Inverse and control problems with applications to cancer detection and therapy

Enrique FERNÁNDEZ-CARA Dpto. E.D.A.N. - Univ. of Sevilla

several joint works with
A. DOUBOVA, F. MESTRE
Dpto. E.D.A.N. - Univ. of Sevilla
L. PROUVÉE
Dpto. Matemática - UERJ - Brazil

Dedicated to Prof. L.A. Medeiros on his 90th birthday

Outline

- Background (I): Inverse problems
- Elastography
 - A geometric inverse problem
 - A Calderon-like problem
- Background (II): Control problems
- Therapy strategies
 - An optimal control problem oriented to therapy
 - A controllability problem and an open question
- 5 Additional results and comments

Some words on inverse problems:

- General setting of a direct problem:
 Data (D₀ ∪ D₁) → Results (R) → Observation (additional information) (I)
- A related inverse problem:
 Some data (D₀) + Information (I) → The other data (D₁)

Main questions for the inverse problem:

- Uniqueness: $\mathcal{I} = \mathcal{I}' \Rightarrow \mathcal{D}_1 = \mathcal{D}'_1$?
- Stability: Estimate dist $(\mathcal{D}_1, \mathcal{D}_1')$ in terms of dist $(\mathcal{I}, \mathcal{I}')$
- Reconstruction: Compute (exact or approximately) \mathcal{D}_1 from \mathcal{I}

FIRST IP: identification of the shape of a domain

(a) Direct problem:

Data: Ω , φ and D

Result: the solution u to

(1)
$$\begin{cases} -\Delta u = 0, & x \in \Omega \setminus \overline{D} \\ u = 0, & x \in \partial D; & u = \varphi, & x \in \partial \Omega \end{cases}$$

Information:

(2)
$$\frac{\partial u}{\partial n} = \alpha, \quad x \in \gamma \subset \partial \Omega$$

(b) Inverse problem:

(Partial) data: Ω and φ

(Additional) information: α (on γ)

Goal: Find D such that the solution to (1) satisfies (2)

[Andrieux-et-al 1993], [Alessandrini-et-al 2000 ...], [Kavian 2002], [Alvarez-et-al 2005], [Doubova-EFC-GlezBurgos-Ortega 2006], [Yan-Ma 2008]

Figure: A geometrical inverse problem: identification of the open set D from Ω, φ and the additional information $\frac{\partial u}{\partial u} = \sigma$ on γ

SECOND IP: identification of the conductivity of a dielectric body (Calderón)

(a) Direct problem:

Data: Ω , φ and a = a(x)Result: the solution u to

(1)
$$\begin{cases} -\nabla \cdot (\mathbf{a}(\mathbf{x})\nabla \mathbf{u}) = 0, & \mathbf{x} \in \Omega \\ \mathbf{u} = \varphi, & \mathbf{x} \in \partial \Omega \end{cases}$$

Information:

$$(2) u|_{\omega} = z$$

(b) Inverse problem:

(Partial) data: Ω and φ

(Additional) information: z (in ω)

Goal: Find a such that the solution to (1) satisfies (2)

Applications to tomography ... [Calderón 1980], [Sylvester-Uhlman 1987], [Astala-Paavarinta 2003], ...

The sequel

We consider: IPs of these kinds for the Lamé system

$$u_{tt} - \mu \Delta u - (\lambda + \mu) \nabla (\nabla \cdot u) = 0$$

+ . . .

 $u = (u_1, \dots, u_N)$ is the field of displacements λ, μ are the Lamé coefficients (measure of stiffness)

We assume isotropic homogeneous media and small displacements

Elastography:

A technique to detect elastic properties of tissue

Aspects:

- Three elements: Acoustic waves generator, Captor, Mathematical solver (MR or ultrasound, identification of tissue stiffness)
- Medical fields of application: breast, liver, prostate and other cancers; arteriosclerosis, fibrosis, deep vein thrombosis, ...
- At present: emerging techniques (a very precise description)

First works: [Ophir-et-al 1991], [Muthupillai-et-al 1995], [Sinkus-et-al 2000], [McKnight-et-al 2002], . . .

Many interesting problems in Medicine, Biology, etc. lead to IPs for PDEs of this class: coefficient, source or shape identification

Figure: Classical detection methods in mammography (I): palpation

Figure: Classical detection methods in mammography (II): x-rays

Elastography is better suited than palpation and x-rays techniques:

- Tumors can be far from the surface
- or small
- or may have properties indistinguishable through palpation or *x*-rays

Figure: A breast elastogram. Identification of tissue stiffness

FIRST IP PROBLEM:

a solid tumor (D) inside an elastic tissue region (Ω)

The known data: Ω , T, (u_0, u_1) , μ , λ , φ The system:

$$\begin{cases} u_{tt} - \mu \Delta u - (\lambda + \mu) \nabla (\nabla \cdot u) = 0 & \text{in } \Omega \setminus \overline{D} \times (0, T) \\ u = \varphi & \text{on } \partial \Omega \times (0, T) \\ u = 0 & \text{on } \partial \overline{D} \times (0, T) \\ u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x) & \text{in } \Omega \setminus \overline{D} \end{cases}$$

The observation: $\sigma(u) \cdot n := (\mu(\nabla u + \nabla u^T) + \lambda(\nabla \cdot u)\mathrm{Id.}) \cdot n \text{ on } \gamma \times (0, T)$

The unknown: D

Uniqueness? Reconstruction algorithms and results?

Figure: A geometrical inverse problem: identification of the open set D from Ω, φ and the additional information $\frac{\partial u}{\partial u} = \sigma$ on γ

UNIQUENESS

For i = 0, 1:

$$\begin{cases} u_{tt}^{i} - \mu \Delta u^{i} - (\lambda + \mu) \nabla (\nabla \cdot u^{i}) = 0 & \text{in } \Omega \setminus \overline{D^{i}} \times (0, T) \\ u^{i} = \varphi & \text{on } \partial \Omega \times (0, T) \\ u^{i} = 0 & \text{on } \partial \overline{D^{i}} \times (0, T) \\ u^{i}(x, 0) = u_{0}(x), \quad u_{t}^{i}(x, 0) = u_{1}(x) & \text{in } \Omega \setminus \overline{D^{i}} \end{cases}$$

Two observations: $\alpha^i = \sigma(u^i) \cdot n$ on $\gamma \times (0, T)$

Theorem [Uniqueness]

Assume
$$D^0$$
, $D^1 \subset\subset \Omega$ non-empty and convex, $T > T_*(\Omega, \gamma)$
Then $\alpha^0 = \alpha^1 \Rightarrow D^0 = D^1$

The key point in the proof: a unique continuation property

(For $\mu=\mu(x)$ and/or $\lambda=\lambda(x)$ other uniqueness results can be applied: Escauriaza, 2005; Nakamura-Wang, 2006; Imanuvilov-Yamamoto, 2012, . . .)

RECONSTRUCTION

The usual technique: solve a related extremal problem

The case of a ball

$$\widetilde{\alpha} = \widetilde{\alpha}(x, t)$$
 is given

Find x_0 and r such that $(x_0, r) \in X_b$

$$J(x_0, r) \leq J(x'_0, r') \quad \forall (x'_0, r') \in X_b, \quad (x_0, r) \in X_b$$

Here:

$$X_b := \{ (x_0, r) \in \mathbb{R}^4 : \overline{B}(x_0; r) \subset \Omega, r > 0 \}$$

$$J(\mathbf{x_0}, \mathbf{r}) := \frac{1}{2} \iint_{\gamma \times (0, T)} |\alpha[\mathbf{x_0}, \mathbf{r}] - \widetilde{\alpha}|^2 \, ds \, dt$$

$$\alpha[x_0, r] := \sigma(u) \cdot n \text{ on } \gamma \times (0, T)$$

The difficulties: 3D, lack of sensitivity
The algorithm: Augmented Lagrangian + DIRECTNoScal

- Augmented Lagrangian → a sequence of extremal problems with only side constraints
- DIRECTNoScal: a variant of the DIRECT algorithm, a dividing rectangle strategy

-2.139917695 -2.469135802 -2.713001067 0.8166666667

```
x0cal = -1.981405274

y0cal = -2.225232904

z0cal = -2.148084171

rcal = 0.9504115226
```

Elastography

A geometric inverse problem: reconstruction

Figure: Initial mesh. Points: 829, tetrahedra: 4023, faces: 8406, edges: 5210, boundary faces: 720, boundary edges: 1080

A geometric inverse problem: reconstruction

Figure: Cost evolution versus number of iterates (left) and detail (right).

Elastography

A geometric inverse problem: reconstruction

Figure: Desired and computed configuration

SECOND IP PROBLEM:

the tumor is elastic (very different μ and λ)

The known data: Ω , T, (u_0, u_1) , φ

The system:

$$\left\{ \begin{array}{ll} u_{tt} - \nabla \cdot \left(\mu(\nabla u + \nabla u^T) + \lambda(\nabla \cdot u) \mathrm{Id.} \right) = f(x,t) & \text{in } \Omega \times (0,T) \\ u = \varphi & \text{on } \partial\Omega \times (0,T) \\ u(x,0) = u_0(x), \quad u_t(x,0) = u_1(x) & \text{in } \Omega \end{array} \right.$$

The observation: $\sigma(u) \cdot n := (\mu(\nabla u + \nabla u^T) + \lambda(\nabla \cdot u)\mathrm{Id.}) \cdot n \text{ on } \gamma \times (0, T)$

The unknowns: $\mu = \mu(x)$ and $\lambda = \lambda(x)$

More difficult – Reconstruction algorithms and results?

RECONSTRUCTION

Assume $f, f_t \in L^2(Q)^N$, $u_0 = 0$, $u_1 \in H_0^1(\Omega)^N$, $\Upsilon \in L^2(\Sigma)^N$ Introduce a related (direct) extremal problem (R > 0 is given):

$$\left\{ \begin{array}{l} \mathsf{Minimize} \ \mathit{I}(\mu,\lambda) \\ \mathsf{Subject to} \ (\mu,\lambda) \in \mathbb{K}(\mathit{R}) \end{array} \right.$$

$$I(\mu, \lambda) := \frac{1}{2} \int_0^T \|\sigma(u) \cdot n\|_{\gamma} - \Upsilon\|^2 dt$$

$$\mathbb{K}(R) = \{ (\mu, \lambda) \in \mathbb{BV}(\Omega), \ \alpha \le \mu, \lambda \le \beta, \ TV(\mu), TV(\lambda) \le R \}$$

Theorem

For all R > 0 there exists at least one solution (μ_R, λ_R) .

Idea the proof:

- A minimizing sequence (μ_n, λ_n) converges weakly-* in $\mathbb{BV}(\Omega)$, strongly in $L^p(\Omega)$ for all $p < +\infty$
- The associated $(u_n, u_{n,t}, u_{n,tt})$ converge weakly-*
- $\nabla u_n \in \text{compact set in } L^2(Q)$ (much more in fact!) A delicate point Implied by Meyers' estimates together with interpolation results, [Tartar]

A NUMERICAL EXPERIMENT, FIXED λ

The domain and the mesh

Figure: Number of nodes: 3629 - Number of triangles: 7056

TEST 1 Starting: $\mu = 5$ Target: $\mu = 10$ in D, $\mu = 1$ outside

Figure: The target μ

Elastography A Calderon-like problem

The algorithm: Augmented Lagrangian + L-BFGS (limited memory quasi-Newton, Broyden, Fletcher, Goldfarb and Shanno) Final cost $\sim 9.6 \times 10^{-8}$, 158 comp. of the cost, 78 comp. of the gradient.

Figure: The computed μ

TEST 2 Starting: $\mu = 5$ Target: $\mu = 10$ in $D_1 \cup D_2$, $\mu = 1$ outside

Figure: The target μ

Elastography A Calderon-like problem

The algorithm: Augmented Lagrangian + L-BFGS Final cost $\sim 9.6 \times 10^{-8}$, 180 comp. of the cost, 80 comp. of the gradient.

Figure: The computed μ

Figure: log of the cost versus number of iterates. Case 1 (left) and Case 2 (right).

CONTROL PROBLEMS

What is usual: act to get good (or the best) results for

$$\left\{ \begin{array}{l} E(U) = F \\ + \dots \end{array} \right.$$

What is easier? Solving? Controlling?

Two classical approaches:

- Optimal control
- Controllability

OPTIMAL CONTROL

A general optimal control problem

Minimize
$$J(v)$$

Subject to $v \in \mathcal{V}_{ad}, \ y \in \mathcal{Y}_{ad}, \ (v,y)$ satisfies
$$E(y) = F(v) + \dots \tag{S}$$

Main questions: ∃, uniqueness/multiplicity, characterization, computation, . . .

We could also consider similar bi-objective optimal control:

```
 \begin{cases} \text{"Minimize" } J_1(\mathbf{v}), J_2(\mathbf{v}) \\ \text{Subject to } \mathbf{v} \in \mathcal{V}_{ad}, \dots \end{cases}
```

A lot of contributions: [Pontryaguin, J.-L. Lions, Kunisch, Troltzsch, ...]

CONTROLLABILITY

A null controllability problem

Find
$$(v, y)$$

Such that $v \in \mathcal{V}_{ad}$, (v, y) satisfies (ES) , $y(T) = 0$

with $y:[0,T]\mapsto H$,

$$E(y) \equiv y_t + A(y) = F(v) + \dots$$
 (ES)

Again many interesting questions: ∃, uniqueness/multiplicity, characterization, computation, . . .

A very rich subject for PDEs, see [Russell, J.-L. Lions, Coron, Zuazua, ...]

Control oriented to therapy

A general tumor growth model

$$\begin{cases} y_t + Ay = B(y, \mathbf{v}) \\ + \dots \end{cases}$$

 $y = (y_1, \dots, y_n)$ is (for instance) a *n*-tuple of cell densities $v = (v_1, \dots, v_m)$ is the therapy strategy (a radiation, a drug, a surgery, ...)

Very usually: $B(\cdot, \cdot)$ is bilinear!

We may ask v either

- To maximize a benefit (optimal control)
- Or lead y to a desired state (controllability)

Maximizing survival times with radiotherapy actions

AN OPTIMAL CONTROL PROBLEM

A) Pre-therapy:

$$\begin{cases} & C_{0,t} & = & D\Delta C_0 + \rho (1 - C_0) C_0, & \text{in } C_0 := \Omega \times (0, t_1), \\ & C_0(x,0) & = & c_0(x), & x \in \Omega, \\ & \frac{\partial C_0}{\partial \nu} & = & 0, & \text{on } \Sigma_0 := \partial \Omega \times (0, t_1). \end{cases}$$
 (1)

B) *j-th therapy* for j = 1, 2, ..., n - 1:

$$\begin{cases}
C_{j,t} = D\Delta C_j + \rho (1 - C_j) C_j, & \text{in } Q_j := \Omega \times (t_j, t_{j+1}), \\
C_j(x, t_j) = S(d_j(x)) C_{j-1}(x, t_j), & x \in \Omega, \dots
\end{cases} (2)$$

Here: $S(d_i) := e^{-\alpha_t d_j - \beta_t d_j^2}$

C) Post-therapy:

$$\begin{cases}
C_{n,t} = D\Delta C_n + \rho (1 - C_n) C_n, & \text{in } Q_n := \Omega \times (t_n, +\infty), \\
C_n(x, t_n) = S(d_n(x)) C_{n-1}(x, t_n), & x \in \Omega, \dots
\end{cases} (3)$$

The state: $(C_0, C_1, \dots C_n)$ (normalized cell densities, $0 \le C_j \le 1$) The control: $(t_1, \dots, t_n; d_1, \dots, d_n)$

AN OPTIMAL CONTROL PROBLEM

Maximize

$$T_*(t_1,\ldots,t_n;d_1,\ldots,d_n) := \inf\{ T \in \mathbb{R}_+ : \int_{\Omega} C(x,T^+) dx > M_* \}$$

Subject to $(t_1, \ldots, t_n; d_1, \ldots, d_n) \in \mathcal{U}_{ad}$

$$\mathcal{U}_{ad} := \{ (\boldsymbol{t}_1, \dots, \boldsymbol{t}_n; \boldsymbol{d}_1, \dots, \boldsymbol{d}_n) \in \mathbb{R}^n \times L^2(\Omega)^n : \\ 0 \le \underline{\boldsymbol{t}}_1 \le \dots \le \underline{\boldsymbol{t}}_n \le \tilde{T}, \quad 0 \le \underline{\boldsymbol{d}}_j \le \boldsymbol{d}_* \text{ a.e.}, \\ \alpha_t \sum_{i=1}^n \underline{\boldsymbol{d}}_j + \beta_t \sum_{i=1}^n |\underline{\boldsymbol{d}}_j|^2 \le E_* \text{ a.e.} \},$$

Difficulties:

- Bilinear action of the control, acting on initial data at each t_j (instantaneous, Dirac)
- Possibly nonregular functional

Illustration of the process:

Figure: What we expect to get ...

Maximize

$$T_*(t_1, \ldots, t_n; d_1, \ldots, d_n) := \inf \{ T \in \mathbb{R}_+ : \int_{\Omega} C(x, T^+) dx > M_* \}$$

Subject to $(t_1, \ldots, t_n; d_1, \ldots, d_n) \in \mathcal{U}_{ad}$

An existence result:

Theorem [existence of optimal control]

Assume: $0 < M_* < |\Omega|$. Then: there exists at least one optimal control.

Idea of the proof:

- $\forall (t_1, \dots, t_n; d_1, \dots, d_n) \in \mathcal{U}_{ad}: \{T: \int_{\Omega} C(x, T^+) dx > M_*\} \neq \emptyset$ and $T_*(t_1, \dots, t_n; d_1, \dots, d_n)$ makes sense
- \mathcal{U}_{ad} is bounded, closed and convex
- $(t_1, \ldots, t_n; d_1, \ldots, d_n) \mapsto T_*(t_1, \ldots, t_n; d_1, \ldots, d_n)$ is u.s.c.

Hence, ...

Optimal control oriented to therapy Maximizing survival times with radiotherapy actions

A numerical experiment in a simplified but realistic situation:

Fixed times t_i , free and constant d_i ; n = 40

Monday	Tuesday	Wednesday	Thursday	Friday	Sat	Sun
		Х	Х	Х		•
X	X	Х	X	Х		
Х	X	Х	X	Х		
Х	X	Х	X	Χ		
Х	Х	Х	Х	Х		•
Х	X	Х	X	Х		
X	X	Х	X	Х		
X	X	Х	X	Х		
Х	Х	•	•	•		

Table: Treatment with 40 doses in 8 weeks.

Cycle	4 weeks	5 weeks	6 weeks	7 weeks	8 weeks
C-dose	179.085	195.752	209.945	226.501	243.050
SQP	179.086*	195.752*	209.945*	226.502*	243.050*
AS	179.010	195.750	209.945	226.499	243.048
IP	178.983	195.666	209.866	226.418	243.047

Table: Comparisons of the computed survival times for various cycle durations. "C-dose" means all $d_j = d_{\rm st.}$; "SQP" means sequential quadratic programming algorithm; "AS" means active-set algorithm; "IP" means interior point algorithm.

Figure: The best 40 doses found with the SQP algorithm (quasi-constant distribution).

Figure: Evolution in time of the tumor size – 40 doses.

Figure: The evolution in time of the density of tumor cells (3D views) – 40 doses; pre-therapy and therapy.

Figure: The evolution in time of the density of tumor cells (3D views) – 40 doses; post-therapy.

Figure: The evolution in time of the density of tumor cells (3D views) – 40 doses; global evolution.

AN EXACT CONTROLLABILITY PROBLEM

An idealized model:

$$\begin{cases} c_t - \Delta c = (\mathbf{v} \mathbf{1}_{\omega}) c, & (x, t) \in Q \\ c(x, 0) = c_0(x), & x \in \Omega, \dots \end{cases}$$

c: the cancer cell population v: the radiotherapy action The exact controllability problem: Find v such that $c(x, T) \equiv \overline{c}(x, T)$ (\overline{c} is a fixed solution, another cell population)

Reformulation as a null controllability problem: $c = \overline{c} + y$, $c_0 = \overline{c}(\cdot, 0) + y_0$

$$\begin{cases} y_t - \Delta y = (v_1^{\omega})(\overline{c} + y), & (x, t) \in Q \\ y(x, 0) = y_0(x), & x \in \Omega, \dots \end{cases}$$

The goal is now: Find v such that $y(x, T) \equiv 0$

For interesting applications:

$$\overline{c}(\cdot,0), c_0 \geq 0, \ \overline{c}(\cdot,0), c_0 \not\equiv 0, \ y_0 = c_0 - \overline{c}(\cdot,0) \geq 0 \ (large)$$

Exact controllability to the trajectories oriented to therapy Cell populations determined by radiotherapy actions

What we pretend:

Figure: The desired, the uncontrolled and the controlled trajectories.

Exact controllability to the trajectories oriented to therapy Cell populations determined by radiotherapy actions

$$\begin{cases} y_t - \Delta y = (v \cdot 1_\omega)(\overline{c} + y), & (x, t) \in Q \\ y(x, 0) = y_0(x), & x \in \Omega, \dots \end{cases}$$

Goal: Find v such that $y(x, T) \equiv 0$

Note: we can assume that $\overline{c} \ge 2\delta > 0$ in $\omega \times (0, T)$

A local result:

Theorem [Local controllability; Khapalov, 1990's]

 $\exists \varepsilon > 0$ such that $y_0 > 0$, $||y_0||_{\ell^2} < \varepsilon \Rightarrow \mathsf{OK}$

For the proof, solve the NC problem for

$$\begin{cases} y_t - \Delta y = \mathbf{u} \mathbf{1}_{\omega}, & (x, t) \in Q \\ y(x, 0) = y_0(x), & x \in \Omega, \dots \end{cases}$$

Then take $\mathbf{v} := \mathbf{u}/(\overline{c} + \mathbf{y})$ in $\omega \times (0, T)$ \mathbf{v}_0 small $\Rightarrow \mathbf{v}$ small $\Rightarrow \mathbf{v} \geq -\delta$ in $\omega \times (0, T) \Rightarrow \overline{c} + \mathbf{v} \geq \delta$ in $\omega \times (0, T)$

Exact controllability to the trajectories oriented to therapy Cell populations determined by radiotherapy actions

$$\begin{cases} y_t - \Delta y = (v 1_\omega)(\overline{c} + y), & (x, t) \in Q \\ y(x, 0) = y_0(x), & x \in \Omega, \dots \end{cases}$$

Goal: Find v such that $y(x, T) \equiv 0$

An open problem: NC for large y_0 ?

It would suffice: global approximate controllability, i.e.

For small $\varepsilon > 0$, find \mathbf{v}_{ε} such that $\|\mathbf{y}(\cdot, T)\|_{L^2} \le \varepsilon$

Unknown

A related question:

$$\begin{cases} y_t - \Delta y = \mathbf{u} \mathbf{1}_{\omega}, & (x, t) \in Q \\ y(x, 0) = y_0(x), & x \in \Omega, \dots \end{cases}$$

For small $\varepsilon > 0$, $\delta > 0$, find $u_{\varepsilon,\delta}$ such that

$$\|\mathbf{y}(\cdot,T)\|_{L^2} \leq \varepsilon, \ \mathbf{y} \geq -\delta \ \text{in} \ \omega \times (0,T)$$

Also unknown – Note: false for $\delta = 0!$

More results

IN PROGRESS:

- Calderón-like IPs for 3D Lamé systems, with F. Mestre
- Radiotherapy optimal strategies for more complex systems, with L. Prouvée
- Optimal chemotherapy techniques for spherical tumors, with M. Cavalcanti and A.L. Ferreira

Additional results and comments

REFERENCES:

DOUBOVA, A., FERNÁNDEZ-CARA, E. Some geometric inverse problems for the linear wave equation, *Inverse Problems and Imaging*, Volume 9, No. 2, 2015, 371–393.

DOUBOVA, A., FERNÁNDEZ-CARA, E. Some geometric inverse problems for the Lamé system with applications in elastography, submitted.

FERNÁNDEZ-CARA, E., MESTRE, F. On some inverse problems arising in Elastography, *Inverse Problems*, 28 (2012), 085001 (15 pp.)

FERNÁNDEZ-CARA, E., MESTRE, F. An inverse problem in Elastography involving Lamé systems, *submitted*.

Additional results and comments

REFERENCES (Cont.):

FERNÁNDEZ-CARA, E., PROUVÉE, L.

Optimal control of mathematical models for the radiotherapy of gliomas: the scalar case.

Comp. Appl. Math., DOI 10.1007/s40314-016-0366-0.

FERNÁNDEZ-CARA, E., PROUVÉE, L.

Optimal control of a two-equation model of radiotherapy, in preparation.

THANK YOU VERY MUCH ...

AND CONGRATULATIONS TO PROF. LUIS ADAUTO !!! ...