First component y

T = 3

0.5

1

0

Second component u



NEW CONTROL QUESTION:
BOUNDARY CONTROLLABILITY
OF TWO COUPLED PARABOLIC
EQUATIONS



Coupled systems problem:boundary

Let us consider for z = (y ,q), the system
yt − αyxx = 0 ut − uxx = y in ΩT ,

y(t ,0) = v(t) u(t ,0) = 0 t ∈ (0,T ) ,

y(t , π) = 0 u(t , π) = 0 t ∈ (0,T )

y(0, x) = y0(x) u(0, x) = u0(x) x ∈ (0, π) ,

rv(t)

0 π



Coupled systems problem:boundary

Let us consider for z = (y ,q), the system
yt − αyxx = 0 ut − uxx = y in ΩT ,

y(t ,0) = v(t) u(t ,0) = 0 t ∈ (0,T ) ,

y(t , π) = 0 u(t , π) = 0 t ∈ (0,T )

y(0, x) = y0(x) u(0, x) = u0(x) x ∈ (0, π) ,

Approximate controllability is equivalent to a unique continuation
property for the adjoint problem:

−ϕ̃t − αϕ̃xx = ψ̃ −ψ̃t − ψ̃xx = 0 in ΩT ,

ϕ̃(t ,0) = ϕ̃(t , π) = 0 ψ̃(t ,0) = ψ̃(t , π) = 0 t ∈ (0,T ),

ϕ̃(T , x) = ϕ̃0(x) ψ̃(T , x) = ψ̃0(x) x ∈ (0, π) ,
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ϕ̃(t ,0) = ϕ̃(t , π) = 0 ψ̃(t ,0) = ψ̃(t , π) = 0 t ∈ (0,T ),

ϕ̃(T , x) = ϕ̃0(x) ψ̃(T , x) = ψ̃0(x) x ∈ (0, π) ,

ϕ̃x |x=0 = 0 implies ψ̃ ≡ ϕ̃ ≡ 0?

rϕ̃x = 0

0 π



Coupled systems problem:boundary

Theorem (Fernández-Cara, González-Burgos, deT)

Suppose that α 6= 1 then unique continuation property is true if and
only if

√
α 6∈ Q. In other words if α 6= 1, system is approximately

controllable at time T > 0 if and only if
√
α 6∈ Q.



Proof

Let wj(x) = sin(jx) the eigenfunctions of the Dirichlet Laplacian in
(0, π), for the eigenvalue j2.

Then

ϕ̃(x ,T − t) =

ϕ(x , t) =
∑
j≥1

(aj −
bj

(α− 1)j2
)e−αj2twj(x) +

∑
j≥1

bj

(α− 1)j2
e−j2twj(x),



Proof

Let wj(x) = sin(jx) the eigenfunctions of the Dirichlet Laplacian in
(0, π), for the eigenvalue j2.

Then

ϕ̃(x ,T − t) =

ϕ(x , t) =
∑
j≥1

(aj −
bj

(α− 1)j2
)e−αj2twj(x) +

∑
j≥1

bj

(α− 1)j2
e−j2twj(x),

ψ̃(T − t , x) = ψ(t , x) =
∑
j≥1

bj

(α− 1)j2
e−j2twj(x),

with bj =
∫ π

0 ψ̃0(x) sin(jx)dx , aj =
∫ π

0 ϕ̃0(x) sin(jx)dx .
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Proof

ϕx (t ,0) =
∑
j≥1

j
(

(aj −
bj

(α− 1)j2
)e−αj2t +

bj

(α− 1)j2
e−j2t

)



Proof

ϕx (t ,0) =
∑
j≥1

j
(

(aj −
bj

(α− 1)j2
)e−αj2t +

bj

(α− 1)j2
e−j2t

)

Suppose that
√
α ∈ Q. That means that α =

k2
0

i20
and then

αi20 = k2
0 .

Choose bj = aj = 0 for j 6= k0, i0, bi0 = 0,bk0 = 1 and

ak0 =
1

(α− 1)k0
2 , ai0 =

−1
(α− 1)k0

2 .

Then, ϕx (0, t) = 0 in (0,T ) but ϕ 6= 0, ψ 6= 0.



Approximate controllability

Given α such that
√
α 6∈ Q. Take sequences αj2 and j2. We can

reorder and write an increasing sequence

0 < µ1 < µ2 < · · · < µn < · · ·

and
ϕx (0, t) =

∑
j=1

Aje−µj t .

We observe that e−µj t is a family of linearly independent functions in
(0,T ) and then

ϕx (0, t) = 0⇒ Aj = 0.

That implies bj = 0, ∀j and then that aj = 0, ∀j . In particular,
ψ̃0 = ϕ̃0 = 0 and the unique continuation property holds true .



Non trivial example: null controllability

Theorem (Fernández-Cara, González-Burgos, deT)

Suppose that α = 1. Then system
yt − yxx = 0 ut − uxx = y in ΩT ,

y(t ,0) = h(t) u(t ,0) = 0 t ∈ (0,T ) ,

y(t , π) = 0 u(t , π) = 0 t ∈ (0,T )

y(0, x) = y0(x) u(0, x) = u0(x) x ∈ (0, π) ,

is null controllable at time T for any T > 0.



Non trivial example: null controllability

Theorem (Fernández-Cara, González-Burgos, deT)

Suppose that α = 1. Then, there exists a constant C > 0 such that
the solution to the adjoint system

−ϕ̃t − ϕ̃xx = ψ̃ −ψ̃t − ψ̃xx = 0 in ΩT ,

ϕ̃(t ,0) = ϕ̃(t , π) = 0 ψ̃(t ,0) = ψ̃(t , π) = 0 t ∈ (0,T ),

ϕ̃(T , x) = ϕ̃0(x) ψ̃(T , x) = ψ̃0(x) x ∈ (0, π) ,

satisfies∫ π

0
|ψ̃(0, x)|2dx +

∫ π

0
|ϕ̃(0, x)|2dx ≤ C

∫ T

0
|ϕ̃x (t ,0)|2dt .



Null controllability

What happens if
√
α 6∈ Q?

Theorem (Luca-deT (2013))

Boundary control: There exist values of α such that
√
α 6∈ Q and

there is not NULL controllability.



Null controllability

What happens if
√
α 6∈ Q?

Proof.
There exists

√
α 6∈ Q, such that the solution to the system

−ϕ̃t − αϕ̃xx = ψ̃ −ψ̃t − ψ̃xx = 0 in ΩT ,

ϕ̃(t ,0) = ϕ̃(t , π) = 0 ψ̃(t ,0) = ψ̃(t , π) = 0 t ∈ (0,T ),

ϕ̃(T , x) = ϕ̃0(x) ψ̃(T , x) = ψ̃0(x) x ∈ (0, π) ,

does not satisfy inequality∫ π

0
|ψ̃(0, x)|2dx +

∫ π

0
|ϕ̃(0, x)|2dx ≤ C

∫ T

0
|ϕ̃x (t ,0)|2dt

for any C > 0 and T > 0.
Construction of α using Diophantine approximations of real num-
bers.



Generalization

Theorem (F. Ammar Khodja, A. Benabdallah, M. González–
Burgos, L. deT, 2014)

Let α 6= 1

1. ∀T > 0 : System is approximately controllable iff
√
α 6∈ Q

2. ∃T0 = c(Λ) ∈ [0,+∞] such that
◦ System is null controllable at time T if

√
α 6∈ Q and T > T0

◦ Even when
√
α 6∈ Q, if T < T0, system is not null controllable at

time T

c(Λ) is the condensation index of the sequence Λ = (k2,dk2)k≥1.



Use of Theory of Numbers, complex variable and
Dirichlet series

# The condensation index of a sequence Λ = (λk ) ⊂ C is a real
number

c (Λ) ∈ [0,+∞]

associated to the sequence and “measures" the condensation at
infinity.

# The notion was introduced by:

◦ V.l. Bernstein in 1933:
Leçons sur les progrès récents de la théorie des séries de Dirichlet
for real sequences,

◦ extended by J. R. Shackell in 1967 for complex sequences.



Condensation Index

Definition
The condensation index of Λ = {λk} is:

c (Λ) = lim sup
k→∞

− ln |E ′ (λk )|
R(λk )

∈ [0,+∞] .

E ′ (λk ) = − 2
λk

∞∏
j 6=k

(
1−

λ2
k

λ2
j

)



More results

# In Rn the boundary control problem is almost open.

# Techniques do not allow to treat the non linear boundary control
problem.
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More results

# Other problem: internal controllability

Ω
ω


∂ty = (D∆ + A) y + χωBv , in (0,T )× Ω,

y = 0 on (0,T )× ∂Ω,

y(0, x) = y0(x) x ∈ Ω,

v ∈ L2(Ω× (0,T ))m, ω b Ω.

# D diagonal, A independent of x well understood.

# D non diagonal. Results related with the Jordan decomposition of
A! May be technical....(Fernández-Cara, González-Burgos, deT
(COCV:2015) )
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
yt − yxx + α(x)p = 0 pt − pxx = hχ(a,b) in ΩT ,

y(t ,0) = y(t , π) = 0 p(t ,0) = p(t , π) = 0 in (0,T ) ,

y(0, x) = y0(x) p(0, x) = p0(x) in (0, π) ,

Theorem

1. Let I1,k (α) :=
∫ a

0 α(x)| sin kx |2 dx, I2,k (q) :=
∫ π

b α(x)| sin kx |2 dx ,
system is approximately controllable at time T > 0 if and only if
I1,k (α) + I2,k (α) = Ik (α) 6= 0 ∀k ≥ 1.

2. Assume that system is app.controllable. Define

T̃0(α) := lim sup
− log |Ik (α)|

k2 ∈ [0,∞] . (6)

Then, if T > T̃0(α) system is null controllable at time T . On the
other hand, if T < T̃0(α) system is not null controllable at time T .



Internal control: Nonlinear case

Coron-Guilleron

αt −∆α = β3, in ΩT ,

βt −∆β = γ3, in ΩT

γt −∆γ = uχω, in ΩT

α = β = γ = 0, (t , x) ∈ (0,T )× ∂Ω

α(0, x) = α0(x);β(0, x) = β0(x); γ(0, x) = γ0(x); in Ω ,

Return method: SIAM "W.T. and Idalia Reid Prize" (J.M. Coron)



Survey:

F. Ammar-Khodja, A. Benabdallah, M. González-Burgos, L. de Teresa.

Recent results on the controllability of coupled parabolic problems: a
survey. MCRF, 3, (2011), pp. 267–306,
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