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Some general ideas
Direct and inverse problems for PDEs

Some words on inverse problems:

General setting of a direct problem:
Data (D0 ∪D1)→ Results (R)→ Observation (additional information) (I)

A related inverse problem:
Some data (D0) + Information (I)→ The other data (D1)

Main questions for the inverse problem:

Uniqueness: I = I′ ⇒ D1 = D′1?

Stability: Estimate dist (D1,D′1) in terms of dist (I, I′)
Reconstruction: Compute (exact or approximately) D1 from I
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Some general ideas
A first IP: solid detection

FIRST IP: identification of the shape of a domain
(a) Direct problem:

Data: Ω, ϕ and D
Result: the solution u to

(1)

{
−∆u = 0, x ∈ Ω \ D
u = 0, x ∈ ∂D; u = ϕ, x ∈ ∂Ω

Information:

(2)
∂u
∂n

= α, x ∈ γ ⊂ ∂Ω

(b) Inverse problem:
(Partial) data: Ω and ϕ
(Additional) information: α (on γ)
Goal: Find D such that the solution to (1) satisfies (2)

[Andrieux-et-al 1993], [Alessandrini-et-al 2000 . . . ], [Kavian 2002],
[Alvarez-et-al 2005], [Doubova-EFC-GlezBurgos-Ortega 2006],
[Yan-Ma 2008]
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Some general ideas
A first IP: solid detection

Figure: A geometrical inverse problem: identification of the open set D from Ω, ϕ and
the additional information ∂u

∂ν
= σ on γ
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Some general ideas
A second IP: Calderon’s problem

SECOND IP: identification of the conductivity of a dielectric body (Calderón)
(a) Direct problem:

Data: Ω, ϕ and a = a(x)
Result: the solution u to

(1)

{
−∇ · (a(x)∇u) = 0, x ∈ Ω
u = ϕ, x ∈ ∂Ω

Information:

(2) u|ω = z

(b) Inverse problem:
(Partial) data: Ω and ϕ
(Additional) information: z (in ω)
Goal: Find a such that the solution to (1) satisfies (2)

Applications to tomography . . .
[Calderón 1980], [Sylvester-Uhlman 1987], [Astala-Paavarinta 2003], . . .
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The sequel

We consider: IPs of these kinds for the Lamé system

utt − µ∆u − (λ+ µ)∇(∇ · u) = 0
+ . . .

u = (u1, . . . , uN) is the field of displacements
λ, µ are the Lamé coefficients (measure of stiffness)

We assume isotropic homogeneous media and small displacements
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Motivation and description

Elastography:

A technique to detect elastic properties of tissue

Aspects:

Three elements: Acoustic waves generator, Captor, Mathematical solver
(MR or ultrasound, identification of tissue stiffness)

Medical fields of application: breast, liver, prostate and other cancers;
arteriosclerosis, fibrosis, deep vein thrombosis, . . .

At present: emerging techniques (a very precise description)

First works: [Ophir-et-al 1991], [Muthupillai-et-al 1995], [Sinkus-et-al 2000],
[McKnight-et-al 2002], . . .

Many interesting problems in Medicine, Biology, etc. lead to IPs for PDEs of
this class: coefficient, source or shape identification
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Motivation and description

Figure: Classical detection methods in mammography (I): palpation
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Motivation and description

Figure: Classical detection methods in mammography (II): x-rays

Elastography is better suited than palpation and x-rays techniques:

— Tumors can be far from the surface
— or small
— or may have properties indistinguishable through palpation or x-rays
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Motivation and description

Figure: A breast elastogram. Identification of tissue stiffness
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Elastography
A geometric inverse problem

FIRST IP PROBLEM:
a solid tumor (D) inside an elastic tissue region (Ω)

The known data: Ω, T , (u0, u1), µ, λ, ϕ
The system:

utt − µ∆u − (λ+ µ)∇(∇ · u) = 0 in Ω \ D × (0,T )
u = ϕ on ∂Ω× (0,T )
u = 0 on ∂D × (0,T )

u(x , 0) = u0(x), ut (x , 0) = u1(x) in Ω \ D

The observation: σ(u) · n :=
(
µ(∇u +∇uT ) + λ(∇ · u)Id.

)
· n on γ × (0,T )

The unknown: D

Uniqueness? Reconstruction algorithms and results?
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Elastography
A geometric inverse problem

Figure: A geometrical inverse problem: identification of the open set D from Ω, ϕ and
the additional information ∂u

∂ν
= σ on γ
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Elastography
A geometric inverse problem: uniqueness

UNIQUENESS
For i = 0, 1:

u i
tt − µ∆u i − (λ+ µ)∇(∇ · u i ) = 0 in Ω \ Di × (0,T )

u i = ϕ on ∂Ω× (0,T )

u i = 0 on ∂Di × (0,T )

u i (x , 0) = u0(x), u i
t (x , 0) = u1(x) in Ω \ Di

Two observations: αi = σ(u i ) · n on γ × (0,T )

Theorem [Uniqueness]

Assume D0,D1 ⊂⊂ Ω non-empty and convex, T > T∗(Ω, γ)
Then α0 = α1 ⇒ D0 = D1

The key point in the proof: a unique continuation property

(For µ = µ(x) and/or λ = λ(x) other uniqueness results can be applied:
Escauriaza, 2005; Nakamura-Wang, 2006; Imanuvilov-Yamamoto, 2012, . . . )
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Elastography
A geometric inverse problem: reconstruction

RECONSTRUCTION
The usual technique: solve a related extremal problem

The case of a ball

α̃ = α̃(x , t) is given

Find x0 and r such that (x0, r) ∈ Xb

J(x0, r) ≤ J(x ′0, r
′) ∀(x ′0, r

′) ∈ Xb, (x0, r) ∈ Xb

Here:
Xb := { (x0, r) ∈ R4 : B(x0; r) ⊂ Ω, r > 0 }

J(x0, r) :=
1
2

∫∫
γ×(0,T )

|α[x0, r ]− α̃|2 ds dt

α[x0, r ] := σ(u) · n on γ × (0,T )
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Elastography
A geometric inverse problem: reconstruction

The difficulties: 3D, lack of sensitivity
The algorithm: Augmented Lagrangian + DIRECTNoScal

Augmented Lagrangian→ a sequence of extremal problems with only
side constraints

DIRECTNoScal: a variant of the DIRECT algorithm, a dividing rectangle
strategy
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Elastography
A geometric inverse problem: reconstruction

Test: T = 5,
u01 = 10x , u02 = 10y , u03 = 10z
u11 = 0, u12 = 0, u13 = 0
ϕ1 = 10x , ϕ2 = 10y , ϕ3 = 10z

x0des = -2, y0des = -2, z0des = -2, rdes = 1

x0ini = 0, y0ini = 0, z0des = 0, rini = 0.6

NLopt (AUGLAG + DIRECTNoScal), No Iter = 1005, FreeFem++:

-2.139917695 -2.469135802 -2.713001067 0.8166666667

x0cal = -1.981405274
y0cal = -2.225232904
z0cal = -2.148084171
rcal = 0.9504115226
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Elastography
A geometric inverse problem: reconstruction

Figure: Initial mesh. Points: 829, tetrahedra: 4023, faces: 8406, edges: 5210,
boundary faces: 720, boundary edges: 1080
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Elastography
A geometric inverse problem: reconstruction
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Figure: Cost evolution versus number of iterates (left) and detail (right).
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Elastography
A geometric inverse problem: reconstruction

Figure: Desired and computed configuration
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Elastography
A Calderon-like problem

SECOND IP PROBLEM:
the tumor is elastic (very different µ and λ)

The known data: Ω, T , (u0, u1), ϕ
The system: utt −∇ ·

(
µ(∇u +∇uT ) + λ(∇ · u)Id.

)
= f (x , t) in Ω× (0,T )

u = ϕ on ∂Ω× (0,T )
u(x , 0) = u0(x), ut (x , 0) = u1(x) in Ω

The observation: σ(u) · n :=
(
µ(∇u +∇uT ) + λ(∇ · u)Id.

)
· n on γ × (0,T )

The unknowns: µ = µ(x) and λ = λ(x)

More difficult – Reconstruction algorithms and results?
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Elastography
A Calderon-like problem

RECONSTRUCTION
Assume f , ft ∈ L2(Q)N , u0 = 0, u1 ∈ H1

0 (Ω)N , Υ ∈ L2(Σ)N

Introduce a related (direct) extremal problem (R > 0 is given):{
Minimize I(µ, λ)

Subject to (µ, λ) ∈ K(R)

I(µ, λ) :=
1
2

∫ T

0
‖σ(u) · n

∣∣
γ
−Υ‖2 dt

K(R) = { (µ, λ) ∈ BV(Ω), α ≤ µ, λ ≤ β, TV (µ),TV (λ) ≤ R }

Theorem

For all R > 0 there exists at least one solution (µR , λR).

Idea the proof:

A minimizing sequence (µn, λn) converges weakly-∗ in BV(Ω), strongly
in Lp(Ω) for all p < +∞
The associated (un, un,t , un,tt ) converge weakly-∗
∇un ∈ compact set in L2(Q) (much more in fact!) – A delicate point
Implied by Meyers’ estimates together with interpolation results, [Tartar]
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Elastography
A Calderon-like problem

A NUMERICAL EXPERIMENT, FIXED λ
The domain and the mesh

Figure: Number of nodes: 3629 – Number of triangles: 7056
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Elastography
A Calderon-like problem

TEST 1
Starting: µ = 5 Target: µ = 10 in D, µ = 1 outside

Figure: The target µ
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Elastography
A Calderon-like problem

The algorithm: Augmented Lagrangian + L-BFGS
(limited memory quasi-Newton, Broyden, Fletcher, Goldfarb and Shanno)
Final cost ∼ 9.6× 10−8, 158 comp. of the cost, 78 comp. of the gradient.

Figure: The computed µ
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Elastography
A Calderon-like problem

TEST 2
Starting: µ = 5 Target: µ = 10 in D1 ∪ D2, µ = 1 outside

Figure: The target µ
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Elastography
A Calderon-like problem

The algorithm: Augmented Lagrangian + L-BFGS
Final cost ∼ 9.6× 10−8, 180 comp. of the cost, 80 comp. of the gradient.

Figure: The computed µ
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Elastography
A Calderon-like problem

Figure: log of the cost versus number of iterates. Case 1 (left) and Case 2 (right).
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Control issues
Optimal control and controllability

CONTROL PROBLEMS

What is usual: act to get good (or the best) results for{
E(U) = F
+ . . .

What is easier? Solving? Controlling?

Two classical approaches:

Optimal control

Controllability
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Control issues
Optimal control

OPTIMAL CONTROL

A general optimal control problem

Minimize J(v)
Subject to v ∈ Vad , y ∈ Yad , (v , y) satisfies

E(y) = F (v) + . . . (S)

Main questions: ∃, uniqueness/multiplicity, characterization, computation, . . .

We could also consider similar bi-objective optimal control:{
"Minimize" J1(v), J2(v)
Subject to v ∈ Vad , . . .

A lot of contributions: [Pontryaguin, J.-L. Lions, Kunisch, Troltzsch, . . . ]
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Control issues
Optimal control

CONTROLLABILITY

A null controllability problem

Find (v , y)
Such that v ∈ Vad , (v , y) satisfies (ES), y(T ) = 0

with y : [0,T ] 7→ H,

E(y) ≡ yt + A(y) = F (v) + . . . (ES)

Again many interesting questions: ∃, uniqueness/multiplicity,
characterization, computation, . . .

A very rich subject for PDEs, see [Russell, J.-L. Lions, Coron, Zuazua, . . . ]
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Control issues
Control oriented to therapy

A general tumor growth model{
yt + Ay = B(y , v)
+ . . .

y = (y1, . . . , yn) is (for instance) a n-tuple of cell densities
v = (v1, . . . , vm) is the therapy strategy (a radiation, a drug, a surgery, . . . )

Very usually: B(· , ·) is bilinear!

We may ask v either

To maximize a benefit (optimal control)

Or lead y to a desired state (controllability)
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Optimal control oriented to therapy
Maximizing survival times with radiotherapy actions

AN OPTIMAL CONTROL PROBLEM
A) Pre-therapy:

C0,t = D∆C0 + ρ (1− C0) C0, in Q0 := Ω× (0, t1),
C0(x , 0) = c0(x), x ∈ Ω,

∂C0

∂ν
= 0, on Σ0 := ∂Ω× (0, t1).

(1)

B) j -th therapy for j = 1, 2, . . . , n − 1:{
Cj,t = D∆Cj + ρ (1− Cj ) Cj , in Qj := Ω× (tj , tj+1),

Cj (x , tj ) = S(dj (x))Cj−1(x , tj ), x ∈ Ω, . . .
(2)

Here: S(dj ) := e−αt dj−βt d
2
j

C) Post-therapy:{
Cn,t = D∆Cn + ρ (1− Cn) Cn, in Qn := Ω× (tn,+∞),

Cn(x , tn) = S(dn(x))Cn−1(x , tn), x ∈ Ω, . . .
(3)

The state: (C0,C1, . . .Cn) (normalized cell densities, 0 ≤ Cj ≤ 1)
The control: (t1, . . . , tn; d1, . . . , dn)
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Optimal control oriented to therapy
Maximizing survival times with radiotherapy actions

AN OPTIMAL CONTROL PROBLEM
Maximize

T∗(t1, . . . , tn; d1, . . . , dn) := inf {T ∈ R+ :

∫
Ω

C(x ,T +) dx > M∗ }

Subject to (t1, . . . , tn; d1, . . . , dn) ∈ Uad

Uad := { (t1, . . . , tn; d1, . . . , dn) ∈ Rn × L2(Ω)n :

0 ≤ t1 ≤ . . . ≤ tn ≤ T̃ , 0 ≤ dj ≤ d∗ a.e.,

αt

n∑
j=1

dj + βt

n∑
j=1

|dj |2 ≤ E∗ a.e. },

Difficulties:

Bilinear action of the control, acting on initial data at each tj
(instantaneous, Dirac)

Possibly nonregular functional
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Optimal control oriented to therapy
Maximizing survival times with radiotherapy actions

Illustration of the process:
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Figure: What we expect to get . . .
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Optimal control oriented to therapy
Maximizing survival times with radiotherapy actions

Maximize

T∗(t1, . . . , tn; d1, . . . , dn) := inf {T ∈ R+ :

∫
Ω

C(x ,T +) dx > M∗ }

Subject to (t1, . . . , tn; d1, . . . , dn) ∈ Uad

An existence result:

Theorem [existence of optimal control]

Assume: 0 < M∗ < |Ω|. Then: there exists at least one optimal control.

Idea of the proof:

∀(t1, . . . , tn; d1, . . . , dn) ∈ Uad : {T :
∫

Ω
C(x ,T +) dx > M∗ } 6= ∅

and T∗(t1, . . . , tn; d1, . . . , dn) makes sense

Uad is bounded, closed and convex

(t1, . . . , tn; d1, . . . , dn) 7→ T∗(t1, . . . , tn; d1, . . . , dn) is u.s.c.

Hence, . . .
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Optimal control oriented to therapy
Maximizing survival times with radiotherapy actions

A numerical experiment in a simplified but realistic situation:
Fixed times tj , free and constant dj ; n = 40

Monday Tuesday Wednesday Thursday Friday Sat Sun
· · X X X · ·
X X X X X · ·
X X X X X · ·
X X X X X · ·
X X X X X · ·
X X X X X · ·
X X X X X · ·
X X X X X · ·
X X · · · · ·

Table: Treatment with 40 doses in 8 weeks.
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Optimal control oriented to therapy
Maximizing survival times with radiotherapy actions

A numerical experiment in a simplified but realistic situation:

Cycle 4 weeks 5 weeks 6 weeks 7 weeks 8 weeks
C-dose 179.085 195.752 209.945 226.501 243.050
SQP 179.086∗ 195.752∗ 209.945∗ 226.502∗ 243.050∗

AS 179.010 195.750 209.945 226.499 243.048
IP 178.983 195.666 209.866 226.418 243.047

Table: Comparisons of the computed survival times for various cycle durations.
“C-dose" means all dj = dst.; “SQP" means sequential quadratic programming
algorithm; “AS" means active-set algorithm; “IP" means interior point algorithm.
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Optimal control oriented to therapy
Maximizing survival times with radiotherapy actions

A numerical experiment in a simplified but realistic situation:
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Figure: The best 40 doses found with the SQP algorithm (quasi-constant distribution).
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Optimal control oriented to therapy
Maximizing survival times with radiotherapy actions

A numerical experiment in a simplified but realistic situation:
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Figure: Evolution in time of the tumor size – 40 doses.

E. Fernández-Cara Inverse and control problems and tumor growth therapies



Optimal control oriented to therapy
Maximizing survival times with radiotherapy actions

A numerical experiment in a simplified but realistic situation:
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Figure: The evolution in time of the density of tumor cells (3D views) – 40 doses;
pre-therapy and therapy.
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Optimal control oriented to therapy
Maximizing survival times with radiotherapy actions

A numerical experiment in a simplified but realistic situation:
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Figure: The evolution in time of the density of tumor cells (3D views) – 40 doses;
post-therapy.
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Optimal control oriented to therapy
Maximizing survival times with radiotherapy actions

A numerical experiment in a simplified but realistic situation:
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Figure: The evolution in time of the density of tumor cells (3D views) – 40 doses; global
evolution.

E. Fernández-Cara Inverse and control problems and tumor growth therapies



Exact controllability to the trajectories oriented to therapy
Cell populations determined by radiotherapy actions

AN EXACT CONTROLLABILITY PROBLEM
An idealized model: {

ct −∆c = (v1ω)c, (x , t) ∈ Q
c(x , 0) = c0(x), x ∈ Ω, . . .

c: the cancer cell population v : the radiotherapy action
The exact controllability problem: Find v such that c(x ,T ) ≡ c(x ,T )
(c is a fixed solution, another cell population)

Reformulation as a null controllability problem: c = c + y , c0 = c(· , 0) + y0{
y t −∆y = (v1ω)(c + y), (x , t) ∈ Q
y(x , 0) = y0(x), x ∈ Ω, . . .

The goal is now: Find v such that y(x ,T ) ≡ 0

For interesting applications:

c(· , 0), c0 ≥ 0, c(· , 0), c0 6≡ 0, y0 = c0 − c(· , 0) ≥ 0 (large)
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Exact controllability to the trajectories oriented to therapy
Cell populations determined by radiotherapy actions

What we pretend:
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Figure: The desired, the uncontrolled and the controlled trajectories.
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Exact controllability to the trajectories oriented to therapy
Cell populations determined by radiotherapy actions

{
y t −∆y = (v1ω)(c + y), (x , t) ∈ Q
y(x , 0) = y0(x), x ∈ Ω, . . .

Goal: Find v such that y(x ,T ) ≡ 0
Note: we can assume that c ≥ 2δ > 0 in ω × (0,T )
A local result:

Theorem [Local controllability; Khapalov, 1990’s]

∃ε > 0 such that y0 ≥ 0, ‖y0‖L2 ≤ ε⇒ OK

For the proof, solve the NC problem for{
y t −∆y = u1ω, (x , t) ∈ Q
y(x , 0) = y0(x), x ∈ Ω, . . .

Then take v := u/(c + y) in ω × (0,T )
y0 small⇒ u small⇒ y ≥ −δ in ω × (0,T )⇒ c + y ≥ δ in ω × (0,T )
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Exact controllability to the trajectories oriented to therapy
Cell populations determined by radiotherapy actions

{
y t −∆y = (v1ω)(c + y), (x , t) ∈ Q
y(x , 0) = y0(x), x ∈ Ω, . . .

Goal: Find v such that y(x ,T ) ≡ 0

An open problem: NC for large y0?
It would suffice: global approximate controllability, i.e.

For small ε > 0, find vε such that ‖y(· ,T )‖L2 ≤ ε
Unknown

A related question: {
y t −∆y = u1ω, (x , t) ∈ Q
y(x , 0) = y0(x), x ∈ Ω, . . .

For small ε > 0, δ > 0, find uε,δ such that

‖y(· ,T )‖L2 ≤ ε, y ≥ −δ in ω × (0,T )

Also unknown – Note: false for δ = 0!
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More results

IN PROGRESS:

Calderón-like IPs for 3D Lamé systems, with F. Mestre

Radiotherapy optimal strategies for more complex systems,
with L. Prouvée

Optimal chemotherapy techniques for spherical tumors,
with M. Cavalcanti and A.L. Ferreira
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