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AIM OF THIS TALK

We present some of my results motivated by the work of Brezis.
The talk consists of three parts:

(i) Some history with facts that influenced some of my research.

(ii) Results on a priori estimates of solutions of Semilinear
Elliptic problems, starting with the work of Brezis-Turner using
Hardy inequalities, and continuing with the use of blow-up by
Gidas-Spruck and moving planes by deF-Lions-Nussbaum.

(iii) The theorem of Brezis-Nirenberg on a critical problem,
obtaining its solvability by a linear perturbation.
And a recent result of deF-Gossez-Quorin-Ubilla using a
gradient term for perturbation, also in the case of the
p-Laplacian.
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SYMPOSIA ON NONLINEAR FUNCTIONAL
ANALYSIS

In 1970 in a meeting of the American Mathematical Society in
Chicago many results in the theory of nonlinear PDE, as well as
in Functional Analysis were presented and collected in a
Proceedings edited by Felix Browder.

Haim Brezis participated presenting the paper
On Some Degenerate Nonlinear Parabolic Equations.

I also participated presenting the paper
On the Extension of Contractions on Normed Spaces
a joint work with Les Karlovitz.
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MY RESEARCH until 1970

(i) Results with Felix Browder and Chaitan Gupta on Monotone
Nonlinear Operators.
(ii) Results with Les Karlovitz on the Geometry of Normed
Spaces, including the following:

Theorem
Let E be a normed space with dimension ≥ 3. Consider the radial
projection T : E → E on the unit ball, i.e.

Tu = u if ‖u‖ ≤ 1, Tu =
u
‖ u ‖

if ‖u ‖ > 1 (1)

Assume that
‖ Tu − Tv ‖≤‖ u − v ‖,∀u, v ∈ E .

Then E is a Hilbert space.
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CHARACTERIZATIONS OF HILBERT SPACES

Brezis presents 4 characterizations of Hilbert spaces in his book
FUNCTIONAL ANALYSIS, SOBOLEV SPACES and PARTIAL
DIFFERENTIAL EQUATIONS.
By characterization it is meant that for a given normed space E with
norm ‖.‖ it is possible to define an inner product (, ) s.t.

‖u‖ = (u,u)
1
2 ,∀u ∈ E

Besides the one above he presents 3 additional ones, namely
(i) (Frechet-von Neumann- Jordan) Assume the norm in E satisfies
the parallellogram law. Then E is a Hilbert space.
(ii) (Kakutani) Assume E is a normed space of dimension > 3.
Assume that every subspace F of dimension 2 has a projection
operator P : E → F with norm 6 1. Then E is a Hilbert space.
(iii)(Lindenstrauss-Tzafriri, 1971). Assume E is a Banach Space s.t.
every closed subspace has a complement. Then E is Hilbertizable,
i.e., there is an equivalent Hilbert norm.
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TWO BOOKS of BREZIS

(i) Analyse fonctionnelle-Theorie et applications , Masson 1983.

(ii)Functional Analysis, Sobolev Spaces and Partial Differential
Equations, Springer 2011.
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At Rutgers, 2012
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A PRIORI BOUNDS

The solvability of the equation

−∆u = f (x ,u) in Ω, u = 0 on ∂Ω (2)

as well as more general elliptic equations and systems has
been the object of intensive research.
Two methods have been used depending on the special case:
Variational and Topological.

We discuss here the Topological method, via Leray-Schauder
Degree, through Krasnoselskii Theorem.
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KRASNOSELSKII THEOREM

Theorem
Let C be a cone in a Banach space X and T : C → C a compact
mapping such that T (0) = 0. Assume that there are real numbers
0 < r < R and t > 0 such that
(i) x 6= tTx for 0 ≤ t ≤ 1 and x ∈ C, ||x || = r , and
(ii) There exists a compact mapping H : BR × [0,∞)→ C (where
Bρ = {x ∈ C : ||x || < ρ}) such that
(a) H(x ,0) = Tx for ||x || = R,
(b) H(x , t) 6= x for ||x || = R and t ≥ 0
(c) H(x , t) = x has no solution x ∈ BR for t ≥ t0
Then

ic(T ,Br ) = 1, ic(T ,BR) = 0, ic(T ,U) = −1,

where U = {x ∈ C : r < ||x || < R}, and ic denotes the
Leray-Schauder index. As a consequence T has a fixed point in U.
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Applying KRASNOSELSKII

When applying this result, the main difficulty arises in the
verification of condition
(b) H(x , t) 6= x for ||x || = R and t ≥ 0
which is nothing more than an a priori bound on the solutions of
the equation. It is well known that the existence of a priori
bounds depends on the growth of the function f as u goes to
infinity.
Let us comment on it.
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A PRIORI BOUNDS-THREE TECHNIQUES

A priori bounds for positive solutions of superlinear elliptic
equations (the scalar case), namely

−∆u = f (x ,u) in Ω, u = 0 on ∂Ω (3)

was first considered by Brézis-Turner in 1977 using an
inequality due to Hardy.
The same technique was used by Clement-deF-Mitidieri in
1996 to obtain a priori bounds for solutions of systems.
Two other methods have been used to get the a priori bound:
(i) Blow-up leading to Liouville theorems by Gidas-Spruck in
1981.
(ii) Moving Planes by deF-Lions-Nussbaum in 1982, obtaining
bounds for nonlinearities f (x ,u) with faster growth at infinity.
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BREZIS-TURNER THEOREM

Theorem

Let f (x ,u) be a continuous nonnegative function defined on
Ω× [0,∞) and suppose

limu→∞
f (x ,u)

u
> λ1, uniformly for x ∈ Ω

limu→∞
f (x ,u)

uβ
= 0, uniformly for x ∈ Ω, whereβ =

N + 1
N − 1

.

Then there is a constant K , independent of t ≥ 0, s.t.

‖u‖L∞ ≤ K ,

for all nonnegative solution u ∈ H1
0 of

−∆u = f (x ,u) + t in Ω, u = 0 on ∂Ω (4)
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HARDY INEQUALITY

As said above, the proof relies on an inequality of Hardy,
namely

‖ u
ϕ1
‖Lq ≤ C‖Du‖Lq , ∀ u ∈W 1,q

0 .

Here q > 1 and a ϕ1 is the eigenfunction associated to the first
eigenvalue of (−∆,H1

0 (Ω)). In Brezis-Turner they proceed with

an interpolation of the Hardy inequality (q = 2) with the
Sobolev inequality

‖u‖2∗ ≤ C‖Du‖L2 , ∀ u ∈ H1
0 ,

obtaining the inequality below

‖ u
ϕτ1
‖Lq ≤ C‖Du‖L2 , ∀ u ∈ H1

0 ,

where 1
q = 1

2 −
1−τ

N .
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On the Proof of Brezis-Turner

For the purpose of proving the estimate of Brezis-Turner one
needs the following result which follows from the inequalities
above.

Proposition

Let r0 ∈ (1,∞], r1 ∈ [1,∞) and u ∈ Lr0(Ω)
⋂

W 1,r1
0 . Then for all

τ ∈ [0,1]. we have

u
ϕτ1
∈ Lr (Ω), where

1
r

=
1− τ

r0
+
τ

r1
.

Moreover,
‖ u
ϕτ1
‖Lr ≤ C‖u‖1−τLr0 ‖u‖

τ
W 1,r1

,

where the constant C depends only on τ , r0 and r1.
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BLOW-UP METHOD

The blow-up technique, used by Gidas-Spruck, consists in
assuming, by contradiction, that there is no apriori bound for
the solutions of the differential equation. This implies the
existence of a sequence of solutions

un(x)s.t .‖un‖L∞ →∞

Using this sequence one constructs a sequence of functions
vn(x) defined in the whole RN that converges to a function v ,
solution of a differential equation in RN .
And here comes the interesting point: prove (under the original
hypotheses) that v cannot be the solution of this problem.
Some problems will be solved by this method, if there are
Liouville Theorems available.



INTRODUCTION A PRIORI BOUNDS

LIOUVILLE THEOREMS

The classical Liouville Theorem from Function Theory says that
every bounded entire function is constant. In terms of a
differential equation one has: if (∂/∂z)f (z) = 0 and |f (z)| ≤ C
for all z ∈ C then f (z) = const . Hence, results with similar
contents are nowadays called Liouville Theorems. For instance,
a superharmonic function defined in the whole plane R2, which
is bounded below, is constant. Let us see the case of the
equation

−∆u = up (5)

If the equation is considered in R2, then a non-negative solution
is necessarily identically zero. The case when RN ,N ≥ 3 is
quite distinct.
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LIOUVILLE THEOREMS, cont.

Theorem

Let u be a non-negative C2 function defined in the whole of
RN ,N ≥ 3, such that

−∆u = up (6)

holds in RN . If 0 < p < (N + 2)/(N − 2), then u ≡ 0.

This result was proved by Gidas-Spruck for
1 < p < (N + 2)/(N − 2). A simpler proof using the method of
moving parallel planes was given by Chen-Li.
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LIOUVILLE - in half space

Theorem
Let u ∈ C2(RN

+) ∩ C0(RN
+) be a non- negative function such that{
−∆u = up in RN

+

u(x ′,0) = 0 (7)

If 1 < p ≤ (N + 2)/(N − 2) then u ≡ 0.

It is remarkable that in the case of the half-space the exponent
(N + 2)/(N − 2) is not the right one for theorems of Liouville
type. Indeed, Dancer has proved the following result:

Theorem
Let u ∈ C2(RN

+) ∩ C0(RN
+) be a non- negative bounded solution of the

above problem. If 1 < p < (N + 1)/(N − 3) for N ≥ 4 and 1 < p <∞
for N = 3, then u ≡ 0.
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INSTANTONS

If p = (N + 2)/(N − 2),N ≥ 3, then the equation

−∆u = up (8)

has a two-parameter family of bounded positive solutions:

Uε,x0(x) =

[
ε
√

N(N − 2)

ε2 + |x − x0|2

]N−2
2

,

which are called instantons.
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On the BREZIS-NIRENBERG CRITICAL PROBLEM

The problem 
−∆u = u

N+2
N−2 in Ω,

u > 0 in Ω,
u = 0 on ∂Ω.

for N ≥ 3 has no solution in a starshaped bounded domain
Ω ⊂ RN .
This follows from Pohozaev identity.
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POHOZAEV IDENTITY

Consider the equation

−∆u = f (x ,u) in Ω (9)

Using the multiplier x .∇u, one obtains

−1
2

∫
∂Ω
|∇u|2(x .ν) − (

N
2
− 1)

∫
Ω
|∇u|2 =

∫
∂Ω

F (x ,u)(x , ν) − N
∫

Ω
F (x ,u)−

∫
Ω

∑
Fxj .xj

where F (x ,u) =
∫ u

0 f (x ,u)du
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Applying POHOZAEV IDENTITY

Using the boundary condition
u = 0 on ∂Ω and supposing Ω is star-shaped one obtains

N
∫

Ω
F (x ,u) +

∫ ∑
Fxj .xj − (

N
2
− 1)

∫
Ω
|∇u|2 > 0

Applying it to f (x ,u) = |u|p one concludes that

p <
N + 2
N − 2
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On BREZIS-NIRENBERG CRITICAL PROBLEM-cont

Brezis and Nirenberg proved that existence could be recovered
if one adds a "perturbation", namely, the problem below has a
solution if λ ∈ (0, λ1) in case of N ≥ 4

−∆u = u
N+2
N−2 + λu in Ω,

v > 0 in Ω,
v = 0 on ∂Ω.

In the case N = 3, there is λ0 ∈ (0, λ1) s.t. the above problem
has a solution if λ ∈ (λ0, λ1).
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THE CASE OF THE p-LAPLACIAN CRITICAL

Recall ∆p := div(|∇u|p−2|∇u|)

p∗ =
pN

N − p
Garcia-Peral, Egnell and Guedda-Veron proved a similar result
of the case of the p-Laplacian.

In deF-Gossez-Quorin-Ubilla we have another type of
perturbation that still gives the existence of solution in the
critical case. Namely, the following problem has a solution

(P)


−∆pu = |∇u|p + up∗−1 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

This is consequence of Theorem A below.



INTRODUCTION A PRIORI BOUNDS

EQUATIONS WITH NATURAL GRADIENT

Consider the problem

(P)


−∆pu = g(u)|∇u|p + f (x ,u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

Here 1 < p <∞ and Ω ⊂ RN is a smooth bounded domain. In
the case p = 2 and g ≡ 1, Kazdan-Kramer used the change of
variables v = eu − 1 and transformed the quasilinear problem
(P) into the semilinear one

−∆v = (1 + v)f (x , log(1 + v)) in Ω,
v > 0 in Ω,
v = 0 on ∂Ω.

This can be extended to the general case of (P) in the way we
explain next.
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CHANGE OF VARIABLE

Consider the change of variable

v = A(u)

where A : [0,∞)→ [0,∞) is a C2 diffeomorphism with
A(0) = 0, A(∞) =∞ and A′ > 0.

Clearly u ∈ C1(Ω) with u = 0 on ∂Ω if and only if v ∈ C1(Ω)
with v = 0 on ∂Ω.

So, it follows that u solves (P) if and only if v satisfies

∆pv =
[
(p − 1)A′(u)p−2A′′(u)− g(u)A′(u)p−1] |∇u|p−A′(u)p−1f (x ,u).

The gradient term will disappear if A satisfies

(p − 1)A′′(u) = g(u)A′(u)
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The change of variable, cont.

As said the gradient term will disappear if A satisfies

(p − 1)A′′(u) = g(u)A′(u).

Integrating we obtain

A(s) :=

∫ s

0
e

G(t)
p−1 dt (10)

where G(s) =
∫ s

0 g(t) dt .
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THE EQUIVALENT EQUATION WITHOUT
GRADIENT

With this choice for A, problem (P) for u is equivalent to
problem (Q) for v :

(Q)


−∆pv = h(x , v) in Ω,
v > 0 in Ω,
v = 0 on ∂Ω,

where
h(x , s) := eG(A−1(s))f (x ,A−1(s)). (11)

Next we present a result on the solvability of equation (Q), and
consequently of (P).



INTRODUCTION A PRIORI BOUNDS

SUBCRITICALITY and SUPERLINEARITY

Theorem A (dF-Gossez-Quorin-Ubilla) Assume (HSC), (Hλ1),
(Hm) and (H∞). Then problem (P) has at least one solution.

The first condition is a subcriticality condition and the second
one is a superlinearity at 0.

(HSC) There exists r < p∗ such that

lim
s→∞

f (x , s)eG(s)(∫ s
0 e

G(t)
p−1 dt

)r−1 = 0

uniformly with respect to x ∈ Ω.

(Hλ1) lim sup
s→0

f (x , s)

sp−1 < λ1 uniformly with respect to x ∈ Ω.
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EXAMPLES OF EQUATIONS COVERED by
THEOREM A

(i) −∆pu = p−1
u+1 |∇u|p + up−1(log(u + 1))q, where q > 0 ;

(ii) −∆pu = C|∇u|p + ur−1, where C > 0, and p < r ;

(iii) −∆pu = C|∇u|p + (log(u + 1))r−1, where C > 0, and
p < r .


