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(1) u′′(t) + g(u(t)) = Q(t), t ∈ (0, π) u(0) = 0, u(π) = 0.

(2)
σ(−′′) = {1, 4, . . . , k2, . . .→ +∞},
All the eigenvalues are simple.

THEOREM 1.1 If

(3) lim
|u|→+∞

g(u)

u
= +∞ (superlinear),

g is differentiable, and q is bounded and continuous then (1) has
infinitely many solutions. Moreover, there exists K such that if
k ≥ K is a positive integer then (1) has two solutions with k nodes
(zeroes).
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Let Ω be bounded region in RN .

(4) ∆u(x) + g(u(x)) = Q(x), x ∈ Ω u(x) = 0, x ∈ ∂Ω.

(5) σ(−∆) = {λ1, . . . , λk , . . .→ +∞},

The eigenvalue λ1 is a simple, others have finite multiplicity but
need not be simple.
PROBLEM. Suppose g is superlinear, differentiable, and Q is
bounded and continuous. Does (4) have infinitely many solutions?
Are there solutions with large number of nodal regions?
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Proof of Theorem 1.1. Let u(·, d) satisfy u′′(t) + g(u(t)) = Q(t)
t ∈ (0, π), u(0) = 0, u′(0) = d . Let G (u) =

∫ u
0 g(s)ds and

(6) E (t, d) =
(u′(t, d))2

2
+ G (u(t, d))

(7) lim
d→+∞

E (t, d) = +∞.

Hence, there exists D and a continuous function θ(t, d) such that

(8)
u(t, d) = ρ(t, d) sin(θ(t, d)), ρ(t, d) sin(θ(t, d))

lim
d→+∞

θ(π, d) = +∞.

for d > D. Here ρ2(t, d) = u2(t, d) + (u′(t, d))2. Similarly for
d < −D.
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From (8), there exists a sequence dn → +∞ such that
θ(π, dn) = nπ. That is u(·, dn) is a solution to (1) with n − 1
zeroes in (0, π).
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ANSWER TO PROBLEM = NO, S. Pohozaev (1965).

THEOREM 1.2. (Pohozaev identity) If u be a solution to (4)
with Q = 0, then

(9)

∫
Ω

(
NG (u)− N − 2

2
ug(u)

)
dx =

1

2

∫
∂Ω
|∇u|2(η(x) · x)dS .

Proof. Multiply by u and integrate by parts eliminating integrals
of second order derivatives. Multiply by x · ∇u and integrate by
parts eliminating terms that contain second order derivatives.
Combining the resulting relations (9) appears by eliminating the
terms that contain derivatives of u integrated on Ω .
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THEOREM 1.3. If g(u) = |u|p−1u, p ≥ (N + 2)/(N − 2), Q = 0,
and Ω is starlike then u = 0 is the only solution to (4)

Proof. Now NG (u)− N−2
2 ug(u) = γp|u|p+1 with

γp = 2N−(p+1)(N−2)
2N . Hence γp ≤ 0. This, (9), and η(x) · x ≥ 0

prove that if u is a solution to (4) then the left hand side in (9) is
not positive while the right hand side is not negative. Hence u = 0.

Note. a) Imitating the proof of Theorem 1.1 one sees that if
0 < a < b <∞,

Ω = {x ∈ RN ; a < ‖x‖ < b} := A

then (4) has infinitely many radial solutions. See
[B-C, 1988, P-1989].
b) Theorem 1.3 applies to the case

Ω = {x ∈ RN ; ‖x‖ < 1} := B.
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RADIAL SOLUTIONS TO (4) IN B

Recall that, in spherical coordinates (r , θ1, . . . , θN−1),

∆u = urr +
N − 1

r
ur +

1

r2
D(θ1, . . . , θN−1)u.

Thus for radial solutions in B, (4) becomes

(10) urr +
N − 1

r
ur + g(u(r)) = Q(r), u′(0) = 0, u(1) = 0.

The eigenvalues of

(11) − urr −
N − 1

r
ur = λu, u′(0) = 0, u(1) = 0.

are a sequence of positive numbers that converge to +∞ and are
simple.
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Trying to imitate the proof of Theorem 1.1 for (10) one needs to
consider

(12) urr +
N − 1

r
ur + g(u(r)) = Q(r), u′(0) = 0, u(0) = d ,

and try to find d such that u(1, d) = 0.
This is known as a shooting argument. For Theorem 1.1 or the
case Ω = A, one is shooting from a regular point to another
regular point of an ordinary differential equation. Now we consider
the cases:

• Shooting form a singular point to a regular point (equation
(10)).

• Shooting from a regular point to a singular point. Here we
obtain singular solutions for (10)

• Shooting from a singular point to a singular point. Here we
obtain rotationally invariant solutions to (4) in manifolds of
revolution.
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Shooting from a singular point to a regular point.

In the study of (10) we distinguish three cases.

• Under Serrin, limu→+∞
g(u)
up ∈ (0,∞) with 1 < p < N

N−2 .

• Between Serrin and Sobolev, limu→+∞
g(u)
up ∈ (0,∞) with

N
N−2 < p < N+2

N−2 , and limu→−∞
g(u)
uq ∈ (0,∞) with

1 < q < N+2
N−2

• Sub-super critical case 1 < p < N+2
N−2 < q.
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Consider

(13) urr +
N − 1

r
ur + g(u(r)) = Q(r), u′(0) = 0, u(0) = d ,

From now on Q = 0, g(0) = 0, and g is monotonically
increasing.
Energy dissipates rapidly near 0.

(14)

(
(u′(t))2

2
+ G (u(t))

)′
= u′(t)u′′(t) + g(u(t))u′(t)

= −N − 1

r
(u′(t))2

≤ 0.
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Pohozaev identity

Multiplying (13) by rN−1u and integrating on [0, r ] we have

(15) rN−1u′u −
∫ r

0
sN−1(u′)2ds +

∫ r

0
sN−1u(s)g(u(s))ds = 0

Multiplying (13) by rNu′ and integrating on [0, r ] we have

(16)

0 = rN
(u′)2

2
+ (N − 1)

∫ r

0

sN−1(u′)2ds +

∫ r

0

sN(G (u(s)))′ds

= rN
(u′)2

2
+ rNG (u(r)) + (N − 1)

∫ r

0

sN−1(u′)2ds

−
∫ r

0

NsN−1(G (u(s)))ds
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Multiplying (15) by N − 2 and adding to (16) we have:

(17)
P(r , d) := rN

(u′)2

2
+ rNG (u(r)) +

N − 2

2
rN−1u(r)u′(r)

=

∫ r

0
sN−1

(
(NG (u(s))− N − 2

2
u(s)g(u(s))

)
ds

If g(u) = up−1u then

(18) NG (u(s))− N − 2

2
u(s)g(u(s)) =

(
N

p + 1
− N − 2

2

)
|u|p−2.

14 / 41



15 / 41



Under Serrin
Since E ′ = −N−1

r (u′(r))2 ≥ −2(N−1)
r E (r), If p < N

N−2 then

E (t) ≥
E (t0)t

2(N−1)
0

t2(N−1)
≥ Kdp+1d (1−p)(N−1) → +∞

as d → +∞. The proof follows as in Theorem 1.1
Between Serrin and Sobolev

P(t0, d) = tN0 E (t0) +
N − 2

2
tN−1u(t0)u′(t0) ≥

∫ t0

0
sN−1up+1(s)ds

≥ KtN0 dp+1 ≥ Kd (N(1−p)/2)+p+1

→ +∞ as d → +∞.
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With p, q ∈ (1, (N + 2)/(N − 2)), NG (u)− N−2
2 ug(u) is bounded

below. Hence

E (1) ≥ tN0 E (t0) +
N − 2

2
(tN−1(u · u′)(t0)− (u · u′)(1))−M

≥ P(t0, d)−M − (u′(1))2

4
− (N − 2)2

2
u2(1)

→ +∞ as d → +∞.

Since E (·, d) is a decreasing function we have

(19) lim
d→+∞

E (t, d) = +∞ uniformly for t ∈ [0, 1].

and the existence of infinitely many solutions follows as in
Theorem 1.1
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The sub-super critical case: 1 < p < (N + 2)/(N − 2) < q

(20)
tNE (t) +

N − 2

2
tN−1u(t)u′(t) ≥

tN0 E (t0) +
N − 2

2
tN−1u(t0)u′(t0)−M. → +∞

Lemma 1.1 For d large, there exist t1 < s1 < s2 < t2 such that

(21) t1 > t0, u(t1) = u′(s1) = u(t2) = u′(t2) = 0, t2 = O(t0)

u decreases on (t0, s1), and increases on (s1, s2).
Lemma 1.2 For d > 0 large,

(22) t2 − t1 ≤ C2 d
(p+1)

[
1

q+1
− 1

2

]
� d (1−p)/2.
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From Lemma 2.2 we have the following.

Lemma 1.3 For d > 0 large,

(23) P(t, d) ≥ P(t0, d) for allt > t0.

Let k be such that kd (1−p)/2 � 1. Repeating this argument k
times, we see that there exists t1 < t2 < · · · < tk such that
u(ti ) = 0 for i = 1, 2, . . . , k and P(t, d) ≥ P(t0, d) for all
t ∈ [t0, tk ]. Hence, limd→+∞ θ(1, d) =∞. Thus:

THEOREM 1.4 If is g is a sub-super critical nonlinearity then (10)
has infinitely many solutions.
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SINGULAR SOLUTIONS
Shooting from a regular point to a singular and a regular point

Let N/(N − 2) < p < (N + 2)/(N − 2) and q > 1.

THEOREM 2.1. ([A-C-C-2010]) If g is subcritical or sub-super
critical then (10) has a countable number of non-degenerate
continua of singular radial solutions.

The case p = q is found in [D-E-R-2002] for Q = 0.
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Let
(24)

θ =
2

1− p
, A = (−θ(θ + N − 2))

1
p−1 , and τ2 ∈

(
θ,

2− N

2

)
.

Since p > N/(N − 2), there exists c > 0 such that
(25)

(θA + τ2c)2

2
+

(A + c)p+1

p + 1
+

(N − 2)(A + c)(θA + τ2c)

2
= 0.

Let τ1 ∈ (θ, τ2) be such that

(26) (N − 2 + θ)(Aθ + cτ2) + (A + c)p − cτ1(θ − τ2) 6= 0.
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Let b̃ = b1/(θ−τ2).

LEMMA 3.1. Let I ⊂ R be a compact interval. For b ≥ 1 and
a ∈ I there exists a unique function u(·, a, b) : (0, 1]→ R that
satisfies

(27)

u′′ +
N − 1

r
u′ + g(u) = 0, 0 < r ≤ 1,

u(b̃, a, b) = (A + c)b̃θ + ab̃τ1 , and

u′(b̃, a, b) = (θA + τ2c)b̃θ−1 + τ1ab̃
τ1−1.

Moreover, u(x) = u(‖x‖, a, b) ∈ H1,1(B) satisface ∆u + g(u) = 0
as a distribution, i.e.∫

B
(∇u · ∇ϕ− g(u)ϕ)dx = 0

for all ϕ ∈ C∞0 (B).
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(28)

P(r) = rN−1

(
rE (r) +

N − 2

2
u(r)u′(r)

)
,

γ1 =

(
N

p + 1
− N − 2

2

)
> 0, γ2 =

(
N

q + 1
− N − 2

2

)
,

y Γ(u) =

{
γ1u

p+1 para u ≥ 0

γ2|u|q+1 para u ≤ 0.
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Lema 2.2. If g is subcritical or sub-super subcritical, then there
exists b1 ∈ R such that for b > b1 the solutions to (27) are
singular and have no zero in (0, b̃).
Proof. It is based on the fact that there is m ∈ (0, 1) such that
P(mb̃) < 0. Hence P(t) < 0 for all t ∈ (0,mb̃).

Lema 2.3. There exist m1 > 1, b2 > b1, and K > 0 such that

(29) P(m1b̃) ≥ Kup+1(b̃)b̃N ,

for b > b2, uniformly for a ∈ I . In particular, P(m1b̃)→ +∞ as
b → +∞.
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Lema 2.4. There exists b2 > b1 such that if b̂ > b1, â ∈ I ,
u(·, â, b̂) is a solution to (27) with u(1, â, b̂) = 0, then there exists
δ > 0 and continuous functions α : (−δ, δ)→ R and
β : (−δ, δ)→ R such that u(·, â+α(t), b̂ +β(t)) satisfies (10) and
u(·, â + α(t), b̂ + β(t)) 6= u(·, â + α(s), b̂ + β(s)) for s 6= t. Hence,
(10) has a a non-degenerate continuum of radial singular solutions.
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Let φ(r , a, b) be a differentiable function such that

(30)

u(r , a, b) = ρ(r , a, b) cos(φ(r , a, b)),

u′(r , a, b) = −ρ(r , a, b) sin(φ(r , a, b)),

φ(b̃, a, b) = tan−1

(
−u′(b̃, a, b)

u(b̃, a, b)

)

By Lemma 2.3,

(31) lim
b→+∞

φ(1, a, b) = +∞,

uniformly for a ∈ I . Hence, for each a ∈ I there exists a positive
integrer J(a) and a sequence {bj(a)}j≥J(a) such that
φ(1, a, bj(a)) = jπ + (π/2). By the continuous dependence on
parameters of solutions to initial value problems, the functions bj
are continuous. By Lemma 2.4, {u(·, a, bj(a)); a ∈ I} defines a
non-degenerate continuum of singular solutions to (10).
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These ideas extend to quasilinear equations. For example the can
be taken to Kirchhoff’s equation as follows.

THEOREM 2.2 (Joint work with ShuZhi Song) If g is supercubic
and subcritical (3 < p, q < (N + 2)/(N − 2) ) then
(32)

(a + b

∫
B
|∇u|2)∆u(x) + g(u(x)) = 0, x ∈ B u(x) = 0, x ∈ ∂B

has infinitely many radially symmetric solutions.
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(33)

(
−tu′

u

)′
=

(−tu′′ − u′)u + t(u′)2

u2

=
−t(−n

t u
′ − up)u − uu′ + t(u′)2

u2

=
(

N−2︷ ︸︸ ︷
n − 1)uu′ + tup+1 + t(u′)2

u2

=

2t−n
∫ t

0 snγup+1 − 2
tup+1

p + 1
+ tup+1

u2

=

2t−n
∫ t

0 snγup+1 + t

(
p − 1

p + 1

)
up+1

u2

≥ 2γ

t

(
−tu′(t)

u(t)

)
,
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A LAPLACE-BELTRAMI EQUATION
shooting from singularity to singularity

Joint work with I. Ventura.
Let M be a codimension 1 manifold of revolution in RN of class C 3

containing its axis of rotation. We assume M to be boundaryless,
connected, and compact. Without loss of generality we may
assume that M revolves around the xN = z axis. Also we may
denote by P− = (0, . . . ,−1) and P+ = (0, . . . , 1) the points of
intersection of M with its axis of revolution. We study the
existence of rotationally symmetric solutions to

(34) ∆Mu + f (u) = 0 on M,

where ∆M is the Laplace-Beltrami operator on M and f : R→ R
is a differentiable function such that

(35) lim
|u|→+∞

f (u)

u
= +∞.
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Let d : M ×M → [0,∞) denote the geodesic distance in M and
a = max{d(P−1, x); x ∈ M} = d(P−,P+). Hence there exist
differentiable functions G , z : [0, a]→ [0,∞) such that G (t) = 0 if
and only if t ∈ {0, a}, and M = {(θ, z(r)); θ = G (r), r ∈ [0, a]}.
Moreover,

(36) G ′(0) = −G ′(a) = 1, z(0) = −1, and z(a) = 1.

For u : M → R rotationally symmetric the equation (34) is
equivalent to

(37)
utt + (N − 2)

G ′(t)

G (t)
ut + f (u(t)) = 0

u(0), u(a) ∈ R, u′(0) = u′(a) = 0.

32 / 41



We assume that there exists m1 > 0 sych that

(38) f increases on (−∞,−m1) ∪ (m1,+∞).

Also we assume that there exist p1, p2 ∈ (1, (N + 1)/(N − 3)) such
that

(39)

lim
u→+∞

f (u)

|u|p1−1u
:= f∞ ∈ (0,∞), and

lim
u→−∞

f (u)

|u|p2−1u
:= f−∞ ∈ (0,∞).

The main result is.
THEOREM 3.1: The equation (34) has infinitely many rotationally
symmetric solutions.

33 / 41



In [A.C. and E.M. Fischer, Infinitely Many Rotationally Symmetric
Solutions to a Class of Semilinear Laplace-Beltrami Equations on
Spheres, Canadian Mathematical Bulletin, Vol 58 (2015), no. 4,
723-729.] when M is a sphere it was proved that (34) has
infinitely many rotationally symmetric solutions also symmetric
with respect to the equator. That case becomes

(40)
urr + (N − 2)

cos(r)

sin(r)
ur + f (u) = 0, r ∈ [0, π/2]

u′(0) = 0, u′(π/2) = 0.

This equation is singular at at 0 but not at π/2. That is the
problem is very similar to the problem to finding radial solutions in
a ball.
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Let us consider the initial value problem

(41)
utt + (N − 2)

G ′(t)

G (t)
ut + f (u(t)) = 0

u(0) = d , u′(0) = 0.

Multiplying (41) by GN−2(t) we have

(42) (GN−2(t)ut)t + GN−2(t)f (u) = 0, t ∈ [0, a]
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For β(t) = GN−2(t)

∫ t

a/2
G 2−N(s)ds,

(43) lim
t→0

β(t) = 0.

Let u(t, d) := u(t) be a solution to (41). Now the Pohozaev
identity is

(44)

P(t, u) := GN−2(t)β(t)

[
(u′(t))2

2
+ F (u(t))

]
− GN−2(t)

2
u(t)u′(t)

=

∫ t

0
((β(s)GN−2(s))′F (u(s))

+
GN−2(s)

2
u(s)f (u(s)))ds
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From (44) and (39) we deduce:

Lemma 1: There exists D > 0 such that if d > D then

E (t, d) :=
(u′(t, d))2

2
+ F (u(t, d)) > 0, for all t ∈ [0, a].

Moreover,

(45) lim
|d |→+∞

E (t, d) = +∞,

uniformly in t
Hence there exists a continuous function ϕ : [0, a)× [D,∞)→ R
such that

u(t, d) = (u2(t, d) + (ut(t, d))2) cos(ϕ(t, d),

ut(t, d) = −(u2(t, d) + (ut(t, d))2) sin(ϕ(t, d)), and

(46) lim
d→+∞

ϕ(t, d) = +∞, for each t ∈ (0, a).
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Lemma 2: For each d ∈ R there exists M(d) such that the
solution to (41) satisfies |P(r , d)| ≤ M(d) for all r ∈ (0, a).
Lemma 3: If v is bounded solution to (41) then lim

r→a−
v ′(r) = 0.

Lemma 4: For each d ≥ D, u(·, d) has finitely many zeroes in
[0, a).
Lemma 5: If lim

t→a
v(t, d̂) = +∞, the there exists η > 0 such that if

|d − d̂ | < η then lim
t→a−

v(t, d) = +∞.
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Proof of Theorem A. Let d0 > D. Suppose that u(·, d0) is not a
solution to (37), i.e. does not define a solution to (34). By
Lemmas 3 and , we may assume w.l.o.g. that lim

t→a−
u(t) = +∞

and, for some, there exists ε > 0 such that u′(t, d0) > 0. Let
d̃ = sup{d ≥ d0; u(t, d) is monotonically increasing on [t1, a) and
limt→a− v(t, d) = +∞}. Due to Lemma 5, d̃ > d1. By (46)
d̃ < +∞. If u(t, d̃) = 0 for some t ∈ (t1, a), by continuous
dependence there is a sequence dj → d̃ , dj < d̃ such that
u(t, dj)→ 0. Since this contradicts that u(·, dj) increases on
[t1, a), u(·, d̃) is bounded. This and Lemma 3, prove that u(·, d̃) is
a solution to (37). Assuming that u(·, d̃ + 1) is not a solution to
(37) we find a second solution of the form u(·, d̃1) with d̃1 ≥ +̃1.
Iterating this process we have a sequence {d̃k}k converging to +∞.
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