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INTRODUCTION

AIM OF THIS TALK

We present some of my results motivated by the work of Brezis.
The talk consists of three parts:

(i) Some history with facts that influenced some of my research.

(il) Results on a priori estimates of solutions of Semilinear
Elliptic problems, starting with the work of Brezis-Turner using
Hardy inequalities, and continuing with the use of blow-up by
Gidas-Spruck and moving planes by deF-Lions-Nussbaum.

(iii) The theorem of Brezis-Nirenberg on a critical problem,
obtaining its solvability by a linear perturbation.

And a recent result of deF-Gossez-Quorin-Ubilla using a
gradient term for perturbation, also in the case of the
p-Laplacian.



INTRODUCTION

SYMPOSIA ON NONLINEAR FUNCTIONAL
ANALYSIS

In 1970 in a meeting of the American Mathematical Society in
Chicago many results in the theory of nonlinear PDE, as well as
in Functional Analysis were presented and collected in a
Proceedings edited by Felix Browder.

Haim Brezis participated presenting the paper
On Some Degenerate Nonlinear Parabolic Equations.

| also participated presenting the paper
On the Extension of Contractions on Normed Spaces
a joint work with Les Karlovitz.
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MY RESEARCH until 1970

(i) Results with Felix Browder and Chaitan Gupta on Monotone
Nonlinear Operators.

(i) Results with Les Karlovitz on the Geometry of Normed
Spaces, including the following:

Theorem

Let E be a normed space with dimension > 3. Consider the radial
projection T : E — E on the unit ball, i.e.

Tu=u if [|u <1, Tu:mif lu |l > 1 (1)

Assume that
| Tu—Tv|<|u—vV|,Yu,veE.

Then E is a Hilbert space.
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CHARACTERIZATIONS OF HILBERT SPACES

Brezis presents 4 characterizations of Hilbert spaces in his book
FUNCTIONAL ANALYSIS, SOBOLEV SPACES and PARTIAL
DIFFERENTIAL EQUATIONS.

By characterization it is meant that for a given normed space E with
norm ||.|| it is possible to define an inner product (, ) s.t.

|ull = (u,u)2,Vue E

Besides the one above he presents 3 additional ones, namely

(i) (Frechet-von Neumann- Jordan) Assume the norm in E satisfies
the parallellogram law. Then E is a Hilbert space.

(i) (Kakutani) Assume E is a normed space of dimension > 3.
Assume that every subspace F of dimension 2 has a projection
operator P : E — F with norm < 1. Then E is a Hilbert space.
(iii)(Lindenstrauss-Tzafriri, 1971). Assume E is a Banach Space s.t.
every closed subspace has a complement. Then E is Hilbertizable,
i.e., there is an equivalent Hilbert norm.
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TWO BOOKS of BREZIS

(i) Analyse fonctionnelle-Theorie et applications , Masson 1983.

(i)Functional Analysis, Sobolev Spaces and Partial Differential
Equations, Springer 2011.
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At Rutgers, 2012
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A PRIORI BOUNDS

The solvability of the equation
—Au=f(x,u) in Q, u=0 on 90 (2)

as well as more general elliptic equations and systems has
been the object of intensive research.

Two methods have been used depending on the special case:
Variational and Topological.

We discuss here the Topological method, via Leray-Schauder
Degree, through Krasnoselskii Theorem.
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KRASNOSELSKII THEOREM

Theorem

LetC be a cone in a Banach space X and T : C — C a compact
mapping such that T(0) = 0. Assume that there are real numbers
0 < r< Randt> 0 such that
(i) x # tTx for 0 <t <1and x € C, ||x|| = r, and
(i) There exists a compact mapping H : Bg x [0,00) — C (where
B, = {x € C:||x|| < p}) such that
(a) H(x,0) = Tx for ||x|| =R,
(b) H(x, t) # x for ||x||=Randt>0
(c) H(x, t) = x has no solution x € Bg fort > ty
Then
io(T,B) =1, ic(T,Bg) =0, ic(T,U) = —1,

where U = {x € C : r < ||x|| < R}, and i; denotes the
Leray-Schauder index. As a consequence T has a fixed point in U.
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Applying KRASNOSELSKII

When applying this result, the main difficulty arises in the
verification of condition

(b) H(x,t) # x for ||x||=Randt>0

which is nothing more than an a priori bound on the solutions of
the equation. It is well known that the existence of a priori
bounds depends on the growth of the function f as u goes to
infinity.

Let us comment on it.
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A PRIORI BOUNDS-THREE TECHNIQUES

A priori bounds for positive solutions of superlinear elliptic
equations (the scalar case), namely

—Au=f(x,u) in Q, u=0 on 90 (3)

was first considered by Brézis-Turner in 1977 using an
inequality due to Hardy.

The same technique was used by Clement-deF-Mitidieri in
1996 to obtain a priori bounds for solutions of systems.

Two other methods have been used to get the a priori bound:
(i) Blow-up leading to Liouville theorems by Gidas-Spruck in
1981.

(ii) Moving Planes by deF-Lions-Nussbaum in 1982, obtaining
bounds for nonlinearities f(x, u) with faster growth at infinity.
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BREZIS-TURNER THEOREM

Theorem

Let f(x, u) be a continuous nonnegative function defined on
Q x [0, 00) and suppose

. f _

limy_, o (XL’I u) > A1, uniformly forx € Q
) _ N1
limy—, - 0, uniformly for x € Q, where § = N1

Then there is a constant K, independent of t > 0, s.t.
Ul < K,
for all nonnegative solution u € H} of

—Au=f(x,u)+tin Q, u=0 on 90 (4)




A PRIORI BOUNDS

HARDY INEQUALITY

As said above, the proof relies on an inequality of Hardy,
namely

u
Il < ClIDulue, ¥ u e W, 9.

Here g > 1 and a 4 is the eigenfunction associated to the first
eigenvalue of (—A, H}(2)). In Brezis-Turner they proceed with

an interpolation of the Hardy inequality (g = 2) with the
Sobolev inequality

|ull2- < C||Dul|;2, ¥ u e H],

obtaining the inequality below

u
| =l < C||Dul|2, ¥ ue H,

T

¥4
1 _1_ 17
Wherea_2 N
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On the Proof of Brezis-Turner

For the purpose of proving the estimate of Brezis-Turner one
needs the following result which follows from the inequalities
above.

Proposition

Letrye (1,00], 1y € [1,00) and u € L(Q) (W, """. Then for all
T € [0, 1]. we have

u 11—
— € L'(Q), where — = T, T
1 r fo r

Moreover,

u 1—
= ller < Cllull % llul
]

where the constant C depends only on t, ry and ry.

-
wh:r o
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BLOW-UP METHOD

The blow-up technique, used by Gidas-Spruck, consists in
assuming, by contradiction, that there is no apriori bound for
the solutions of the differential equation. This implies the
existence of a sequence of solutions

un(x)s.t.||unl|= — oo

Using this sequence one constructs a sequence of functions
Vn(x) defined in the whole RN that converges to a function v,
solution of a differential equation in RN.

And here comes the interesting point: prove (under the original
hypotheses) that v cannot be the solution of this problem.
Some problems will be solved by this method, if there are
Liouville Theorems available.
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LIOUVILLE THEOREMS

The classical Liouville Theorem from Function Theory says that
every bounded entire function is constant. In terms of a
differential equation one has: if (0/0Z)f(z) =0 and |f(z)|] < C
forallze C then f(z) = const. Hence, results with similar
contents are nowadays called Liouville Theorems. For instance,
a superharmonic function defined in the whole plane R?, which
is bounded below, is constant. Let us see the case of the

equation

—Au =P (9)

If the equation is considered in A2, then a non-negative solution
is necessarily identically zero. The case when RN, N > 3 is
quite distinct.
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LIOUVILLE THEOREMS, cont.

Let u be a non-negative C? function defined in the whole of
RN._N > 3, such that
—Au=uP (6)

holds in RN. If0 < p < (N +2)/(N — 2), then u = 0.

This result was proved by Gidas-Spruck for
1<p<(N+2)/(N-2). Asimpler proof using the method of
moving parallel planes was given by Chen-Li.
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LIOUVILLE - in half space

Letu € C3(RY)n C°(RY) be a non- negative function such that

—Au=UP in Ffj\_’
{ u(x’,0)=0 (7)

If1 < p<(N+2)/(N-2) thenu = 0.

It is remarkable that in the case of the half-space the exponent
(N+2)/(N —2) is not the right one for theorems of Liouville
type. Indeed, Dancer has proved the following result:

Letu € C*(RY)n C°(RY) be a non- negative bounded solution of the
above problem. If 1 <p< (N+1)/(N—-3) forN >4 and1 < p < co
for N = 3, then u = 0.
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INSTANTONS

If p=(N+2)/(N—2),N > 3, then the equation

—Au = uP (8)

has a two-parameter family of bounded positive solutions:

5 N(Nz)]Nz_z

UerolX) = | 2 g2

which are called instantons.
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On the BREZIS-NIRENBERG CRITICAL PROBLEM

The problem
N2 o
—Au=unN-2 in Q,
u>0 in Q,
u=20 on 0Q.

for N > 3 has no solution in a starshaped bounded domain
Qc RN,
This follows from Pohozaev identity.
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POHOZAEV IDENTITY

Consider the equation
—Au=f(x,u) in Q (9)
Using the multiplier x.Vu, one obtains

1 N
L L —(—1)/ VUl =
2 Jaq 2 Q

o F(x,u)(x,v) —N/QF(X, u) — /QZFX/XI
where F(x,u) = [y f(x, u)du
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Applying POHOZAEV IDENTITY

Using the boundary condition
u = 00on 02 and supposing Q2 is star-shaped one obtains

N/QF(x,u)Jr/ZFXj.xj—(gl—1)/QWU\2>O

Applying it to f(x, u) = |u|P one concludes that

N+ 2

N-2
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On BREZIS-NIRENBERG CRITICAL PROBLEM-cont

Brezis and Nirenberg proved that existence could be recovered
if one adds a "perturbation”, namely, the problem below has a
solution if A € (0, A1) in case of N > 4

N+2 .
—Au=UuN-2 4+ u in Q,
v>0 in Q,
v=20 on 09.

In the case N = 3, there is \y € (0, \¢) s.t. the above problem
has a solution if A € (Ag, A1).



A PRIORI BOUNDS

THE CASE OF THE p-LAPLACIAN CRITICAL

Recall Ap := div(|VulP~2|Vu|)

L= PN
Garcia-Peral, Egnell and Guedda-Veron proved a similar result
of the case of the p-Laplacian.

In deF-Gossez-Quorin-Ubilla we have another type of
perturbation that still gives the existence of solution in the
critical case. Namely, the following problem has a solution

(P)

u>0 in Q,

—Apu = |VulP +uP=" in Q,
u=20 on 0N.

This is consequence of Theorem A below.
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EQUATIONS WITH NATURAL GRADIENT

Consider the problem

—Apu = g(u)|VulP + f(x,u) in Q,
(P) u>0 in Q,
u=20 on 0NQ.

Here 1 < p < 0o and Q ¢ RN is a smooth bounded domain. In
the case p = 2 and g = 1, Kazdan-Kramer used the change of
variables v = e“ — 1 and transformed the quasilinear problem
(P) into the semilinear one

—Av =1+ v)f(x,log(1+v)) in Q,
v>0 in Q,
v=0 on 0NQ.

This can be extended to the general case of (P) in the way we
explain next.
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CHANGE OF VARIABLE

Consider the change of variable

v =A(u)

where A : [0,00) — [0, 00) is a C? diffeomorphism with
A(0) = 0, A(cc) = oo and A’ > 0.

Clearly u € C'(Q) with u = 0 on 9Q if and only if v € C'(Q)
with v = 0 on 090.

So, it follows that u solves (P) if and only if v satisfies
DoV = [(p— 1A (U)P2A"(u) — g(u)A (u)P~ '] [V ulP—A (u)P~(x, u).

The gradient term will disappear if A satisfies

(p— 1A (u) = g(u)A'(u)
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The change of variable, cont.

As said the gradient term will disappear if A satisfies

(p— DA'(U) = g(u)A(u).

Integrating we obtain

S m
A(s) ::/ er—1 dt (10)
0

where G(s) = [; g(t) dt.
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THE EQUIVALENT EQUATION WITHOUT
GRADIENT

With this choice for A, problem (P) for u is equivalent to
problem (Q) for v:

—Apv = h(x,v) in Q,
(Q) v>0 in Q,

v=0 on 09,
where

h(x, s) := eGATf(x, A71(s)). (11)

Next we present a result on the solvability of equation (Q), and
consequently of (P).
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SUBCRITICALITY and SUPERLINEARITY

Theorem A (dF-Gossez-Quorin-Ubilla) Assume (Hsc), (Hy, ).
(Hm) and (Hx). Then problem (P) has at least one solution.

The first condition is a subcriticality condition and the second
one is a superlinearity at 0.

(Hsc) There exists r < p* such that

G(s)

im f(x,s)e 1

§—00 s G r—
<f0 ep—1dt)

uniformly with respect to x € €.

f(x,s)

sp-1

=0

(Hy,) limsup

s—0

< Ay uniformly with respect to x € Q.
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EXAMPLES OF EQUATIONS COVERED by
THEOREM A

(i) —Dpu = =5 VulP + uP~" (log(u + 1))9, where g > 0 ;

(i) —Apu= C|Vul|P+u~", where C>0,and p < r;
1)

(i) —Apu = C|VulP + (log(u + 1)), where C > 0, and
p<r.



