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1 Force-free fields

Let H be a magnetic field acting on a conducting fluid, whose motion is

driven by the so-called Lorentz force :

F := J ×B,

where

• J := curlH is the current density,

• B := µH is the magnetic induction (µ being the magnetic

permeability, which in an isotropic medium is a scalar).

Because of this, in magnetohydrodynamics, a magnetic field satisfying

curlH = λH ,

with λ a scalar function, is called a force-free field .
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This kind of fields appear in solar physics for theories on flares and coronal

heating,a,b in fluids for the study of the static equilibrium of smectic liquid

crystals, in plasma physics, superconducting materials, etc.

In 1958 Woltjerc showed that the lowest state of magnetic energy density

within a closed magnetohydrodynamics system is attained when λ is

spatially constant.

In such a case H is called a linear force-free field . Its determination is

naturally related with the spectral problem for the curl operator:

curlH = λH .

The eigenfunctions of this problem are known as free-decay fields and play

an important role, for instance, in the study of turbulence in plasma physics.
aS. CHANDRASEKHAR & L. WOLTJER, On force-free magnetic fields, Proc. Natl. Acad. Sci. USA, 44 (1958)

285–289.
bL. WOLTJER, The crab nebula, Bull. Astron. Inst. Neth., 14 (1958) 39–80.
cL. WOLTJER, A theorem on force-free magnetic fields, Proc. Natl. Acad. Sci. USA, 44 (1958) 489–491.
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1.1 The eigenvalue problem for the curl operator

The spectral problem for the curl operator, has a longstanding tradition in

mathematical physics. Enrico Beltrami seems to be the first who considered

this problem in the context of fluid dynamics and electromagnetism.a This is

the reason why the corresponding eigenfunctions are also called Beltrami

fields .

Analytical solutions of this problem are only known under particular

symmetry assumptions. The first one was obtained in 1957 by

Chandrasekhar and Kendallb for a sphere (the so called spheromak ) in the

context of astrophysical plasmas arising in modeling of the solar crown.
aE. BELTRAMI, Considerazioni idrodinamiche, Rend. Inst. Lombardo Acad. Sci. Let., 22 (1889) 122–131.

(English translation: Considerations on hydrodynamics, Int. J. Fusion Energy, 3 (1985) 53–57.)
bS. CHANDRASEKHAR & P.C. KENDALL, On force-free magnetic fields, Astrophys. J., 126 (1957) 457–460.
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To reduce the problem to a bounded domain Ω, the natural boundary

condition is H · n = 0 on ∂Ω. Thus we are led to the following:

Problem 0: Find λ ∈ C and H 6≡ 0 such that

curlH = λH in Ω,

divH = 0 in Ω,

H · n = 0 on ∂Ω.

The second equation (which for λ 6= 0 is a consequence of the first one)

rules out the trivial solutions λ = 0, H = ∇ϕ.

The approximation of this problem was analyzed for Ω simply connected.a

However, when the domain Ω is multiply connected, the set of

eigenvalues of Problem 0 is the whole complex plane C ! b

aR. RODRÍGUEZ & P. VENEGAS, Numerical approximation of the spectrum of the curl operator. Math. Comp.

83 (2014) 553-577.
bZ. YOSHIDA & Y. GIGA, Remarks on spectra of operator rot. Math. Z., 204 (1990) 235–245.
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2 Geometrical preliminaries
Let Ω ⊂ R

3 be a multiply connected bounded domain with Lipschitz

boundary Γ and outer unit normal n. Let {Σj}
J
j=1 be a set of cutting

surfaces , namely, connected open surfaces with boundary satisfying:

• Σj ⊂ Ω;

• ∂Σj ⊂ Γ;

• Σ̄i ∩ Σ̄j = ∅, i 6= j;

• Ω0 := Ω \
⋃J
j=1 Σj

is simply connected

and pseudo-Lipschitz.

We fix a unit normal nj on each Σj and denote its two faces by Σ+
j and

Σ−
j , with nj being ‘outer’ normal to ∂Ω0 along Σ+

j . For any ψ ∈ H1(Ω0),

we denote by [[ψ]]Σj
:= ψ|Σ−

j
− ψ|Σ+

j
the jump of ψ through Σj along nj .
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2.1 A well posed eigenvalue problem

On a multiple connected domain, one additional constraint per cutting

surface must be added to obtain a well posed eigenvalue problem for the

curl operator. For each cutting surface, there are two alternatives:a

either

∫

γj

H · tj = 0,

or

∫

γ′j

H · t′j = 0.

We focus on the first one which, according to the Stokes Theorem , can be

equivalently written as follows:

∫

Σj

curlH · nj = 0.

aR. HIPTMAIR, P.R. KOTIUGA & S. TORDEUX, Self-adjoint curl operators. Ann. Mat. Pura Appl., 191 (2012)

431–457.
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Since for an eigenfunction of the curl operator with eigenvalue λ 6= 0,
∫

Σj

H · nj =
1

λ

∫

Σj

curlH · nj = 0.

we are led to the following eigenvalue problem, whose analysis and

numerical approximation is our goal:

Problem 1: Find λ ∈ C and H ∈ L2(Ω)3, H 6≡ 0, such that

curlH = λH in Ω,

divH = 0 in Ω,

H · n = 0 on ∂Ω,
∫

Σj

H · nj = 0, 1 ≤ j ≤ J.
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3 Function spaces
We recall the definitions of some function spaces:

L2(Ω) :=
{
v : Ω → C :

∫
Ω
|v|2 <∞

}
,

H1(Ω) :=
{
v ∈ L2(Ω) : ∇v ∈ L2(Ω)3

}
,

H(div,Ω) :=
{
v ∈ L2(Ω)3 : div v ∈ L2(Ω)

}
,

H(div0,Ω) := {v ∈ H(div,Ω) : div v = 0 in Ω} ,

H0(div,Ω) := {v ∈ H(div,Ω) : v · n = 0 on ∂Ω} ,

H0(div
0,Ω) :=

{
v ∈ H(div0,Ω) : v · n = 0 on ∂Ω

}
,

H(curl,Ω) :=
{
v ∈ L2(Ω)3 : curlv ∈ L2(Ω)3

}
,

H(curl0,Ω) := {v ∈ H(curl,Ω) : curlv = 0 in Ω} ,

Hs(Ω) (0 < s < 1) Sobolev space: L2(Ω)
comp.
→֒ Hs(Ω)

comp.
→֒ H1(Ω),

Hs(curl,Ω) :=
{
v ∈ Hs(Ω)3 : curlv ∈ Hs(Ω)3

}
.
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3.1 Characterization of H(curl0,Ω)

Recall that Ω0 := Ω \
⋃J
j=1Σj , with Σj being the cutting surfaces.

For all χ ∈ H1(Ω0), ∇χ ∈ L2(Ω0)3 but, in general, there is no extension

χ̃ of χ to the whole Ω such that χ̃ ∈ H1(Ω). Instead, any extension of ∇χ

obviously belongs to L2(Ω)3. We denote such extension ∇̃χ. Let

Θ :=
{
ψ ∈ H1(Ω0) : [[ψ]]Σj

= const., 1 ≤ j ≤ J
}
.

Lemma. a H(curl0,Ω) = ∇̃Θ.

Lemma. C∞(Ω0) ∩Θ is dense in Θ.

aC. AMROUCHE, C. BERNARDI, M. DAUGE & V. GIRAULT, Vector potentials in three-dimensional non-smooth

domains. Math. Methods Appl. Sci., 21 (1998) 823–864.
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3.2 A Green’s formula

Let 〈·, ·〉Σj
denote the duality pairing between H1/2(Σj)

′ and H1/2(Σj).

Lemma. For all v ∈ H0(div,Ω),

v · nj|Σj
∈ H1/2(Σj)

′, 1 ≤ j ≤ J,

and the following Green’s formula holds true:

J∑

j=1

〈
v · nj, [[ψ]]Σj

〉
Σj

=

∫

Ω0

v · ∇̃ψ +

∫

Ω0

(div v)ψ

∀ψ ∈ H1(Ω0).
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3.3 Harmonic Neumann fields

KT (Ω) := H(curl0,Ω) ∩ H0(div
0,Ω).

Lemma. H(curl0,Ω) = KT

⊥
⊕ ∇(H1(Ω)).

Lemma. a dim(KT (Ω)) = J (number of cutting surfaces). A basis is

given by
{
∇̃φj

}J
j=1

, where φj ∈ Θ/R is the unique solution of

∆φj = 0 in Ω0,

∂nφj = 0 on Γ,

[[∂nφj]]Σk
= 0, 1 ≤ k ≤ J,

[[φj]]Σk
= δj,k, 1 ≤ k ≤ J.

aC. FOIAS & R. TEMAM, Remarques sur les équations de Navier-Stokes stationnaires et les phńomènes suc-

cessifs de bifurcation. Ann. Sc. Norm. Sup. Pisa, 5 (1978) 29–63.
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3.4 Space X

Helmholtz decomposition : L2(Ω)3 = H0(div
0,Ω)

⊥
⊕ ∇(H1(Ω)).

Recall: KT (Ω) := H(curl0,Ω) ∩ H0(div
0,Ω). Let

X := KT
⊥H0(div

0,Ω) .

L2(Ω)3 = X
⊥
⊕ KT︸ ︷︷ ︸

H0(div
0;Ω)

⊥
⊕ ∇(H1(Ω)) = X

⊥
⊕ KT

⊥
⊕ ∇(H1(Ω))︸ ︷︷ ︸
H(curl0,Ω)

.

Lemma. u ∈ X ⇐⇒





divu = 0 in Ω,

u · n = 0 on Γ,

〈u · nj, 1〉Σj
= 0, 1 ≤ j ≤ J.
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3.5 Space Z

Let

Z := {v ∈ H(curl,Ω) : curlv ∈ X} .

Then,

v ∈ Z ⇐⇒





v ∈ H(curl,Ω),

curlv · n = 0 on Γ,

〈curlv · nj, 1〉Σj
= 0, 1 ≤ j ≤ J.

Lemma. Z ⊃ D(Ω)3.

Lemma.

∫

Ω

(curlu · v − u · curlv) = 0 ∀u,v ∈ Z .

Lemma. C∞(Ω̄)3 ∩Z is dense in Z .
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3.6 Space V

Let

V := X ∩Z .

Then,

v ∈ V ⇐⇒





v ∈ H(div0,Ω) ∩ H(curl,Ω),

v · n = 0 on Γ,

〈v · nj, 1〉Σj
= 0, 1 ≤ j ≤ J,

curlv · n = 0 on Γ,

〈curlv · nj, 1〉Σj
= 0, 1 ≤ j ≤ J.

Lemma. Z = H(curl0,Ω)
⊥
⊕ V .
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4 Mixed variational formulation

Problem 1: Find λ ∈ C and u ∈ L2(Ω)3, u 6≡ 0, such that

curlu = λu in Ω,

divu = 0 in Ω,

u · n = 0 on ∂Ω,∫

Σj

u · nj = 0, 1 ≤ j ≤ J.

Problem 2: Find λ ∈ C and (u,χ) ∈ Z × H(curl0,Ω),

(u,χ) 6≡ 0, such that
∫

Ω

curlu · curl v̄ +

∫

Ω

χ · v̄ = λ

∫

Ω

u · curl v̄ ∀v ∈ Z ,

∫

Ω

u · η̄ = 0 ∀η ∈ H(curl0,Ω).
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Lemma. Problem 1 and Problem 2 are equivalent.

PROOF. Let u ∈ L2(Ω)3.

∫

Ω

u · η̄ = 0

∀η ∈ H(curl0,Ω)





u∈X
⇐⇒





divu = 0 in Ω,

u · n = 0 on Γ,

〈u · nj, 1〉Σj
= 0, 1 ≤ j ≤ J.

(λ,u) solution of Problem 1 =⇒ (λ,u,0) solution of Problem 2.

Let (λ,u,χ) be a solution of Problem 2.

Taking v = χ ∈ Z =⇒ Lagrange multiplier χ = 0.

Taking v ∈ D(Ω)3 ⊂ Z =⇒ curlu− λu ∈ H(curl0,Ω).

u ∈ Z =⇒ curlu ∈ X .

u ∈ X =⇒ curlu− λu ∈ X ∩ H(curl0,Ω) = {0} =⇒

curlu = λu in Ω.
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4.1 Solution operator

T : Z −→ Z ,

f 7−→ Tf := w ∈ Z : ∃χ ∈ H(curl0,Ω) :




∫

Ω

curlw · curl v̄ +

∫

Ω

χ · v̄ =

∫

Ω

f · curl v̄ ∀v ∈ Z ,

∫

Ω

w · η̄ = 0 ∀η ∈ H(curl0,Ω).

µ 6= 0 : Tu = µu, u 6≡ 0 ⇐⇒
(
1
µ
,u,0

)
solution of Problem 2.

The Babu ška-Brezzi conditions hold true:

∃α > 0 :

∫

Ω

|curlv|2 ≥ α ‖v‖
curl,Ω ∀v ∈ V := H(curl0,Ω)⊥Z ,

∃β > 0 : sup
v∈Z

∫
Ω
η · v

‖v‖
curl,Ω

≥ β ‖η‖0,Ω ∀η ∈ H(curl0,Ω),
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4.2 Spectral characterization

Lemma. ∃s > 1
2

and C > 0 : ∀f ∈ Z , w = Tf ∈ Hs(curl,Ω) and

‖w‖s,Ω + ‖curlw‖s,Ω ≤ C ‖f‖0,Ω .

Consequently, T : Z → Z is compact.

Lemma. T : Z → Z is self-adjoint.

Theorem. sp(T ) = {µn}n∈N ∪ {0}.

(i) µ0 = 0 is an infinite-multiplicity eigenvalue with associated eigenspace

H(curl0,Ω);

(ii) {µn}n∈N is a sequence of finite-multiplicity eigenvalues (repeated

according to their respective multiplicities) and µn → 0.

Moreover, there exists a Hilbertian basis {un}n∈N of V , with un such

that Tun = µnun, n ∈ N.
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5 Finite element spectral approximation

{Th}h>0 regular family of tetrahedral partitions of a polyhedral domain Ω̄.

Nédélec F.E. space:

N h :=
{
vh ∈ H(curl,Ω) : vh|T ∈ N k(T ) ∀T ∈ Th)

}

with N k(T ) := Pk−1(T )
3 ⊕

{
p ∈ P̄k(T )

3 : p(x) · x = 0
}

.

Zh := N h ∩Z .

Stokes Theorem =⇒

Zh =
{
vh ∈ N h : curlvh · n = 0 on Γ and

∫
γj
vh · tj = 0

}
.

Nédélec interpolant: INh : Hs(curl,Ω) −→ N h (s > 1
2
).

Lemma. ∀v ∈ Hs(curl,Ω) ∩Z with s > 1
2
, INh v ∈ Zh.
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5.1 Finite element discretization

To discretize the Lagrange multiplier χ ∈ H(curl0,Ω), we recall that

H(curl0,Ω) = ∇̃Θ, to write χ = ∇̃ϕ with ϕ ∈ Θ, and use

Θh :=
{
ψh ∈ C(Ω0) : ψh|T ∈ Pk(T ) ∀T ∈ Th and [[ψh]]Σj

= const.
}
,

Lemma. ∇̃Θh = N h ∩ H(curl0,Ω).

Problem 2h: Find λh ∈ C and (uh, ϕh) ∈ Zh × Θh/C,

(uh, ϕh) 6≡ 0, such that
∫

Ω

curluh · curl v̄h +

∫

Ω

∇̃ϕh · v̄h = λh

∫

Ω

uh · curl v̄h

∀vh ∈ Zh,∫

Ω

uh · ∇̃ψ̄h = 0 ∀ψh ∈ Θh/C.

As in the continuous case, the Lagrange multiplier vanishes: ϕh ≡ 0.
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5.2 Finite element approximation

We resort to the classical theory for finite element spectral approximation of

mixed problems of type Q1.a With this aim, we have to prove:

• Babu ška-Brezzi conditions for the continuous problem. X

• Babu ška-Brezzi conditions for the discrete problem:

∃α∗ > 0 :

∫

Ω

|curlvh|
2 ≥ α∗ ‖vh‖curl,Ω ∀vh ∈ Vh,

where Vh :=
{
vh ∈ Zh :

∫
Ω
vh · ∇̃ψh = 0 ∀ψh ∈ Θh

}
, and

∃β∗ > 0 : sup
vh∈Zh

∫
Ω
∇̃ψh · vh

‖vh‖curl,Ω
≥ β∗

∥∥∇̃ψh
∥∥
0,Ω

∀ψh ∈ Θh.

aB. MERCIER, J. OSBORN, J. RAPPAZ & P.-A. RAVIART, Eigenvalue approximation by mixed and hybrid meth-

ods. Math. Comp., 36 (1981) 427–453.
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• Density of the finite element spaces: ∀(v, ψ) ∈ Z ×Θ,

inf
(vh,ψh)∈Zh×Θh

(
‖v − vh‖curl,Ω +

∥∥∇̃ψ − ∇̃ψh
∥∥
0,Ω

) h→0
−−→ 0.

It follows from the density of C∞(Ω̄)3 ∩Z and C∞(Ω0) ∩Θ in Z

and Θ, resp.

• Compactness of the global solution operator

G : Z ×Θ/C −→ Z ×Θ/C,

(f , g) 7−→ G(f , g) := (w, ξ) ∈ Z ×Θ/C :




∫

Ω

curlw · curl v̄ +

∫

Ω

∇ξ · v̄ =

∫

Ω

f · curl v̄ ∀v ∈ Z ,

∫

Ω

w · ∇ψ̄ = 0 ∀ψ ∈ Θ/C.

It follows that G(f , g) = (Tf , 0) and, hence, G is compact.
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5.3 Distance between subspaces

We recall that, given two subspaces E and F of Z ,

δ(E ,F) := sup
v∈E

‖v‖
curl,Ω=1

(
inf
w∈F

‖v −w‖
curl,Ω

)

is the distance from E to F and

δ̂(E ,F) := max {δ(E ,F), δ(F ,E)}

is the gap (or symmetric distance) between both subspaces.
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5.4 Spectral approximation results

Theorem. Let λ be an eigenvalue of Problem 2 with finite multiplicitym and

E × {0} ⊂ Z ×Θ/C the corresponding eigenspace.

There exist exactly m eigenvalues λ
(1)
h , . . . , λ

(m)
h of Problem 2h

(repeated according to their respective multiplicities) which converge to λ

as h→ 0.

Let Eh × {0} be the direct sum of the eigenspaces corresponding to

λ
(1)
h , . . . , λ

(m)
h . Then,

δ̂ (E ,Eh) ≤ Cγh,∣∣∣λ− λ
(i)
h

∣∣∣ ≤ Cγ2h, i = 1, . . . ,m,

where

γh := δ(E ,Zh) ≤ Chmin{s,k}.
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6 Implementation issues

It remains to show how to impose in N h the constraints defining Zh:a

curlvh · n = 0 on Γ and

∫

γj

vh · tj = 0, 1 ≤ j ≤ J.

vh ∈ Zh ⇐⇒ n× vh|Γ̃ × n = ∇̃Γ̃

(
ϕh|Γ̃

)
with ϕh ∈ Θh,

where Γ̃ := Γ \
⋃J
j=1 γj and ∇̃Γ̃ is the surface gradient on Γ̃.

Let Lh := {ψh ∈ C(Ω) : ψh|T ∈ Pk(T ) ∀T ∈ Th}.

For each Σj , let ϕ̂j ∈ Θh be such that, for all nodes P ,

ϕ̂j(P ) =

{
1, if P ∈ Σ+

j ,

0, if P /∈ Σ+
j .

Then, Θh = Lh ⊕
〈
{ϕ̂j}

J
j=1

〉
.

aS. MEDDAHI AND V. SELGAS, A mixed-FEM and BEM coupling for a three-dimensional eddy current problem,

M2AN Math. Model. Numer. Anal., 37 (2003) 291–318.
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For simplicity, we assume that the boundary Γ is connected.

Let {ϕj}
L
j=1 be the nodal basis of Lh. Without loss of generality we order

these basis functions so that the first K of them correspond to nodal values

on Γ.

Since surface gradients are determined up to an additive constant, we

choose one vertex on Γ and drop out the basis function corresponding to

this vertex (for instance vertex number K).

Let {Φm}
M
m=1 be the nodal basis of N h; without loss of generality, we

assume that {Φm}
M
m=M ′+1 are those related to the faces or edges on Γ.

Theorem. {Φm}
M ′

m=1 ∪ {∇ϕk}
K−1
k=1 ∪

{
∇̃ϕ̂j

}J
j=1

is a basis of Zh.

The matrices of the algebraic eigenvalue problem corresponding to the

discrete mixed formulation can be easily obtained by static condensation

from the matrices of the classical Nédélec and Pk-continuous elements.
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6.1 Reduction to a well posed eigenvalue problem

The resulting algebraic generalized eigenvalue problem has the form
(
A Bt

B 0

)(
~uh

~ϕh

)
= λh

(
C 0

0 0

)(
~uh

~ϕh

)
,

where ~uh and ~ϕh are the vectors of nodal components of uh and ϕh, resp.

Both matrices above are symmetric, but none is positive definite.

Since ~ϕh = 0, the above problem is equivalent to
(
A Bt

B −I

)(
~uh

~ϕh

)
= λh

(
C 0

0 0

)(
~uh

~ϕh

)
,

which, in turn, is equivalent to
(
A+BtB

)
~uh = λhC~uh,

with symmetric and positive definite left-hand side matrix.
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7 Numerical results

• We have solved the problem in a toroidal domain as that shown above,

with r1 = 1 and r2 = 0.5. No analytical solution is available.

• We have used meshes Th with different levels of refinement; we identify

each mesh by the corresponding number Nh of tetrahedra.

• For each computed eigenvalue we have estimated the convergence

order and a more accurate value by a least-squares fitting of the model

λh,k ≈ λex + Cht.
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7.1 Computed eigenvalues

Nh λ1 λ2 λ3 λ4

1259 13.7352 14.2419 14.7751 15.5001

2656 8.4648 8.6325 8.7671 8.9228

3822 7.9359 8.0224 8.1618 8.2056

7812 7.2752 7.2941 7.4303 7.4328

20384 6.6320 6.6353 6.7104 6.7118

28321 6.5199 6.5252 6.5888 6.5903

43667 6.4406 6.4444 6.5105 6.5121

58732 6.4096 6.4129 6.4723 6.4746

75999 6.3824 6.3871 6.4439 6.4448

97886 6.3565 6.3590 6.4155 6.4161

131222 6.3276 6.3285 6.3840 6.3842

154592 6.3156 6.3162 6.3726 6.3734

171127 6.3093 6.3098 6.3657 6.3662

182885 6.3075 6.3080 6.3642 6.3644

241429 6.2829 6.2833 6.3370 6.3370

264623 6.2781 6.2787 6.3323 6.3324

301862 6.2737 6.2741 6.3275 6.3277

λex 6.2233 6.2174 6.2714 6.2690

order 2.20 2.12 2.17 2.14
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7.2 Error curve
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7.3 Eigenfunction corresponding to the smallest eigenvalue
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Frontal view

- 33 - Finite element computation of Beltrami fields.

Zoom

- 34 - Finite element computation of Beltrami fields.

8 A Maxwell-like primal formulation

If (λ,u) is a solution of Problem 1, then u ∈ H(curl,Ω) and

curlu = λu in Ω,

curlu · n = 0 on ∂Ω,

〈curlu · nj, 1〉Σj
= 0, 1 ≤ j ≤ J.

Hence, u ∈ Z and ∀v ∈ Z there holds∫

Ω

curlu ·curl v̄ = λ

∫

Ω

u ·curl v̄ = λ

∫

Ω

curlu · v̄ = λ2
∫

Ω

u · v̄.

Thus, if (λ,u) is a solution of Problem 1, then (λ2,u) is a solution of:

Problem 3: Find λ ∈ C and u ∈ Z , u 6≡ 0, such that
∫

Ω

curlu · curl v̄ = λ2
∫

Ω

u · v̄ ∀v ∈ Z .
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8.1 Solution operator

We will prove a sort of equivalence between Problem 1 and Problem 3.

λ2 = 0 is an infinite-multiplicity eigenvalue of Problem 3 with eigenspace

H(curl0,Ω). Then, we consider the following equivalent problem:
∫

Ω

curlu · curl v̄ +

∫

Ω

u · v̄ = (λ2 + 1)

∫

Ω

u · v̄ ∀v ∈ Z .

Thus, we are able to define the solution operator

S : Z −→ Z ,

f 7−→ Sf := w ∈ Z :
∫

Ω

curlw · curl v̄ +

∫

Ω

w · v̄ =

∫

Ω

f · v̄ ∀v ∈ Z .

S is a well defined bounded self-adjoint linear operator. Moreover,

(λ,u) solution of Problem 3 ⇐⇒ Su = µu, u 6≡ 0, µ = 1
λ2+1

.
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S : Z −→ Z is not compact. In fact, µ = 1 is an eigenvalue of S with

infinite-dimensional eigenspace H(curl0,Ω).

However, since S is self-adjoint, V := H(curl0,Ω)⊥Z is an invariant

subspace of S and

S|
V
: V −→ V

is compact, because of the following result:

Lemma. ∃s > 1
2

and C > 0 : ∀f ∈ V , w = Sf ∈ Hs(curl,Ω) and

‖w‖s,Ω + ‖curlw‖s,Ω ≤ C ‖f‖0,Ω .

Consequently, S|
V
: V → V is compact.

Thus, we are able to write a thorough spectral characterization of S.
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8.2 Spectral characterization

Theorem. sp(S) = {µn}n∈N ∪ {0, 1}.

(i) µ0 = 1 is an infinite-multiplicity eigenvalue with associated eigenspace

H(curl0,Ω);

(ii) {µn}n∈N is a sequence of finite-multiplicity eigenvalues (repeated

according to their respective multiplicities), 0 < µn < 1 and µn → 0.

Moreover, there exists a Hilbertian basis {un}n∈N of V , with un such

that Sun = µnun, n ∈ N.

(ii) µ = 0 is not an eigenvalue of S.

Theorem. If λ is an eigenvalue of Problem 1 with eigenspace E , then

µ = 1
1+λ2

is an eigenvalue of S and E an invariant subspace .

Conversely, if µ 6= 1 is an eigenvalue of S with eigenspace E , then there

exists at least one eigenvalue λ of Problem 1 such that µ = 1
λ2+1

and E is

an invariant subspace of this problem.
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Remark. When λ and −λ are both eigenvalues of Problem 1, λ2 is a

multiple eigenvalue of Problem 3. In such a case, the eigenspace of λ2 in

Problem 3 is the subspace spanned by the eigenfunctions of λ and −λ.

Therefore, in this case, the eigenfunctions of Problem 3 are not

necessarily eigenfunctions of Problem 1 (and hence Beltrami fields),

but linear combinations of them .

This happens in particular when Ω is symmetric in the sense that there is

an orthogonal coordinate system in which x ∈ Ω ⇐⇒ −x ∈ Ω.

In fact, in such a case,

curlu = λu in Ω

u′(x) := u(−x), x ∈ Ω

}
=⇒ curlu′ = −λu′ in Ω.

Thus, (λ,u) solves Problem 1 if and only if (−λ,u′) solves it too.
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8.3 Finite element approximation

The Ritz-Galerkin approximation of Problem 3 reads as follows:

Problem 3h: Find λh ∈ C and uh ∈ Zh, uh 6≡ 0, such that
∫

Ω

curluh · curl v̄h = λ2h

∫

Ω

uh · v̄h ∀vh ∈ Zh.

The resulting generalized matrix eigenvalue problem has the form

A ~uh = λ2hM ~uh,

where ~uh is the vector of nodal components of uh.

This is a well-posed generalized eigenvalue problem, because M is a

symmetric and positive definite matrix .
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As in the continuous case, λ2h = 0 is an eigenvalue of Problem 3h with

eigenspace H(curl0,Ω) ∩N h . Then, we proceed as above and define

the solution operator

Sh : Z −→ Z ,

f 7−→ Shf := wh ∈ Zh :∫

Ω

curlwh · curl v̄h +

∫

Ω

wh · v̄h =

∫

Ω

f · v̄h ∀vh ∈ Zh.

Sh is a well defined bounded self-adjoint linear operator. Moreover,

(λh,uh) solution of Problem 3h

⇐⇒ Shuh = µhuh, uh 6≡ 0, µh =
1

λ2h + 1
6= 0.

Therefore, to prove convergence of the proposed Ritz-Galerkin

scheme, we will prove spectral convergence of the operators Sh to S.
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8.4 Spectral convergence

For compact operators, spectral convergence typically follows from

convergence in norm:

‖S − Sh‖L(Z,Z) := sup
f∈Z

‖(S − Sh)f‖curl,Ω
‖f‖

curl,Ω

h→0
−−→ 0.

However, such a convergence cannot hold for a noncompact operator like

S. In fact, since Sh are finite-rank operators, its limit in norm should be

compact.
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Instead, we will resort to the spectral approximation theory for

noncompact operators .a,b

With this aim, the following two properties have to be proved:

• P1: ‖S − Sh‖h := sup
fh∈Zh

‖(S − Sh)fh‖curl,Ω
‖fh‖curl,Ω

h→0
−−→ 0;

• P2: ∀v ∈ Z inf
vh∈Zh

‖v − vh‖curl,Ω
h→0
−−→ 0.

P2 follows from the density of C∞(Ω̄)3 ∩Z in Z and standard

interpolation error estimates for Nédélec finite elements.
aJ. DESCLOUX, N. NASSIF & J. RAPPAZ, On spectral approximation. Part I: The problem of convergence.

RAIRO Anal. Numér., 12 (1978) 97–112.
bJ. DESCLOUX, N. NASSIF & J. RAPPAZ, On spectral approximation. Part II: Error estimates for the Galerkin

method. RAIRO Anal. Numér., 12 (1978) 113–119.
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To prove P1, recall that V = H(curl0,Ω)⊥Z and let

Vh :=
[
H(curl0,Ω) ∩N h

]⊥Zh .

Notice that Vh 6⊂ V . However, we have the following result:

Lemma. Given fh ∈ Vh ⊂ Zh ⊂ Z , let χ ∈ V and

η ∈ H(curl0,Ω) such that fh = χ+ η. Then,

a) χ ∈ Hs(Ω)3 with ‖χ‖Hs(Ω)3 ≤ C ‖curlfh‖L2(Ω)3 ,

b) ‖η‖L2(Ω)3 ≤ Chmin{s,1} ‖curlfh‖L2(Ω)3 .

This lemma plays a key role in the proof of P1:

Lemma (P1). There exists C > 0 such that, for all fh ∈ Zh,

‖(S − Sh)fh‖curl,Ω ≤ Chmin{s,1} ‖fh‖curl,Ω .
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Theorem. Let F be a closed subset of R such that F ∩ sp(S) = ∅ .

Then, there exists h0 > 0 such that, for all h < h0 , F ∩ sp(Sh) = ∅.

Theorem. Let λ be an eigenvalue of Problem 3 with finite multiplicitym and

E the corresponding eigenspace.

There exist exactly m eigenvalues λ
(1)
h , . . . , λ

(m)
h of Problem 3h

(repeated according to their respective multiplicities) which converge to λ

as h→ 0.

Let Eh be the direct sum of the eigenspaces corresponding to

λ
(1)
h , . . . , λ

(m)
h . Then,

δ̂ (E ,Eh) ≤ Cγh,
∣∣∣λ− λ

(i)
h

∣∣∣ ≤ Cγ2h, i = 1, . . . ,m,

where, as above, γh := δ(E ,Zh) ≤ Chmin{s,k}.
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8.5 Numerical results

Comparison of both methods

on the same test problem.

r1 = 1, r2 = 0.5.

λM
1 , λM

3 : values computed

with the mixed formulation.

λP
1, λP

5 : values computed

with the Maxwell-like primal

formulation.

Nh λM
1 λP

1 λM
3 λP

5

1259 13.7352 5.6529 14.7751 6.2320

2656 8.4648 5.9366 8.7671 6.2194

3822 7.9359 6.1680 8.1618 6.2701

7812 7.2752 6.2100 7.4303 6.2662

20384 6.6320 6.1931 6.7104 6.2608

28321 6.5199 6.2251 6.5888 6.2785

43667 6.4406 6.2156 6.5105 6.2732

58732 6.4096 6.2087 6.4723 6.2624

75999 6.3824 6.2079 6.4439 6.2631

97886 6.3565 6.2083 6.4155 6.2578

131222 6.3276 6.2143 6.3840 6.2679

154592 6.3156 6.2145 6.3726 6.2658

171127 6.3093 6.2165 6.3657 6.2683

182885 6.3075 6.2155 6.3642 6.2662

241429 6.2829 6.2209 6.3370 6.2722

264623 6.2781 6.2214 6.3323 6.2736

301862 6.2737 6.2208 6.3275 6.2730

λex 6.2233 — 6.2714 —

order 2.20 — 2.17 —
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8.6 Conclusions for the Maxwell-like primal formulation

• The convergence order cannot be clearly estimated.

• However, it yields much more accurate results than the mixed

formulation on the same meshes.

• It is significantly less expensive than the mixed formulation.

Indeed, A+BtB is much less sparse than A:

Aij 6= 0, only if nodes i and j correspond to edges of a same element;

(BtB)ij 6= 0, for nodes i and j corresponding to edges of neighboring

elements which share an edge.

• It is thoroughly free of spurious modes (which typically may arise in

problems like this with an infinite-multiplicity eigenvalue).

• It allows computing the (squared) eigenvalue, but not the eigenfunction

(i.e., the Beltrami field).
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