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Abstract. A numerical scheme based on Nédélec finite elements has been re-
cently introduced to solve the eigenvalue problem for the curl operator in simply
connected domains. This topological assumption is not just a technicality, since

the eigenvalue problem is ill-posed on multiply connected domains, in the sense
that its spectrum is the whole complex plane. However, additional constraints
can be added to the eigenvalue problem in order to recover a well-posed prob-

lem with a discrete spectrum. Vanishing circulations on each non-bounding
cycle of the domain have been chosen as additional constraints in this paper.
A mixed weak formulation including a Lagrange multiplier (that turns out to
vanish) is introduced and shown to be well-posed. This formulations is dis-

cretized by Nédélec elements, while standard finite elements are used for the
Lagrange multiplier. Spectral convergence is proved as well as a priori error
estimates. It is also shown how to implement this finite element discretization
taking care of these additional constraints. Finally, a numerical test to assess

the performance of the proposed methods is reported.

1. Introduction. Let H be a magnetic field acting on a conducting fluid, whose
motion is driven by the so-called Lorentz force:

F := J ×B,

where J := curlH is the current density and B := µH is the magnetic induction
(µ being the magnetic permeability, which in an isotropic medium is a scalar).

Because of this, a magnetic field satisfying

curlH = λH,

with λ a scalar function, is called a force-free field [15] or a Beltrami field [2]. This
kind of fields appear in solar physics for theories on flares and coronal heating [5]

2010 Mathematics Subject Classification. Primary: 65N25, 65N30; Secondary: 76M10, 78M10.
Key words and phrases. Eigenvalue problems, finite elements, spectrum of the curl operator,

multiply connected domains, Beltrami fields, linear force-free fields.
All authors were partially supported by BASAL project, CMM, Universidad de Chile.
Second author was partially supported by Anillo ANANUM, ACT1118, CONICYT (Chile).

1

http://dx.doi.org/10.3934/xx.xx.xx.xx


2 E. LARA, R. RODRÍGUEZ AND P. VENEGAS

(see also [6, 15, 16]), in fluids for the study of the static equilibrium of smectic liquid
crystals, in plasma physics, superconducting materials, etc.

A magnetic field satisfying the above equation with a constant λ is called a linear
force-free field or also a free-decay field. In the theory of fusion plasma, for instance,
such a field is the final state that makes the energy a minimum in order to leave
the plasma in equilibrium.

From the mathematical point of view, to find a linear force-free field corresponds
to solving an eigenvalue problem for the curl operator:

curlu = λu.

In a bounded domain Ω, the natural boundary conditions are either u · n = 0 or
u×n = 0. However, because of the Stokes theorem, the latter implies curlu ·n = 0
on ∂Ω and, hence, for λ 6= 0, u · n = 1

λ curlu · n = 0 too. Therefore, u would
vanish identically on ∂Ω and, hence, it is possible to prove that u should actually
vanish on the whole domain Ω (see [17, Lemma 3]).

Thus we are in principle led to the following spectral problem for the curl oper-
ator: Find λ ∈ C and u 6≡ 0 such that

curlu = λu in Ω,

divu = 0 in Ω,

u · n = 0 on ∂Ω.

The second equation (which for λ 6= 0 is a consequence of the first one) rules out
the trivial solutions λ = 0, u = ∇ϕ. The numerical approximation of this problem
was analyzed in [14] for a simply connected domain Ω. However, when Ω is multiply
connected, the set of eigenvalues of this problem is the whole complex plane (see
[18, Theorem 2]).

The eigenvalue problem for the curl operator in multiply connected domains was
recently analyzed in [9], where it was shown that additional constraints related to
the homology of the domain have to be added for the problem to have a discrete
spectrum. We consider in this paper one of the choices proposed in that reference.
We introduce a variational mixed formulation of the resulting problem and a fi-
nite element discretization. We prove that the numerical approximation provides
an optimal-order spectral approximation. We also discuss how to implement this
numerical method and report some results for a numerical test which allows us to
assess its performance.

2. A well posed eigenvalue problem on a multiply connected domain. Let
Ω ⊂ R

3 be a bounded domain with a Lipschitz boundary Γ and outer unit normal
n. We assume that Γ is either smooth or polyhedral.

We restrict our attention to a multiply connected domain and we assume that
there exist cutting surfaces Σj , j = 1, . . . , J , such that the cut domain

Ω0 := Ω \
J⋃

j=1

Σj

becomes simply connected. More precisely, we assume that there exist a set {Σj}
J
j=1

of connected open subsets of smooth manifolds satisfying:

• Σj ⊂ Ω;
• ∂Σj ⊂ Γ;
• Σ̄i ∩ Σ̄j = ∅, i 6= j;
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• Ω0 := Ω \
⋃J
j=1 Σj is simply connected and pseudo-Lipschitz.

We fix a unit normal nj on each Σj and denote its two faces by Σ+
j and Σ−

j ,

with nj being the ‘outer’ normal to ∂Ω0 along Σ+
j . For any ψ ∈ H1(Ω0), we

denote by [[ψ]]Σj
:= ψ|Σ−

j
− ψ|Σ+

j
the jump of ψ through Σj along nj . We denote

by γj the curves ∂Σj and by tj the corresponding tangent unit vector oriented
counterclockwise with respect to Σ+

j .

The set {γj}
J
j=1 is a family of independent non-bounding cycles of Ω (i.e., the

union of the cycles of any non-empty subfamily cannot be the boundary of a surface

contained in Ω). A similar family of independent non-bounding cycles
{
γ′j
}J
j=1

can

be given for the complement Ω′ of Ω, each cycle γ′j being the boundary of a cutting

surface Σ′
j of Ω

′. We denote by t′j a corresponding tangent unit vector (see Figure 1).

Figure 1. A multiply connected domain. Notation.

In order to obtain a well posed eigenvalue problem for the curl operator on a
multiple connected domain, one additional constraint per cutting surface must be
added. Whenever one can associate one cutting surface Σ′

j of Ω′ with one cutting
surface Σj of Ω (as in Figure 1), there are two alternatives for this additional
constraint (see [9]): either

∫
γj

u · tj = 0 or
∫
γ′

j

u · t′j = 0. We focus on the first one

which, according to the Stokes Theorem, can be equivalently written as follows:

∫

Σj

curlu · nj = 0, 1 ≤ j ≤ J.

Since for an eigenfunction of the curl operator with eigenvalue λ 6= 0, u =
1
λ curlu, we also have

∫

Σj

u · nj = 0, 1 ≤ j ≤ J,

which lead us to the following eigenvalue problem, whose analysis and numerical
approximation is our goal:



4 E. LARA, R. RODRÍGUEZ AND P. VENEGAS

Problem 1. Find λ ∈ C and u ∈ L2(Ω)3, u 6≡ 0, such that

curlu = λu in Ω,

divu = 0 in Ω,

u · n = 0 on ∂Ω,
∫

Σj

u · nj = 0, 1 ≤ j ≤ J.

Let us remark that the last equation above makes sense since, as will be shown
below (cf. (2)), the first three equations imply that u · nj ∈ L2(Σj).

3. Function spaces. In this section, we introduce some function spaces appro-
priate for setting and analyzing a convenient variational formulation of Problem 1.
First, we recall the definitions of some classical spaces that will be used in the
sequel:

L2(Ω) :=
{
v : Ω → C :

∫
Ω
|v|2 <∞

}
,

H1(Ω) :=
{
v ∈ L2(Ω) : ∇v ∈ L2(Ω)3

}
,

H(div,Ω) :=
{
v ∈ L2(Ω)3 : div v ∈ L2(Ω)

}
,

H(div0,Ω) := {v ∈ H(div,Ω) : div v = 0 in Ω} ,

H0(div,Ω) := {v ∈ H(div,Ω) : v · n = 0 on ∂Ω} ,

H0(div
0,Ω) :=

{
v ∈ H(div0,Ω) : v · n = 0 on ∂Ω

}
,

H(curl,Ω) :=
{
v ∈ L2(Ω)3 : curlv ∈ L2(Ω)3

}
,

H(curl0,Ω) := {v ∈ H(curl,Ω) : curlv = 0 in Ω} ,

H0(curl,Ω) := {v ∈ H(curl,Ω) : v × n = 0 on ∂Ω} .

The spaces H(div,Ω) and H(curl,Ω) are respectively endowed with the norms de-
fined by

‖v‖2div,Ω := ‖v‖20,Ω + ‖div v‖20,Ω and ‖v‖2
curl,Ω := ‖v‖20,Ω + ‖curlv‖20,Ω .

We recall the classical Helmholtz decomposition (cf. [8, Theorem I.2.7]):

L2(Ω)3 = H0(div
0,Ω)

⊥
⊕ ∇(H1(Ω)). (1)

Here and thereafter, the symbol ⊥ is used to denote L2(Ω)3-orthogonality.
We will also use the fractional Sobolev spaces Hs(Ω) (0 < s < 1) endowed with

the norms ‖·‖s,Ω, which are well known to satisfy

H1(Ω) →֒ Hs(Ω) →֒ L2(Ω),

both inclusions being compact (see, for instance, [8, Section I.1.1]), and the space

Hs(curl,Ω) :=
{
v ∈ Hs(Ω)3 : curlv ∈ Hs(Ω)3

}
.

Let us remark that, according to [1, Proposition 3.7], there exists s > 1
2 such that

H(curl,Ω) ∩H0(div
0,Ω) →֒ Hs(Ω)3, (2)

the inclusion being continuous.

Let Ω0 := Ω\
⋃J
j=1 Σj be the cut domain, with Σj the cutting surfaces and nj the

corresponding unit normal vectors as defined above. Let 〈·, ·〉Σj
denote the duality
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pairing between H1/2(Σj)
′ and H1/2(Σj). The following Green’s identity has been

proved in [1, Lemma 3.10].

Lemma 3.1. For all v ∈ H0(div,Ω), v · nj |Σj
∈ H1/2(Σj)

′, 1 ≤ j ≤ J , and the

following Green’s formula holds true:

J∑

j=1

〈
v · nj , [[ψ]]Σj

〉
Σj

=

∫

Ω0

v · ∇ψ +

∫

Ω0

(div v)ψ ∀ψ ∈ H1(Ω0).

In general, the functions ψ ∈ H1(Ω0) do not admit an extension to the whole Ω
that lies in the space H1(Ω). However, any extension of ∇ψ obviously belongs to

L2(Ω)3. We denote such an extension ∇̃ψ. Let

Θ :=
{
ψ ∈ H1(Ω0) : [[ψ]]Σj

= constant, 1 ≤ j ≤ J
}
. (3)

It has been proved in [1, Lemma 3.11] that, for all ψ ∈ H1(Ω0), ∇̃ψ ∈ H(curl,Ω)

if and only if ψ ∈ Θ, in which case curl(∇̃ψ) = 0. Thus, we have the following
characterization for the space H(curl0,Ω).

Lemma 3.2. There holds

H(curl0,Ω) = ∇̃Θ.

Next, let us consider the space of the so-called harmonic Neumann fields :

KT (Ω) := H(curl0,Ω) ∩H0(div
0,Ω). (4)

This is a finite-dimensional space, its dimension being equal to the number of cutting
surfaces, as shown in the following lemma whose proof is essentially contained in
[7, Lemma 1.3].

Lemma 3.3. A basis of the space KT (Ω) is given by
{
∇̃φj

}J
j=1

, where φj ∈ Θ/R

is the unique solution of

∆φj = 0 in Ω0,

∂nφj = 0 on Γ,

[[∂nφj ]]Σk
= 0, 1 ≤ k ≤ J,

[[φj ]]Σk
= δj,k, 1 ≤ k ≤ J.

Consequently, dim(KT (Ω)) = J .

We can use the space of the harmonic Neumann fields to write a convenient direct
decomposition of H(curl0,Ω).

Lemma 3.4. There holds

H(curl0,Ω) = KT

⊥
⊕ ∇(H1(Ω)).

Proof. Since ∇(H1(Ω)) ⊂ H(curl0,Ω), from the Helmholtz decomposition (1) and
the definition (4) of KT , we have that

H(curl0,Ω) = H(curl0,Ω) ∩
[
H0(div

0,Ω)
⊥
⊕ ∇(H1(Ω))

]
= KT

⊥
⊕ ∇(H1(Ω)),

as claimed.
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Next step is to define another three function spaces which will play a central role
in the forthcoming analysis. Let

X := KT
⊥H0(div0,Ω) , endowed with ‖·‖div,Ω = ‖·‖0,Ω , (5)

Z := {v ∈ H(curl,Ω) : curlv ∈ X} , endowed with ‖·‖
curl,Ω (6)

and

V := X ∩Z, endowed with ‖·‖
curl,Ω . (7)

The following result follows immediately from the Helmholtz decomposition (1),
the definition (5) of X and Lemma 3.4.

Lemma 3.5. The following decomposition holds true:

L2(Ω)3 = X
⊥
⊕ KT︸ ︷︷ ︸

H0(div0;Ω)

⊥
⊕ ∇(H1(Ω)) = X

⊥
⊕ KT

⊥
⊕ ∇(H1(Ω))︸ ︷︷ ︸
H(curl0,Ω)

,

the three subspaces being mutually L2(Ω)3-orthogonal.

Moreover, we have the following characterization of the functions in X .

Lemma 3.6. For v ∈ L2(Ω)3, v ∈ X if and only if

div v = 0 in Ω,

v · n = 0 on Γ,

〈v · nj , 1〉Σj
= 0, 1 ≤ j ≤ J.

Proof. According to the definition (5), v ∈ X if and only if v ∈ H0(div
0,Ω) (i.e.,

v satisfies the first two equations of the lemma) and
∫
Ω
v ·w = 0 for all w ∈ KT .

Now, from Lemma 3.3, the latter is true if and only if
∫
Ω
v · ∇φj = 0, 1 ≤ j ≤ J ,

which in turn, by virtue of Lemma 3.1, is equivalent to

0 =

∫

Ω

v ·∇φj =
J∑

k=1

〈
v · nk, [[φj ]]Σk

〉
Σk

−

∫

Ω0

(div v)φj =
〈
v · nj , 1

〉
Σj
, 1 ≤ j ≤ J.

Thus, we conclude the claimed equivalence.

Characterizations of the functions in Z and V follow immediately from this
lemma.

Corollary 3.7. For v ∈ H(curl,Ω), v ∈ Z if and only if

curlv · n = 0 on Γ,

〈curlv · nj , 1〉Σj
= 0, 1 ≤ j ≤ J.

Corollary 3.8. For v ∈ H(curl,Ω), v ∈ V if and only if

div v = 0 in Ω,

v · n = 0 on Γ,

〈v · nj , 1〉Σj
= 0, 1 ≤ j ≤ J,

curlv · n = 0 on Γ,

〈curlv · nj , 1〉Σj
= 0, 1 ≤ j ≤ J.
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In the following section we will introduce a variational formulation of Problem 1,
which will be used for the theoretical analysis of this problem as well as for its
finite element discretization. In this formulation, the eigenfunctions will be sought
in the space Z. In what follows, we will establish several additional properties of
this space that will be used in the sequel.

Lemma 3.9. The following decomposition holds true:

Z = V
⊥
⊕ H(curl0,Ω).

Proof. The result follows from the facts that L2(Ω)3 = X
⊥
⊕ H(curl0,Ω) (cf.

Lemma 3.5), H(curl0,Ω) ⊂ Z (cf. Corollary 3.7) and V = X ∩Z (cf. (7)).

Lemma 3.10. There holds

D(Ω)3 ⊂ Z.

Proof. Let v ∈ D(Ω)3. According to Corollary 3.7, we only have to prove that
〈curlv · nj , 1〉Σj

= 0, 1 ≤ j ≤ J , and this is a consequence of the Stokes theorem

and the fact that, since v vanishes on Γ ⊃ γj := ∂Σj ,
∫

Σj

curlv · nj =

∫

γj

v · tj = 0.

The following commuting property will be the basis for the spectral characteriza-
tion of the problem. It has been proved in [18, Theorem 1] in a more general context
(see also [11, Prop. 2.3]). For the sake of completeness, we include an elementary
proof.

Lemma 3.11. For all v,w ∈ Z,
∫

Ω

(curlv · w̄ − v · curl w̄) = 0.

Proof. Let v ∈ Z. Then, curlv ∈ H0(div
0,Ω) and 〈curlv · nj , 1〉Σj

= 0, 1 ≤ j ≤ J

(cf. Corollary 3.7). Hence, as has been proved in [1, Theorem 3.17], there exists
ζ ∈ H0(curl,Ω) ∩H(div0,Ω) such that

curl ζ = curlv in Ω.

Therefore, we have that
∫

Ω

(curlv · w̄ − v · curl w̄) =

∫

Ω

(curl ζ · w̄ − ζ · curl w̄) +

∫

Ω

(v − ζ) · curl w̄

for all w ∈ Z. Now, since ζ ∈ H0(curl,Ω), for all w ∈ H1(Ω)3,
∫

Ω

(curl ζ · w̄ − ζ · curl w̄) = 〈ζ × n, w̄〉Γ = 0.

Moreover, because of the density of H1(Ω)3 in H(curl,Ω), the above equation holds
also true for all w ∈ Z. Finally,

∫
Ω
(v − ζ) · curl w̄ also vanishes for all w ∈ Z,

because curlw ∈ X = H(curl0,Ω)⊥L2(Ω)3 (cf. definition (6) and Lemma 3.5) and
(v − ζ) ∈ H(curl0,Ω).

Lemma 3.12. The subspace C∞(Ω̄)3 ∩Z is dense in Z.
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Proof. The proof is based in a classical property, that in our case reads as follows:
C∞(Ω̄)3 ∩ Z is dense in Z if and only if every element in Z ′ that vanishes in
C∞(Ω̄)3 ∩Z also vanishes in Z (see, for instance, [8, (I.2.14)]).

Let L ∈ Z ′. Since Z is a Hilbert space, there exists l ∈ Z such that
∫

Ω

(
l · v̄ + l̃ · curl v̄

)
= Lv ∀v ∈ Z,

where l̃ := curl l. Now, let us assume that L vanishes in C∞(Ω̄)3 ∩Z, namely,
∫

Ω

(
l · w̄ + l̃ · curl w̄

)
= 0 ∀w ∈ C∞(Ω̄)3 ∩Z. (8)

We have to prove that L also vanishes in Z. With this end, notice D(Ω)3 ⊂
C∞(Ω̄)3 ∩Z (cf. Lemma 3.10). Hence,

∫

Ω

l · w̄ +

∫

Ω

l̃ · curl w̄ = 0 ∀w ∈ D(Ω)3.

Therefore, l = − curl l̃, so that by virtue of Lemma 3.11 it would be enough to
show that l̃ ∈ Z to conclude the proof.

To prove this, we will check that v = l̃ satisfies the two properties from Corol-
lary 3.7. First, since ∇

(
C∞(Ω̄)

)
⊂ C∞(Ω̄)3 ∩Z, we obtain from equation (8) that

∫

Ω

l · ∇ψ̄ = 0 ∀ψ ∈ C∞(Ω̄).

Then curl l̃ = −l ∈ H0(div
0,Ω), and the first property from Corollary 3.7 is checked.

For the second one, for each cutting surface Σj , let U be an open connected set
of R3 containing Σ̄j , not intersecting Σ̄k, k 6= j, and such that U ∩ (Ω \Σj) has two
connected components, ΩΣ+

j
and ΩΣ−

j
, one at each side of Σj as shown in Figure 2.

Figure 2. Toroidal domain for the proof of Lemma 3.12.
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Let χ ∈ C∞(Ω \ Σj) be any smooth function satisfying χ ≡ 1 in ΩΣ+
j
and χ ≡ 0

in ΩΣ−

j
. Notice that ∇̃χ ∈ C∞(Ω̄)3 ∩Z. Then, because of Lemma 3.1 and equation

(8) with w = ∇̃χ, we have that

〈
l · nj , [[χ]]Σj

〉
Σj

=

∫

Ω0

l · ∇χ+

∫

Ω0

(div l)χ = 0.

Consequently, 〈curl l̃ · nj , 1〉Σj
= 0, so that both properties of Corollary 3.7 are

checked and, thus, l̃ ∈ Z. As stated above, this allows us to conclude the proof.

To end this section, we will establish another density result that will be also used
in the sequel. Let Φ be the subspace of smooth functions from the space Θ defined
in (3), which are C∞ up to its boundary. In general, these functions do not belong
to C∞(Ω̄) because they may have (constant) jumps on each cutting surface.

Lemma 3.13. The space Φ/C is dense in Θ/C endowed with the H1(Ω0)-seminorm.

Proof. We apply again the classical property used in the previous lemma. Let L be
a bounded linear functional in Θ/C that vanishes on Φ/C. To conclude the density
claimed in the lemma, it is enough to show that L vanishes on the whole Θ/C (cf.
[8, (I.2.14)]).

Since Θ/C is a Hilbert space, there exists l ∈ Θ/C such that
∫

Ω0

∇̃l · ∇̃ψ = Lψ ∀ψ ∈ Θ/C.

Since L vanishes on Φ ⊃ C∞(Ω̄),
∫

Ω0

∇̃l · ∇ψ = 0 ∀ψ ∈ C∞(Ω̄)/C.

Hence, because of the Helmholtz decomposition (1), we have that ∇̃l ∈ H0(div
0,Ω).

Moreover, for each Σj , let χ be as defined in the proof of the previous lemma and
note that, by construction, χ ∈ Φ. Then, Lemma 3.1 yields

〈
∇̃l · nj , [[χ]]Σj

〉
Σj

=

∫

Ω0

∇̃l · ∇χ = 0.

Therefore, by virtue of Lemma 3.6, ∇̃l ∈ X and hence is L2(Ω)3-orthogonal to

H(curl0,Ω) = ∇̃Θ (cf. Lemmas 3.5 and 3.2). Thus,

Lψ =

∫

Ω0

∇̃l · ∇̃ψ = 0

for all ψ ∈ Θ/C and we conclude the proof.

4. Mixed variational formulation. The next step is to introduce a variational
formulation of Problem 1. With this aim, thanks to Lemmas 3.6 and 3.5, we will
impose the constraints in this eigenvalue problem by means of a Lagrange multiplier
χ ∈ H(curl0,Ω). Moreover, the eigenfunction u will be sought in the space Z. This
will ensure that the sesquilinear form on the right-hand side will be Hermitian, which
will allow us to prove that the corresponding solution operator is self-adjoint. Thus,
we are led to the following variational formulation.
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Problem 2. Find λ ∈ C and (u,χ) ∈ Z ×H(curl0,Ω), (u,χ) 6≡ 0, such that
∫

Ω

curlu · curl v̄ +

∫

Ω

χ · v̄ = λ

∫

Ω

u · curl v̄ ∀v ∈ Z,

∫

Ω

u · η̄ = 0 ∀η ∈ H(curl0,Ω).

The first step is to prove that this formulation is actually equivalent to Problem 1.

Lemma 4.1. If (λ,u) is a solution to Problem 1, then (λ,u,0) is a solution to
Problem 2. Conversely, if (λ,u,χ) is a solution to Problem 2, then χ = 0 and
(λ,u) is a solution to Problem 1.

Proof. First, as stated above, thanks to Lemmas 3.5 and 3.6, for u ∈ L2(Ω)3,

∫

Ω

u · η̄ = 0 ∀η ∈ H(curl0,Ω)
u∈X
⇐⇒





divu = 0 in Ω,

u · n = 0 on Γ,

〈u · nj , 1〉Σj
= 0, 1 ≤ j ≤ J.

Next, if (λ,u) is a solution to Problem 1, clearly (λ,u,0) solves Problem 2.
Conversely, let (λ,u,χ) be a solution to Problem 2. By taking v = χ ∈

H(curl0,Ω) ⊂ Z, we have that χ ≡ 0. Then, by taking v ∈ D(Ω)3 ⊂ Z, we
have that curl(curlu − λu) = 0 in Ω and, hence, curlu − λu ∈ H(curl0,Ω).
Moreover, curlu ∈ X (because u ∈ Z) and u ∈ X too (as shown above). Thus,
curlu− λu ∈ X ∩H(curl0,Ω) = {0} (cf. Lemma 3.5). So, curlu = λu in Ω.

The Babuška-Brezzi conditions for this mixed problem are easy to check. To do
this, first note that thanks to Lemma 3.5 and (7), we have that

{
v ∈ Z :

∫
Ω
v · η̄ = 0 ∀η ∈ H(curl0,Ω)

}
= Z ∩X = V .

Lemma 4.2. The Babuška-Brezzi conditions for Problem 2 hold true, namely:

• (ellipticity in the kernel) there exists α > 0 such that
∫

Ω

|curlv|2 ≥ α ‖v‖
curl,Ω ∀v ∈ V ;

• (inf-sup condition) there exists β > 0 such that

sup
v∈Z

∫
Ω
η · v

‖v‖
curl,Ω

≥ β ‖η‖0,Ω ∀η ∈ H(curl0,Ω).

Proof. The ellipticity in the kernel follows from the equivalence between ‖·‖
curl,Ω

and ‖curl ·‖0,Ω in the space V ⊂ X ∩ H(curl,Ω), which in turn follows from [1,

Corollary 3.16] and Corollary 3.8. The inf-sup condition follows by taking v = η ∈
H(curl0,Ω) ⊂ Z.

Thanks to this lemma, we are in a position to define the solution operator cor-
responding to Problem 2:

T : Z −→ Z,

f 7−→ Tf := w,
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with w ∈ Z such that there exists χ ∈ H(curl0,Ω) satisfying
∫

Ω

curlw · curl v̄ +

∫

Ω

χ · v̄ =

∫

Ω

f · curl v̄ ∀v ∈ Z,

∫

Ω

w · η̄ = 0 ∀η ∈ H(curl0,Ω).

By virtue of Lemma 4.2, this is a well posed problem (see, for instance, [8,
Corollary I.4.1]). Moreover, clearly, Tu = µu, with u 6≡ 0 and µ 6= 0 if and only if
(λ,u,0) is a solution of Problem 2 with λ = 1/µ 6= 0. Therefore, our next step will
be to obtain a spectral characterization of the operator T . With this end, first we
establish the following additional regularity result.

Lemma 4.3. The image of T satisfies T (Z) ⊂ V. Moreover, there exists s > 1
2

and C > 0 such that, for all f ∈ Z, w := Tf ∈ Hs(curl,Ω) and

‖w‖s,Ω + ‖curlw‖s,Ω ≤ C ‖f‖
curl,Ω .

Consequently, T : Z → Z is compact.

Proof. Let f ∈ Z and w := Tf ∈ Z, too. The same arguments used in the proof
of Lemma 4.1 apply to the problem defining T and allow us to show that w ∈ X ,
χ ≡ 0 and curl(curlw − f) = 0 in Ω. Then, on one side, w ∈ Z ∩ X = V (cf.
(7)), so that T (Z) ⊂ V .

On the other hand, w ∈ Z ∩ X ⊂ H(curl,Ω) ∩ H0(div
0,Ω) and curlw ∈

H(curl,Ω) ∩ H0(div
0,Ω), too. Then, according to (2), there exists s > 1

2 such

that H(curl,Ω) ∩ H0(div
0,Ω) is continuously imbedded in Hs(Ω)3. Hence, w ∈

Hs(curl,Ω) and the estimate of the lemma holds true. Finally, we end the lemma
from the compactness of the inclusion Hs(curl,Ω) ∩ Z →֒ Z, which in turn is a
consequence of the fact that the inclusion Hs(Ω) →֒ L2(Ω) is compact.

Lemma 4.4. The operator T : Z → Z is self-adjoint.

Proof. Let f , g ∈ Z, w := Tf and v := Tg. As shown in the proof of the previous
lemma, w,v ∈ Z ∩ X , the corresponding Lagrange multipliers vanish and both,
(curlw − f) and (curlv − g), belong to H(curl0,Ω). Consequently, using that
H(curl0,Ω) ⊥ X (cf. Lemma 3.5) and Lemma 3.11, we have that

∫

Ω

w · ḡ =

∫

Ω

w · curl v̄ =

∫

Ω

curlw · v̄ =

∫

Ω

f · v̄.

On the other hand, from the first equation of the problem defining T and Lemma 3.11
again, we have that∫

Ω

curlw · curl ḡ =

∫

Ω

f · curl ḡ =

∫

Ω

curlf · ḡ =

∫

Ω

curlf · curl v̄,

which allow us to conclude that T : Z → Z is self-adjoint.

Theorem 4.5. The spectrum of T decomposes as follows: sp(T ) = {µn}n∈N
∪{0}.

Moreover,

• µ0 = 0 is an infinite-multiplicity eigenvalue and its associated eigenspace is
H(curl0,Ω);

• {µn}n∈N
is a sequence of finite-multiplicity eigenvalues (repeated accordingly

to their respective multiplicities) which converges to 0 and there exists a Hilber-
tian basis of associated eigenfunctions {un}n∈N

of V (i.e., such that Tun =
µnun, n ∈ N).



12 E. LARA, R. RODRÍGUEZ AND P. VENEGAS

Proof. From the definition of the operator T , its kernel is given by

kerT :=
{
f ∈ Z :

∫
Ω
f · curlv = 0 ∀v ∈ Z

}

=
{
f ∈ Z :

∫
Ω
curlf · v = 0 ∀v ∈ Z

}
= H(curl0,Ω),

the last two equalities because of Lemmas 3.11 and 3.10, respectively. Then, since
T (Z) ⊂ V (cf. Lemma 4.3) and Z = V ⊕ H(curl0,Ω) (cf. Lemma 3.9), the
theorem follows from the two previous lemmas and the classical theory for self-
adjoint compact operators (see, for instance, [4, Section 6.4]).

Taking into account the relation between the solutions of Problem 2 and the spec-
trum of T , we also have the following characterization of the solutions of Problem 2
and, because of Lemma 4.1, of Problem 1 too.

Corollary 4.6. Problem 1 has a countable number of solutions (λn,un), n ∈ N,
λn → ∞ and {un}n∈N

is a Hilbertian basis of V.

In the following section we will introduce a finite element discretization of Prob-
lem 2. In order to prove the convergence of the proposed numerical scheme we will
use the following operator:

G : Z ×Θ/C −→ Z ×Θ/C,

(f , g) 7−→ G(f , g) := (w, ξ),
(9)

where (w, ξ) ∈ Z ×Θ/C is the solution of the following problem:
∫

Ω

curlw · curl v̄ +

∫

Ω

∇̃ξ · v̄ =

∫

Ω

f · curl v̄ ∀v ∈ Z,

∫

Ω

w · ∇̃ψ̄ = 0 ∀ψ ∈ Θ/C.

By virtue of Lemma 3.2, H(curl0,Ω) = ∇̃Θ. Therefore, this problem is equivalent

to the one used to define the operator T with χ = ∇̃ξ. Hence, G(f , g) = (Tf , 0)
and we have the following result.

Lemma 4.7. The operator G is compact and self-adjoint.

Proof. Since G(f , g) = (Tf , 0), the result follows immediately from the compact-
ness and the self-adjointness of T (Lemmas 4.3 and 4.4, respectively).

Note that (µ, (u, 0)) is an eigenpair of the operator G with µ 6= 0 if and only if
( 1µ ,u, 0) is a solution of Problem 2 or, equivalently, ( 1µ ,u) a solution of Problem 1.

5. Finite element spectral approximation. In this section, we introduce a
Galerkin approximation of Problem 2 and prove convergence and error estimates
for the approximate eigenvalues and eigenfunctions.

With this end, we assume that Ω is a polyhedron and choose the cutting surfaces
Σj , 1 ≤ j ≤ J , also polyhedral. Let {Th}h>0 be a regular family of tetrahedral

partitions of Ω̄ compatible with the cutting surfaces in the sense that each Σj is
a union of faces of tetrahedra T ∈ Th. Therefore, each Th can also be seen as a
mesh of the cut domain Ω0. The mesh parameter h denotes the maximum diameter
of all the tetrahedra of the mesh Th. From now on we will denote by C a generic
constant, not necessarily the same at each occurrence but always independent of
the mesh parameter h.
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We use classical curl-conforming Nédélec finite elements:

N h :=
{
vh ∈ H(curl,Ω) : vh|T ∈ N k(T ) ∀T ∈ Th

}
,

with

N k(T ) := Pk−1(T )
3 ⊕

{
p ∈ P̄k(T )

3 : p(x) · x = 0
}
,

where, for k ∈ N, Pk is the space of polynomials of degree not greater than k and
P̄k the subspace of homogeneous polynomials of degree k. Let

Zh := N h ∩Z,

which by virtue of Corollary 3.7 can be written as follows:

Zh =
{
vh ∈ N h : curlvh · n = 0 on Γ and

∫
Σj

curlvh · nj = 0, 1 ≤ j ≤ J
}
.

We denote by INh the so-called Nédélec interpolation operator. We refer to [13,
Section 5.5] for its precise definition and the properties of this interpolant that we
will use in the sequel. This interpolant is well defined for functions in Hs(curl,Ω)

provided s > 1
2 , so that INh : Hs(curl,Ω) → N h is a bounded linear operator.

Moreover, as it is shown in the following lemma, the Nédélec interpolant of functions
from Z remains in this space.

Lemma 5.1. For all v ∈ Hs(curl,Ω) ∩Z with s > 1
2 , I

N
h v ∈ Zh.

Proof. Let IRh be the divergence-conforming Raviart-Thomas interpolation operator
(see, for instance, [13, Section 5.4] for its definition and properties). This interpolant
is well defined for functions in Hs(Ω)3 with s > 1

2 ([13, Lemma 5.15]).

Let v ∈ Hs(curl,Ω) ∩Z with s > 1
2 . According to Corollary 3.7, curlv · n = 0

on Γ and
∫
Σj

curlv ·n = 0, 1 ≤ j ≤ J (note that the integral makes sense because

curlv ∈ Hs(Ω)3 with s > 1
2 ). Therefore,

curl
(
INh v

)
· n =

(
IRh curlv

)
· n = 0 on Γ,

where the first equality follows from [13, Lemma 5.40] and the second one from the
fact that the Raviart-Thomas interpolant preserves vanishing normal components
on the faces of the tetrahedra of the mesh (which in turn follows from the definition
of this interpolant). Analogously, it also preserves the integral of these normal
components, so that we have

∫

Σj

curl
(
INh v

)
· n =

∫

Σj

(
IRh curlv

)
· n =

∫

Σj

curlv · n = 0, 1 ≤ j ≤ J.

Thus, INh v ∈ Zh.

To discretize the Lagrange multiplier χ ∈ H(curl0,Ω), we use Lemma 3.2 to

write χ = ∇̃ϕ with ϕ ∈ Θ, and approximate this space by

Θh :=
{
ψh ∈ C(Ω0) : ψh|T ∈ Pk(T ) ∀T ∈ Th and [[ψh]]Σj

= constant
}
.

The following discrete version of Lemma 3.2 has been proved in [3, Lemma 5.5].

Lemma 5.2. There holds

∇̃Θh = N h ∩H(curl0,Ω).

Now we are in a position to introduce a finite element discretization of Problem 2.
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Problem 3. Find λh ∈ C and (uh, ϕh) ∈ Zh ×Θh/C, (uh, ϕh) 6≡ 0, such that
∫

Ω

curluh · curl v̄h +

∫

Ω

∇̃ϕh · v̄h = λh

∫

Ω

uh · curl v̄h ∀vh ∈ Zh,

∫

Ω

uh · ∇̃ψ̄h = 0 ∀ψh ∈ Θh/C.

First of all note that, as in the continuous problem, for any solution (λh,uh, ϕh)

of Problem 3, ϕh vanishes. In fact, since ∇̃Θh ⊂ Zh (cf. Lemma 5.2), this follows

by taking above vh = ∇̃ϕh.
Taking arbitrary bases of the finite dimensional spaces Zh and Θh/C, Problem 3

can be equivalently written as a degenerate generalized matrix eigenvalue problem
in which both matrices are Hermitian but none is positive definite. However, we
will show in the next section that it is also equivalent to another generalized matrix
eigenvalue problem of smaller dimension which will be proved to be well posed.

In order to prove that the eigenvalues and eigenfunctions of Problem 2 are well
approximated by those of Problem 3, we resort to the classical theory for mixed
eigenvalue problems of the so-called type (Q1) reported in [12, Section 3]. With
this aim, we have to check the following properties, which correspond to assumptions
(3.12)–(3.16) from this reference.

• Babuška-Brezzi conditions for the continuous problem; they have been already
established in Lemma 4.2.

• Babuška-Brezzi conditions for the discrete problem, namely:
– (ellipticity in the discrete kernel) there exists α∗ > 0 such that

∫

Ω

|curlvh|
2 ≥ α∗ ‖vh‖curl,Ω ∀vh ∈ Vh,

where Vh :=
{
vh ∈ Zh :

∫
Ω
vh · ∇̃ψh = 0 ∀ψh ∈ Θh

}
; it has been proved

in [1, Proposition 4.6].
– (discrete inf-sup condition) there exists β∗ > 0 such that

sup
vh∈Zh

∫
Ω
∇̃ψh · vh

‖vh‖curl,Ω
≥ β∗

∥∥∇̃ψh
∥∥
0,Ω

∀ψh ∈ Θh;

it follows by taking vh = ∇̃ψh, which according to Lemma 5.2 lies in Zh.
• Density of the finite element spaces: for all (v, ψ) ∈ Z ×Θ,

inf
(vh,ψh)∈Zh×Θh

(
‖v − vh‖curl,Ω +

∥∥∇̃ψ − ∇̃ψh
∥∥
0,Ω

)
→ 0 as h→ 0;

it follows from the densities of C∞(Ω̄)3 ∩Z in Z (cf. Lemma 3.12) and Φ/C
in Θ/C (cf. Lemma 3.13), the fact that for a smooth v ∈ Z its Nédélec inter-

polant INh lies in Zh (cf. Lemma 5.1) and standard approximation properties
of the Nédélec and the Lagrange interpolants (cf. [13, Theorem 5.41(1)] and
[8, Lemma I.A.2], for instance).

An additional hypothesis assumed in the spectral approximation theory from
[12, Section 3] is the compactness of the solution operator G defined in (9), which
in our case has been already established in Lemma 4.7. Moreover, this theory
also involves a formal adjoint operator G∗, which in the present case is defined for
(f , g) ∈ Z × Θ/C by G∗(f , g) := (w∗, ξ∗), with (w∗, ξ∗) ∈ Z × Θ/C being the
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solution of the adjoint problem:∫

Ω

curlv · curl w̄∗ +

∫

Ω

v · ∇ξ̄∗ =

∫

Ω

v · curl f̄ ∀v ∈ Z,

∫

Ω

∇ψ · w̄∗ = 0 ∀ψ ∈ Θ/C.

However, according to Lemma 3.11, for f ,v ∈ Z,
∫
Ω
v · curl f̄ =

∫
Ω
curlv · f̄ and,

then, in this case, the formal adjoint G∗ coincides with G.
Therefore, all the hypotheses needed to apply [12, Theorem 3.1] hold true, which

allows us to establish the main result of this paper.

Theorem 5.3. Let λ be an eigenvalue of Problem 2 with multiplicity m and E ×
{0} ⊂ Z ×Θ/C the corresponding eigenspace.

There exist exactly m eigenvalues λ
(1)
h , . . . , λ

(m)
h of Problem 3 (repeated accord-

ingly to their respective multiplicities) which converge to λ as h→ 0.

Let Eh×{0} be the direct sum of the eigenspaces corresponding to λ
(1)
h , . . . , λ

(m)
h .

Then,

δ̂ (E ,Eh) ≤ Cγh,

and ∣∣∣λ− λ
(i)
h

∣∣∣ ≤ Cγ2h, i = 1, . . . ,m,

where
γh := δ(E ,Zh) := sup

v∈E

‖v‖
curl,Ω=1

inf
vh∈Zh

‖v − vh‖curl,Ω

is the distance from the continuous eigenspace E to the discrete space Zh and

δ̂ (E ,Eh) := max {δ (E ,Eh) , δ (Eh,E)}

is the so-called gap between the continuous and the discrete eigenspaces.

To end this section we establish an appropriate estimate for the term γh. With
this end, recall that k ≥ 1 is the degree of the Nédélec finite elements and let s > 1

2
be a Sobolev exponent such that the inclusion (2) holds and is continuous.

Theorem 5.4. Let γh be as in Theorem 5.3. Then, there exists C > 0 such that

γh ≤ Cλhmin{s,k}.

Proof. Let v ∈ E be such that ‖v‖
curl,Ω = 1 and µ := 1

λ , so that Tv = µv. Then,

from Lemma 4.3 it follows that v ∈ Hs(curl,Ω) and

‖v‖s,Ω + ‖curlv‖s,Ω ≤
C

µ
‖v‖

curl,Ω ≤ Cλ.

Therefore, using again the standard error estimate for the Nédélec interpolant INh v

(cf. [13, Theorem 5.41(1)]) and taking into account that according to Lemma 5.1

INh v ∈ Zh, we obtain

δ (E ,Zh) ≤ sup
v∈E

‖v‖
curl,Ω=1

∥∥v − INh v
∥∥
curl,Ω

≤ Chmin{s,k}
(
‖v‖s,Ω + ‖curlv‖s,Ω

)
.

The result follows from the definition of γh and these two inequalities.

As a consequence of the two previous theorems we conclude that the eigenvalues
and eigenfunctions of Problem 3 converge with optimal order to those of Problem 2.
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6. Implementation issues. In this section we will briefly describe how to impose
in N h the constraints defining Zh:

curlvh · n = 0 on Γ and

∫

Σj

curlvh · nj = 0, 1 ≤ j ≤ J.

With this end, the results from [11, Section 5] and [14, Section 5] have been extended
to multiply connected domains in [10, Section 5] yielding the following result.

Proposition 6.1. Let vh ∈ N h. Then, vh ∈ Zh if and only if there exists ϕh ∈ Θh
such that

n× vh|Γ̃ × n = ∇̃Γ̃

(
ϕh|Γ̃

)
,

where Γ̃ := Γ \
⋃J
j=1 ∂Σj and ∇̃Γ̃ denotes the surface gradient on Γ̃.

The next step is to introduce a convenient basis of the space Θh. Consider the
standard finite element discretization of H1(Ω):

Lh := {ψh ∈ C(Ω) : ψh|T ∈ Pk(T ) ∀T ∈ Th} .

On the other hand, for j = 1, . . . , J , let ϕ̂j ∈ Θh be such that, for all nodes P ,

ϕ̂j(P ) =

{
1, if P ∈ Σ+

j ,

0, if P /∈ Σ+
j .

It is easy to check that Θh = Lh⊕
〈
{ϕ̂j}

J
j=1

〉
. Hence, if {ϕj}

L
j=1 is the nodal basis

of Lh, then, {ϕj}
L
j=1 ∪ {ϕ̂j}

J
j=1 is a basis of Θh.

The final step is to introduce a basis of Zh. With this aim, for simplicity, we
assume that the boundary Γ is connected (otherwise, the same procedure should be
repeated for each of its connected components).

Without loss of generality we order the nodal basis functions {ϕj}
L
j=1 of Lh so

that the first K of them correspond to nodal values on Γ. Then, it is easy to check

that {ϕk|Γ}
K
k=1 ∪ {ϕ̂j |Γ̃}

J
j=1is a basis of ΘΓ̃

h :=
{
ψh|Γ̃ : ψh ∈ Θh

}
. Since surface

gradients are determined up to an additive constant, we choose one vertex on Γ and
drop out the basis function corresponding to this vertex (e.g., vertex number K).

Finally, let {Φm}Mm=1 be the nodal basis of N h; without loss of generality, we

assume that {Φm}Mm=M ′+1 are those related to the faces or edges on Γ. Then we
have the following result whose proof can be found in [10, Proposition 5.1].

Proposition 6.2. {Φm}M
′

m=1 ∪ {∇ϕk}
K−1
k=1 ∪

{
∇̃ϕ̂j

}J
j=1

is a basis of Zh.

Let us remark that the matrices of the algebraic eigenvalue problem correspond-
ing to the discrete mixed formulation can be easily obtained by static condensation
from the matrices of the classical Nédélec and Pk-continuous elements (see [10, Sec-
tion 5.1] for more details). The resulting algebraic generalized eigenvalue problem
has the form (

A Bt

B 0

)(
~u
~ϕ

)
= λh

(
C 0

0 0

)(
~u
~ϕ

)
,

where the entries of ~u and ~ϕ are the components in the above given bases of uh and
ϕh, respectively. Both matrices above are Hermitian (actually, real symmetric), but
none is positive definite.

Since ~ϕ = ~0, the above problem is equivalent to
(
A Bt

B −I

)(
~u
~ϕ

)
= λh

(
C 0

0 0

)(
~u
~ϕ

)
,
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which, in turn, is equivalent to
(
A+BtB

)
~u = λhC~u,

with a real symmetric and positive definite left-hand side matrix. This allows us
to conclude that Problem 3 is well posed and that it has dim(Zh) − dim(ker(C))
non-zero eigenvalues (repeated accordingly to their respective multiplicities).

7. Numerical results. We have implemented the method analyzed above for the
lowest-possible order (k = 1) in a matlab code. We have applied it to compute the
smallest positive eigenvalues in a toroidal domain as that shown in Figure 3, with
r1 = 1 and r2 = 0.5, for which no analytical solution is available.

Figure 3. Half of the toroidal domain for the numerical test.

We have used meshes Th with different levels of refinement; we identify each mesh
by the corresponding number Nh of tetrahedra. For each computed eigenvalue we
have estimated the order of convergence and a more accurate value by means of

a least-squares fitting of the model λh,k ≈ λex + Cht with h = N
−1/3
h . Table 1

shows the obtained results for the four smallest eigenvalues. Note that the first
two converge to a double-multiplicity eigenvalue of the continuous problem and the
other two to another eigenvalue of multiplicity two.

A quadratic order of convergence can be seen from Table 1, which agrees with
the theoretical results for the finite elements used (k = 1) and a smooth domain
(s ≥ 1). Figure 4 shows a log-log plot of the computed errors for the eigenvalue λ1
versus the number of tetrahedra. Once more, the quadratic order of convergence
can be appreciated.

Finally, Figure 5 shows a plot of the eigenfunction (i.e., a Beltrami field in the
torus) corresponding also to the smallest positive eigenvalue λ1.

REFERENCES

[1] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional
non-smooth domains, Math. Methods Appl. Sci., 21 (1998), 823–864.

[2] E. Beltrami, Considerazioni idrodinamiche, Rend. Inst. Lombardo Acad. Sci. Let., 22 (1889),
122–131. English translation: Considerations on hydrodynamics, Int. J. Fusion Energy, 3

(1985), 53–57.
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