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Ireland wind speed

e Data available: 11 locations
sites , 18 years for each day that
is 72270 observations.

e Main goal: building a dynamic
map of the wind speed over
Ireland.

e A possible model? Space time
Gaussian random field.

e Estimation? ML unfeasible.

e We need estimation methods
with a good balance between
computational complexity and
statistical efficiency.
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USA precipitation map

Simple kriging prediction using p/y(d) estimation.
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State of the Art: Space-time Gaussian Fields

o {Z(s,t),s€ D CRY teR} Gaussian random fields (GRF).

e Covariance function
COV(Z(Sl, tl), Z(Sg, tg))

e Weak Stationarity
E(Z(s))=0

Cov(Z(s1,t1), Z(s2,t2)) = C(s1 — s2,t1 — t2) =: C(h, v)

(h = s; — sp, spatial lag, and v := t; — t, temporal lag).



Probabilistic Intermezzo

Let Z = (Z(s1,t1), Z(s2,t2),-- -, Z(Sn, ta)) " the sample data.

Assume it is a ( partial ) realization of a space-time Gaussian field
Z(s, t).

Z ~ N(0,%)

Y ={K(|si —sjl|,|ti — tj|)};}:1,lk:1 a n x n matrix.

Y >0 iff K(-)is a positive definite function.

Then practical estimation generally requires first the selection of
some parametric class of positive definite functions , i.e.
C(h) = C(h,0) and X = Z(0).



Covariance Functions: any tips?

C :RY — R is a continuous covariance function

)

C is positive definite on RY.

)

C is the characteristic function of a random vector in R?

)

C is the Fourier transform of a positive and bounded measure p



Same wine, different bottles

Mathematical Analysis
Complex Analysis

Harmonic Analysis Positive Definite
Approximation Theory
Probability Theory Characteristic Function

Geostatistics

Spatial Statistics Covariance functions
Stochastic Processes
Numerical Analysis Radial Basis Functions

Machine Learning, Image Analysis Kernels




Geostatistical prediction (Kriging)

e Main goal: prediction of Z at an unknown space-time of
location sqg using information available from the sample data Z.

Z(so) = c(6)"=(0) 'z
where c(0) = Cov(Z, Z(sp); 0)

e We need "good" estimation of 6 to make "good" prediction.



Same wine, different bottles (2)

Mathematical Analysis
Complex Analysis
Harmonic Analysis

Approximation Theory

Linear Projection Operators

Probability Theory

Best Linear Unbiased Prediction

Geostatistics
Spatial Statistics
Stochastic Processes

Kriging

Numerical Analysis

Radial Basis Functions Interpolator

Machine Learning, Image Analysis

Machine Learning Techniques




Stationarity and Isotropy

e Spatial Isotropy (Daley and Porcu, PAMS, 2013)
C(h,0) = K(|[h]],0)
Examples

K(r) = o?exp(—r/b) r>0,

K(r) = az(r/b)"lCV(r/b)

e So, K comes from some parametric family Cy



A popular class

e The Gneiting class (Gneiting, 2002; Zastavnyi and Porcu,

2011) Choo) - o2 (p( Hh||2 )
’ P(u?)27 \ Y (u?)

o Example: p(t) =e7t, o(t) = (1 +t)7?

o’ LIS

C(h,u) = <1+ (C"t>2>d/2 exp - (1+ (;>2>




Spheres

Spatial Stats and the Euclidean Paradigm




Spheres

Spatial Stats and the Euclidean Paradigm




Spheres

Spatial Stats and the Euclidean Paradigm

The same planet just 34 years after.
Kinda sad, right?




Spheres

Spatial Stats and the Euclidean Paradigm

u mol.kg™
2500

© Ifremer/ESA/CNES




Spheres
atial Stats and the Euclidean Paradig
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The Mercatore Projection

Spatial Stats and the Euclidean Paradigm
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The Mercatore Projection

Spatial Stats and the Euclidean Paradigm




The Mercatore Projection

Spatial Stats and the Euclidean Paradigm




The Mercatore Projection

Spatial Stats and the Euclidean Paradigm
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The Mercatore Projection

Spatial Stats and the Euclidean Paradigm




Spheres

Chordal and Great Circle

N

Chordal distance:
criticism on

e Negative
Correlations

e Counter to
Spherical
geometry




Spheres

A toy Example
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Spheres

A toy example (2)
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Word of Caution

e Suppose K is a isotropic covariance function. Can we replace
the Euclidean with the geodesic distance?

e The answer is NOT.

e Example:

C(h) = (allh)"Cu(alhl),  heR?



Spheres

Space-Time Challenges

Frequently, the temporal development of a process observed
on a sphere is also of interest, so that the process needs
to be modeled on the sphere cross time. Nevertheless, the
literature on the corresponding correlation structures s
sparse [...]

Tilmann Gneiting, Problem 16 of Online supplement to
Bernoullls (2013).



Elle

@ motivations

@ Schoenberg coefficients and functions
© The class W, T
O Generalizations

@ Construction Principles

@ Assessing discrepancies between the great circle distance and
other metrics

@ Analysis of TOMS data

® Computational Challenges

©® Methods of estimations
Covariance Tapering
Likelihood Approximations
Computational Challenges for simulation



® Porcu, E., Bevilacqua, M. & Genton, M.G. (2016). Journal of
the American Statistical Association. To appear.

@ Berg, C. & Porcu, E. (2016). Constructive Approximation.
To appear.




Spheres

e d-dimensional unit sphere of RI*l, given as

S? = {x e R |||x|| =1}, d > 1.
e Great Circle distance: #:S9xS9 —[0,n],
9(57 77) = arccos(f : 77)7

e Chordal Distance: ch(&,n) = 2sin (g) .



Motivations

Gaussian fields on S¢ x R

e Stationary Gaussian fields {Z(&,t), (¢,t) € SY x R},

e Covariance functions C:S? xSY x R, so that

’COV(Z(& t),Z(n,t') = COEn). t—t),  (&1),(nt) € SIxR.

e Class Wy 1 of continuous functions f:[-1,1] xR —C
such that C can be written as

C(O(&,m), t — ') =| F(cos (&, m), t — 1)

. &nes? tt' eR.

(1)




Spheres and Schoenberg Class

An Intermezzo: The Class Wy

® WWe also consider

o0
Ve = m VT,
d=1

5% = {(x)ken € RV D x¢ =1},
k=1

which is the unit sphere in the Hilbert sequence space
¢, of square summable real sequences.

® Inclusion Relation

\Ul,T D] \U2,T D...D woo,T-



Spheres and Schoenberg Class

An Intermezzo: The Class Wy

e The class Wy 7 is parenthetical to the class W, of
continuous functions ¢ :[0,7] — R such that ¢(f) is a
covariance function on S9 x S9.




Spheres

Schoenberg's Class: an Intermezzo

Iso Schoenberg

04-1980

® Son of a medical doctor
® 1922: M.A. at Jessy University
® 1922: Goettingen (Schur)

® 1925: Edmund Landau

Harvard and Princeton

a man of broad culture, fluent in several

® the isometric imbedding of metric languages, addicted to art, music and world
spaces into Hilbert space and literature, sensitive, gracious and giving
positive definite functions. in all ways. The working desk at his home
where he engages in research is actually a
® 1950: Polya draftsman’s bench complete with T-sguare,
etc. and a tall stool. Mobiles, artistic
® 1966: University of Pennsylvania works, models of ruled surfaces,

ons and other objects are sireuwn
throughout the room. English, Fremch and
German novels, numercus painfings and
artefacts are scattered on all the nearby
easy chairs.




Spheres: how to build the Class ¥,

The Class W4: How to build it

® Gegenbauer polynomials

(1—2xr+r’)™ = Z CM(x)r", |rl <1,x eC.

n=0
e For A >0,
1 1-2)\
L 2\A-1/2 ~(0) ) _ ml(n+2X)2
[ =P e = Trd s,



Spheres: how to build the Class ¥,

@ty

e TImportant!

[EVCI < E(), x e [-1,1],

e A\=(d—1)/2 and its connection with spherical
harmonics.

e neN. Vector Space |H(d) C C(Sd) , dimension

(d)nfl

Np(d) :=dimH,(d) = o

@n+d—1), n>1, No(d) =1,



Spheres: how to build the Class ¥,

TheClssvar ]

Single Harmonics

{= 0 . COS(m¢) Pé’n (COS 6)

(=1 { .\ L,: 10
= m=5

~
Il
o8}

D



Spheres: how to build the Class ¥,

MGty

e Orthogonality relation:

1
/ (1 —x2)4271¢,(d, x)cm(d, x) dx = [eall Om.n-
-1

 lwg-1[[Na(d)

° ’ Theorem(Schoenberg, 1942)‘ A continuous function
f:[-1,1] — R belongs to the class W,, d=1,2,..., if
and only if

f(cosf) = Z bp.aca(d,cosf), bpq>0,0¢€[0,n],
n=0

for a summable sequence (bpq)32, given as

_ wa-llNo(d) [

bn,d
[lewal] 1

f(x)en(d, x)(1 — x2)9/27 L dx.



Spheres: how to build the Class ¥,

TheClssvar ]

e If f(0)=1, (byg) is a probability sequence

e Daley and Porcu (2013) call b,y d-Schoenberg
coefficients and the sequence (bp4) a d-Schoenberg
sequence

e In d=1,

f(cosf) = Z bp1cos(nf), b,1>0,6€[0,n],
n=0
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Results

The Class W4 1: Characterization Theorems

Theorem 1 Let d € N and let f:[-1,1] xR — C be a
continuous function. Then f belongs to W, 71 if and only
if there exists a sequence ¢,q4:R — R of p.d. functions
with > ¢, 4(0) < 0o such that

f(cosf, t) = Z ©n,d(t)cn(d, cosb),

n=0

and the above expansion is uniformly convergent for
(6,t) € [0,71] x R. We have

No(d)llwg-all [*

t =
@n,d( ) deH .

f(x, t)ea(d, x)(1 — x?)9/>7 1 dx.



Results

TheClssvar ]

Theorem 2. Let d € N and suppose that f € Vg0 7 C Wy 7.
Then we have

(a) For d =1,

1
©0,3 = ¥0,1 — 7¥2,1
2
and 1
¥n3 = 5(’7 +1)(pn1 — Pnt21), n>1
(b) For d > 2,
(n+d—1)(n+d) (n+1)(n+2)

— > 0.
©n,d+2 d(2n+df 1) Pn,d d(2n+d+3)§0n+2,d7 n=



Results

TheClassVer

Theorem 3. Let f:[-1,1] xR — C be a continuous function.
Then f belongs to W, v if and only if there exists a
sequence ¢,:R — R of p.d. functions with Y. ¢,(0) < oo
such that

f(cos,t) ngn cos" 0,

and the above expansion is uniformly convergent for
(0,u) € [0,7] x R.
Moreover,

dIim ©nd(t) = pn(t) for all (n,t) € Ng x R. (2
—00



Generalizations

Menegatto's School

Collaborations with Ana Peron, Rafaela Neves Bonfim, Thais
Jorddo, Jean Carlo Guella, Mario de Castro (the short one), Victor
Barbosa, Jose C. Ferreira.

MANY PAPERS including the very difficult case of strict positive
definiteness.



Construction principles

with Moreno Bevilacqua and Marc Genton




Results

7 —

A natural construction:

Z Z Sk (1) Yew,a(n), nes? teR,

k=0veTy g

° Yk,u7d :S? > C: normalized hyperspherical harmonics;

° §k,l,(t): Gaussian processes, with zero mean and

Eéx o (£)éxr 1 (t') = SknrOurgi(t — t'), t,t' €R.



Construction Principles

An easy construction principle

Let {g«(-)}2, be an absolutely convergent sequence of
continuous and positive definite functions on the real
line, such that gy(0) = by for all k=0,1,..., with {b};°,
being a probability mass sequence. Then,

o0

C0,u) = gi(u)(cosh),  (0,u)€[0,7] xR,
k=0

is a representation for members of the class W 7.



Results

e

Family Analytic expression Parameters range ]
Negative Binomial c(6,u) = {%}T c€(0,1), 7>0
. . _ (1—e)37
Multiquadric C(6,u) e€(0,1), >0

T {1+e2—2eg(u)cos 6} 7

Sine Series

C(0, u) = &) 050=1 11 4 g(u)cos§} /2

Sine Power C(O,u)=1 —27”{1—g(u)c059}a/2 a € (0,2]
Adapted Co,u) = | Arrewia=e) 17 e€(0,1),7>0
P ’ 1+¢2(u)—2eg(u) cos 0 s
Multiquadric 2g(-)/{1 +g2(")}
corr. function on R
Poisson C(0, u) = exp [A {cos Og(u) — 1}] A>0




Results

Spatial Adapting from the Gneiting class

e Gaussian process Z on RY x R, points (x,t) and (y,t')
such that |y — x| =h (with ||-|| denoting the Euclidean
distance) and t—t' =u,

(A7 { d(I[h]?)

® p is completely monotone on the positive real line
such that ¢(0) =1, ¢ is a positive-valued Bernstein
function, and ¢? is a variance parameter.

C(h,u) =

}, (h,u) e R? x R,



Results

Spatial Adapting from the Gneiting class

Let 0:S? x S? — [0,7] be the great circle distance. Let

@ :[0,00) = Ry be a completely monotone function on the
positive real line, with ¢(0) =1, and let ¢ be a
positive-valued Bernstein function. Denote by % . the
restriction of ¢ to the interval [0,7]. Then, the function

2

o u?
C(0,u) := o (9)1/2g0 { o @) } , (0,u) e [0,71] xR, (3)

belongs to the class W, 1.




Gneiting class on the sphere
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Results

Relevant Comments

® Mean square differentiability for processes on
spheres. Attempts in Jeong and Jun (2015).

® Exception being the Sine Power model.

e Adapted construction has the same problem: Matérn is
valid only for v € (0,1/2].

® Adapted construction allows for rescaling the spatial
component, direct construction not

e Direct construction allow for any type of temporal
margin, provided g is a temporal correlation function.



Results

Examples from The Adapted Gneiting Class




Results

Examples from The Adapted Gneiting Class

Take the negative binomial family and u — g(u; a) = (14 |u|¥)™%, « € (0,2],
T

el () e | 0 POEETE

C(0,u) = o2

From the multiquadric,
02(1 — €)?7
1 T
{1+52725{1+(M)a} cose]
cr

with the same restriction on the parameters as in the previous model.

C(0,u) = (0,u) € [0, 7] X R, (4)

2 cos 6 cos 6
CO,u)=0"v |1+ ex|

(e ()7 e (e ()

, (6,u) € [0, 7| XR,
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Simulation Studies

(Semies ]

e Three scenarios;

e Estimate A using ML;

e Under C(0,u;\) % ( 7 l_w{u(lu':lg)}”‘]’

® Using either the GC, CH or MP distances. Notation
~(k
Ag}, with X = GC, CH or MP

e k=1,...,1000 Simulations.



Simulation Studies

Fomwes ]

Discrepancy between the ML estimates using either GC, CH

~(k
and MP distances. Given )\(X), we call M(-) the measure

1000 NGOG

iAGG — iAy)?
M¥(:)) = L1 (e i =1,2,3 X = CH,MP.

( \/ 1000 ) 1 y &y 9y )
(5)
We also define another measure A(-) by
§°1000 )\(k )2 .

=1,2,3 X = GC,CH,MP
\/ 1000 b / ) ) b ) ) )
(6)

where ;)\ denotes the nominal value chosen under one of the
proposed scenarios.



Simulation Studies

l [ [ r=11 [r=21 [r=3]
[ | o | an | @ [ an | @® | an |
[ MPes) T 6.25 [ 2407 | 0.97 | 406 [ 0.42 | 2.19 |
[ MM™P(es) | 93.03 | 201.99 | 9.8 | 17.45 | 3.17 | .91 |
[ MF(er) ] o0.013 [ o0.014 | 0.004 [ 0.008 | 0.004 [ 0.007 |
| MMP(er) | o.0s8 [ o0.080 | 0.015 | 0.022 | 0.007 | o0.012 |
[ M%) T o.004 [ o0.011 | 0.001 | 0.003 [ 0.001 | 0.002 |
[ MM™P(52) | o0.026 | 0.045 | 0.005 | 0.008 | 0.002 [ 0.004 |
ACC(¢&5) 116.47 | 206.77 | 67.74 | 111.52 | 45.67 | 74.90
A (25) 117.73 | 211.78 | 68.00 | 112.34 | 45.73 | 74.98
AMP(es) | 133.73 | 261.39 | 68.59 | 112.96 | 45.89 | 74.16
ACC(er) 0.212 0.211 | 0.212 0.212 | 0.212 | 0.211
AH (&) 0.212 0.212 | 0.212 0.212 | 0.212 | 0.212
AMP (1) 0.220 0.226 | 0.213 0.213 | 0.213 | 0.212
ACC(53) 0.088 0.101 [ 0.084 | 0.094 | 0.083 | 0.093
AT (52) 0.088 0.104 | 0.084 0.094 | 0.083 | 0.093
AMP(52) 0.089 0.105 | 0.084 0.095 | 0.083 | 0.093




TOMS DATA

Foee ]

e Level-3 Total Ozone Mapping Spectrometer (TOMS): daily
total column ozone levels.

e Spatially irregular grid (1° latitude by 1.25°
longitude away from the poles)

e Original data: Latitude interval [—89.5,89.5] and
longitudes [—180,180]

e Jun and Stein (2008): spatial dataset

e Here: 15 obs. in time, for a total of of 20,160
points (288 longitudinal and 70 latitudinal) observed
during 15 days, for a total of 302,400 observations.



TOMS DATA

N

e For the missing data: follow Jun and Stein (2008):
local averaging (24 observations) for each local
averaging.

® Likelihood estimation unfeasible: select a subgrid of
336 spatial points and all temporal observations, for
a total of 5,040 observations.

® Detrend the data using spatio-temporal splines

® Residuals as a realization from a zero mean space-time
Gaussian random field.



TOMS DATA

N

A. Two models based on the adapted Gneiting
classes

B. Three models based on direct construction,
hence valid with GC only.

C. A model based on the Gneiting class valid
using CH and MP distances



TOMS DATA

Distance GC CH MP GC CH MP GC CH MP
Model A1 A.2 C.1
cs 742.7 743.9.3 734.2 681.3 672.2 733.3 - 450.8 417.5
cr 2.54 2.54 217 1.76 1.67 1.71 - 1.56 1.29
B 1 1 0.95 1 1 1 - 0.956 0.89
o2 102.6 102.1 102.7 106.1 103.0 111.4 - 97.9 98.5
Nugget 9.81 9.82 6.35 6.30 5.60 4.97 - 12.26 5.72
Likelihood || —17233.8 | —17234.0 | —17296.5 —17257.1 | —172585 | —17317.3 - —17156.3 | —17223.9
Model B.1 B.2 B.3
T 0.01 - - 144.09 - - 4.04 - -
cr 51.05 - - 50.58 - - 36.85 - -
ey 1.49 - - 1.49 - - 1.61 - -
o2 85.8 - - 86.0 - - 89.9 - -
Nugget 18.60 - - 18.54 - - 16.84 - -
Likelihood || —17168.3 - - —17167.9 - - —17162.8 - -




Computation

Computational Challenges

for Space-Time Data



Maximum likelihood estimation

Require the distribution of the underlying RF to be known.
o If Z~ N(0,%(0)) . Then

10) = —%log det=(0) — %2’2(9)—12 (7)

e The most critical part of the likelihood calculation is to
evaluate the determinant and inverse of the covariance matrix.
Each calculation of the likelihood requires O((nm)3)
operations.

¢ Under increasing domain the maximizer of /(6) is consistent
and asymptotically Gaussian with covariance matrix (Fisher
information):

FON = o (O T EO ). @



Computing /()

2000

1imes (seconds)

500 1000

0

0 5000 10000 15000

Time in seconds needed to evaluate the Gaussian likelihood as a
function of the data using package GeoR of R software.



Computational problem

We need estimation methods with a good trade off between
computational and statistical efficiency.
Some papers addressing the computational problem:

e Considering a different objective function (Vecchia, 1988 Stein
et al. 2004), Bevilacqua, Porcu, Gaetan, Mateu (JASA 2012).

e Considering approximation of the covariance matrix
(Kaufmann et al 2008), Daley, Porcu and Bevilacqua (SERRA
2013), Porcu, Bevilacqua and Genton (JRSSB 2015).

e Considering a slighty different model: Gaussian Markov
Random Field approximations (Lindgren et al 2011)



The tapering approach (spatial case)

e |dea: correlations between pairs of distant sampling locations
are often nearly zero

Taper: A correlation model with compact support.
An example from the Wendland class:

Tap(h; d) = ( - W>4 <1+4|@|)

+

e Tapering a covariance model. An example:

_ Al
Crop(h,0,d) = (o%e™%" ) Tap(h; )

Tapering a covariance matrix:

ZTap(ea d) = 2(6) 0 T(d)

Y 15p(0, d) is a sparse matrix.



The tapering approach

Crap(h,0,d) = (0267%) X Tap(h, d)

zTap('g’ d) = 2(0) o | T(d)




Covariance tapering estimation

Kaufmann et al (2008) proposed to maximize the tapered
likelihood:

1 1 _
Iap(0, d) = = 5108 [E72p(0, )], =52 (E72p(0, d) o T(d))Z (9)

Features:
e Unbiased estimating equation.

e Sparse matrix algorithms can be used to compute the inverse
and the determinant of the tapered matrix.

e Computational gains depends on the percentage of zero in
Y 15p(0, d) i.e. on the choice of d.

L4 |imdﬁoo /Tap(ﬁ, d) = /((9)



Composite likelihoods

General idea
O let Z=(24,...,Z,) be a n-dimensional vector random
variable with density f(Z; #) for some unknown parameter
0 c© CRP.

@ Suppose that f(Z; ) is difficult to evaluate or to specify, but
that it is possible to compute or specify distribution for some
subsets of Z.

© It may be expedient to consider instead a pseudolikelihood
compounding such likelihood objects.



Composite likelihood definition

e Let Ay be a marginal or conditional set of the data, the
composite likelihood (CL) (Lindsay 1988) is an objective
function defined as a product of K sub-likelihoods

CL(9) = Z 1(0; Ar)w,

K
k=1

e [(0; Ag) is the likelihood generated from log(f(z;0)) by
considering only the random variables in Ay

e wj are suitable non negative weights that do not depend on 6.

e The maximum CL estimate is given by § = argmax, CL(0).



Composite likelihoods drawbacks and benefits

@ Drawback I: general loss of statistical efficiency is expected
from CL estimation with respect to ML methods.

® Drawback Il: set of estimating methods very large. How one
can choose in this set?
© Benefit |: computational tractability. (Our case)

O Benefit Il: it requires only model assumptions on lower
dimensional marginal densities, and not detailed specification
of the full joint



Composite likelihoods based on pairs .

ply, X =M, C,D

e Setting Ax = (Z(si), Z(sj)), we obtain the pairwise marginal
Gaussian likelihood /;; and the function

Pl () = D> 1 (0)wy

i=1j>i

e Setting Ax = (Z(si)|Z(s;)) we obtain the pairwise conditional
Gaussian likelihood /;; and the function

Plc(8) = > >l (@)wy = D= > (215(6) — (B) — ;(B))wi

i=1 j#i i=1j>i

where /;(3) is the marginal likelihood and 8 C 6.
e Setting Ax = (Z(s;) — Z(sj)) we obtain the pairwise difference
Gaussian likelihood /i_;.

n n

plp(8) = 3> i (0)wy

i=1j>i



plx methods: Comments

The number of operations requested O(N?) (no matrix
inversion is requested).

Unbiased estimating equations.
Which kind of weights?
Which is the best method among plx, X = M, D, C ?



plx methods: improving the efficiency

Specific choice of the weights wj; allows to improve the
statistical efficiency of plx methods.

We show that a convenient choice for the weights is:
1 llsi—sll < d
wij = i
0 otherwise
Then plx depends on the choice of d i.e. plx(d).
This kind of weights allows further computational benefits.

An alternative method to improve the efficiency can be found
in Bevilaqua, Gaetan, Mateu and Porcu (JASA 2012).



Asymptotic results for plx estimator, X = P, D, C

Let 6 the true value and % the (sequence of) estimators
obtained expanding the domain in space and/or in time in an
increasing domain fashion

Let Vplg the estimating equation vector associated to p/§
Then it can be shown:

05 %6y, X=P,D,C
Under specific conditions on the underliyng RF

(J%(80)) /2 HE(80) (B — b0) % N(0, 1) (10)
where

H(0) = ~E[V?pIz(0)],  JR(6) = Var[Vpiz(6)] (11)



plx: comparing statistical efficiency

® We find closed form expression for the asymptotic variance of ply estimators.

® Comparing them we can say that there is no clear evidence that a method outperforms the
others.

An example:
® Estimating a GRF with exponential model (az =1, b = 0.4) observed on 500 sites on the square
2

[0, 1]

® Comparing plx(d) and TAP(d) asymptotic variances using

1
1Ga(0: )]\ */*
ARE,(d) = [ ——— , a=C,D,M, T, p=2
[Frac(6)]
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Hope to re-visit Brasil very soon!

Thank you for your
Attention!
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