Topics in Inverse Spectral Problems

Otared Kavian

Université de Versailles (Paris-Saclay) Laboratoire de Mathématiques de Versailles (CNRS, UMR 8100) 45, avenue des États-Unis ; 78035 Versailles Cedex, France. kavian@math.uvsq.fr

We consider a family of inverse spectral problems for self-adjoint elliptci operators. Assuming that $\Omega \subset \mathbb{R}^N$ is a bounded smooth operator, let $a, \rho \in L^{\infty}(\Omega)$ be such that for some $\varepsilon_0 > 0$ we have

$$a(x) \ge \varepsilon_0, \qquad \rho(x) \ge \varepsilon_0 \qquad \text{a.e. in } \Omega.$$

Then for any potential $q \in L^{\infty}(\Omega)$ there exists a family of eigenvalues and eigenfunctions $(\lambda_k, \varphi_k)_{k>1}$ for the eigenvalue problem

$$-\operatorname{div}(a\nabla\varphi_k) + q\varphi_k = \lambda_k \rho \varphi_k \quad \text{in } \Omega, \quad \int_{\Omega} \rho \varphi_k \varphi_j \, dx = \delta_{kj},$$

where δ_{kj} denotes the Kronecker symbol.

Then, denoting by $\psi_k := a \partial \varphi_k / \partial \mathbf{n}$ the normal derivative of the eigenfunction φ_k , we consider the so called *Boundary Spectral Data* associated to the coefficients a, ρ, q as being

$$BSD(a, \rho, q) := \{ (\lambda_k, \psi_k) ; k \ge 1 \}$$

We shall investigate the inverse problem consisting in the following question: if for two sets of coefficients a_j, ρ_j, q_j , for j = 0, 1, one has

$$BSD(a_0, \rho_0, q_0) = BSD(a_1, \rho_1, q_1)$$

what can be said about the coefficients (a_0, ρ_0, q_0) and (a_1, ρ_1, q_1) ?