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Introduction

Stability for the wave equation

utt −∆u + a(x)g(ut) = 0 in Ω× R+, (1)

where Ω is a bounded domain in R
n, has been studied for long

time by many authors. When the feedback term depends on
the velocity in a linear way (g(s) = s) it has been proved by
Zuazua [CPDE/90] that the energy related to the semi-linear
wave equation decays exponentially if the damping region
contains a neighborhood of the boundary ∂Ω of Ω or, at least,
contains a neighborhood ω of the particular part given by

{x ∈ ∂Ω : (x − x0) · ν(x) ≥ 0}.
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Euclidian Setting

A rich body of results is currently available in the literature in
what concerns the wave equation subject to a locally distributed
damping in the Euclidian setting; for instance see

Dafermos [Wisconsin/78]

Zuazua [CPDE/90]

Liu [SICON/97]

Nakao [Math. Ann./96]

Nakao [Israel J.M./96]

Martinez[RMC/99]

Nakao [OTAA/05]

Nakao [Math. Nachr./05]

Alabau-Boussouira[AMO/05]

Toundykov [NLA/07]
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Riemannian Compact Manifolds

Rauch and Taylor [CPAM/75] are among the pioneers in
investigating the long time behaviour of weak solutions of the
Cauchy problem for the linear wave equation on a compact
manifold (M,g) without boundary with a dissipative term, which
is described by the equation
{

utt −∆u + 2a(x)ut = 0 in M × ]0,∞[ ,

u(x ,0) = u0(x), ut(x ,0) = u1(x) x ∈ M.

(2)
Assuming that a is a bounded nonnegative function on M such

that a ∈ C∞, we say that the Rauch-Taylor condition holds if
there exists a time T0 > 0 such that any geodesic (also called
ray of the geometric optics) with length greater than T0 meets
the open set {x ∈ M;a(x) > 0}.
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In this case it was established by Rauch and Taylor [CPAM/75]
that the energy

E(t) =
1
2

∫

M

(
|ut |

2 + |∇u|2
)

dx

decays exponentially. Analogous result was settled by Bardos,
Lebeau and Rauch [SICON/99] for Riemannian manifolds with
boundary. In this work the authors present sharp sufficient
conditions for the observation, control and stabilization of the
linear wave equation on a compact Riemannian manifold (M,g)
with boundary. In particular, when one considers the equation




utt −∆u + 2a(x)ut = 0 in M × ]0,∞[ ,

u = 0 on ∂M × ]0,∞[ ,

u(x ,0) = u0(x), ut(x ,0) = u1(x) x ∈ M,

a ∈ C∞, and a(x) > 0 in some nonempty open subset ω of M,
they proved that the exponential decay holds if and only if
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a similar condition on the ray of geometric optics for
Riemannian manifold with boundary is satisfied. The intuitive
idea behind these kind of results is that if every ray of geometric
optics remains at least a well defined proportion of time in the
damping area during its traveling, then the energy decays
exponentially.

A classical example, in the Euclidian setting, of an open set ω
satisfying the Geometric Control Condition is a neighborhood of
the boundary ∂Ω de Ω, according to the figure below.
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Rays propagating inside a domain Ω ⊂ R
n follow straight lines

which are reflected on the boundary ∂Ω de Ω according to the
geometric optics laws.

Γ(x0)

Γ\Γ(x0)ω Ω\ω

❍❍❍❍❍❍❍❍❍❍❍❥✟✟✟✟✟✟✟✟✟✟✟✙

R

Figure: The Geometric Control Condition is satisfied for some T0 > 0.
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The following figure is an example of a region that does not
satisfy the geometric control condition.

ω

R ✲✛

Figure: In this case there exists a ray R of the geometric optics that
does not intercept the region ω for all T > 0.
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When we consider the wave propagation on compact
manifolds, or, more particularly, on compact surfaces, to
determine the geometric control conditions (GCC) is a delicate
problem since we need to know all the geodesics on the
surface under consideration. On compact manifolds (M,g), this
question is much more complex. Let’s see some examples
involving the torus or the sphere according to the figures below
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Figure: An example of a region of geometric control condition is given
(in red). Note that it intercepts all the Torus’s geodesics (black curves)
.
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Figure: One of the regions of of geometric control condition (in red)
intercepts all the geodesics on the sphere (in black).
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It is worth mentioning the contribution due to Luc Miller
[SICON/03] whom characterized the geodesic conditions of
Bardos, Lebeau and Rauch [SICON/99] in term of escape
functions. Roughly speaking the escape function condition
provides a straightforward geometric proof that the geodesic
condition holds in the situations where first order differential
multiplier methods apply.

Related to Problem (2) on compact Riemannian manifolds
without boundary, it is worth quoting the result due to
Christianson [JFA/2007]. Assuming that u0 = 0 and, in addition,
that a(x) > 0 outside a neighbourhood of a closed hyperbolic
geodesic γ, he proved the following energy estimate

E(t) ≤ Ce−t1/2/C ||u1||2Hε(M), t ≥ 0,

for some C > 0 and for all ε.
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The Wave propagation on a compact surface

Natural questions arise in this context:

(i) What does happen if the wave propagation is on a
compact surface instead of a domain ?

What would be the geometric impositions on the surface if
we use the radial multiplier x − x0 as in the Euclidian
case?

What would be the geometric impositions on the surface if
we use an intrinsic multiplier ∇f ? (where f is a function (to
be determined) defined on the surface M).

The main task of this talk is to evaluate the impact of the
multipliers on the geometry of surfaces (or manifolds) when
stabilizing the wave propagation.
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Let M be a smooth oriented embedded compact surface
without boundary in R

3. This talk is devoted to the study of the
uniform stabilization of solutions of the following damped
problem

{
utt −∆Mu + a(x)g(ut) = 0 on M× ]0,∞[ ,

u(x ,0) = u0(x), ut(x ,0) = u1(x) x ∈ M,

(3)
where a(x) ≥ a0 > 0 in an open proper subset M∗ of M and,
in addition, g is a monotonic increasing function such that
g(s)s ≥ 0 and, moreover,

k |s| ≤ |g(s)| ≤ K |s| for all |s| ≥ 1.
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External Vision

Initially we shall consider, as usually in the literature,
M = M0 ∪M1, where

M1 := {x ∈ M;m(x) · ν(x) > 0} and M0 = M\M1. (4)

Here, m(x) := x − x0, (x0 ∈ R
3 fixed) and ν is the exterior unit

normal vector field of M.

The main goal of the first part of this talk is to prove uniform
decay rates of the energy when the portion of M, where the
damping is effective is strategically chosen. For i = 1, . . . , k ,
assume that there exist open subsets M0i ⊂ M0 of M with
smooth boundary ∂M0i such that M0i are umbilical or conical,
or, more generally,
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Surfaces constituted by umbilical parts

that the principal curvatures k1 and k2 satisfy

|k1(x)− k2(x)| < εi

(εi considered small enough) for all x ∈ M0i . Moreover,
suppose that the mean curvature H of each M0i is non-positive
(i.e. H ≤ 0 on M0i for every i = 1, . . . , k) and that the damping
is effective on an open subset

M∗ ⊂ M

that contains
M\∪k

i=1 M0i .
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◦

◦
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②
x − x0

✟✟✯
ν(x)

❅
❅■x − x0 ν(x)

❵❵•

The observer is at x0. The subset M0 is the “visible” part of M and
M1 is its complement. The subset M∗ is an open set that contains

M\M01 and the damping is effective there.
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Surfaces constituted by a conical part

Assume that there exists x0 ∈ R
3 such that m(x) · ν(x) = 0 for

all ∈ M0 and, in addition, that M∗ contains M\M0 according
to the figure below,
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❍❍❍❍❍❍❍❍❍❍❍❍

✟✟✟✟✟✟✟✟✟✟✟✟

x0
•❍

❍❍❍❍

✟✟✟✟✟

❍❍❨ ✁
✁✁✕

✟✟✙ ❆
❆❆❯

xx − x0

xx − x0

ν(x)

ν(x)

M0

M0 is a non-dissipative area (in white) while the demarcated area (in black)
contains dissipative effects.
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Well-posedness

We set

W := {v ∈ H1(M);
∫
M v(x)dM = 0},

which is a Hilbert space endowed with the topology given by
H1(M). The condition

∫
M v(x)dM = 0 is required in order to

guarantee the validity of the Poincaré inequality,

||f ||2L2(M) ≤ (λ1)
−1||∇T f ||2L2(M), for all f ∈ W , (5)

where λ1 is the first eigenvalue of the Laplace-Beltrami
operator. We observe that the problem (3) can be written in the
following form

Ut +AU = G(U),
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where

U =

(
u
ut

)
and A =

(
0 − I

−∆M 0

)

is a maximal monotone operator and G(·) represents a locally
Lipschitz perturbation. So, making use of standard semigroup
arguments we have the following result:

Theorem

(i) Under the conditions above, problem (3) is well posed
in the space W × L2(M), i.e. for any initial data{

u0,u1
}
∈ W × L2(M), there exists a unique weak

solution of (3) in the class
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u ∈ C(R+;W ) ∩ C1(R+;L2(M)). (6)

(ii ) In addition, the velocity term of the solution have the
following regularity:

ut ∈ L2
loc

(
R+;L2 (M)

)
, (7)

(consequently, g (ut) ∈ L2
loc

(
R+;L2 (M)

)
). Furthermore, if{

u0,u1
}
∈
{

W ∩ H2 (M)× W
}

then the solution has the
following regularity

u ∈ L∞
(
R+;W ∩ H2 (M)

)
∩ W 1,∞ (R+;W ) ∩ W 2,∞ (

R+; L2 (M)
)
.
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Remark

It is convenient to observe that the space W may be not
invariant under the flow because of the nonlinear character of
the equation under consideration. In this case, it is sufficient to
add an extra term αu, (α > 0) in the equation in order to
control L2 norms. However, for simplicity in the computations,
we shall omit this term since it does not bring any additional
difficulty or novelty.
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Supposing that u is the unique global weak solution of problem
(3), we define the corresponding energy functional by

E(t) =
1
2

∫

M

[
|ut(x , t)|

2 + |∇T u(x , t)|2
]

dM. (8)

For every solution of (3) in the class (6) the following identity
holds

E(t2)−E(t1) = −

∫ t2

t1

∫

M
a(x)g(ut)ut dMdt , for all t2 > t1 ≥ 0,

(9)
and therefore the energy is a non increasing function of the
time variable t .
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Main Result

Before stating our stability result, we will define some needed
functions. For this purpose, we are following the ideas firstly
introduced in Lasiecka and Tataru [DIE/93]. We will repeat
them briefly. Let h be a concave, strictly increasing function,
with h (0) = 0, and such that

h (s g(s))) ≥ s2 + g2(s), for |s| ≤ 1. (10)

Note that such function can be straightforwardly constructed,
given the hypotheses on g. With this function, we define

r(.) = h(
.

meas (Σ1)
). (11)

Valéria N. Domingos Cavalcanti Universidade Estadual de Ma ringá - Brazil VIII ENAMA - Recife - PE Joint works with M. Cava lcanti,Stabilization of dissipative models on manifolds



As r is monotone increasing, then cI + r is invertible for all
c ≥ 0. For L a positive constant, we set

p(x) = (cI + r)−1 (Lx) , (12)

where the function p is easily seen to be positive, continuous
and strictly increasing with p(0) = 0. Finally, let

q(x) = x − (I + p)−1 (x) . (13)

We are now able to proceed to state our stability result.

Theorem

Let u be the weak solution of the problem (3). With the energy
E(t) defined as in (8), there exists a T0 > 0 such that
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E(t) ≤ S
(

t
T0

− 1
)
, ∀t > T0, (14)

with limt→∞S(t) = 0, where the contraction semigroup S(t) is
the solution of the differential equation

d
dt

S(t) + q(S(t)) = 0, S(0) = E(0), (15)

(where q is given in (13)). Here, the constant L (from definition
(12)) will depend on meas(Σ), and the constant c(from
definition (12)) is taken here to be c ≡ k−1+K

meas(Σ)(1+||a||∞) .

Valéria N. Domingos Cavalcanti Universidade Estadual de Ma ringá - Brazil VIII ENAMA - Recife - PE Joint works with M. Cava lcanti,Stabilization of dissipative models on manifolds



If the feedback is linear, e. g., g(s) = s, then, we have that the
energy of problem (3) decays exponentially with respect to the
initial energy. There exist two positive constants C > 0 and
k > 0 such that

E(t) ≤ Ce−ktE(0), t > 0. (16)

As another example, we can consider g(s) = sp, p > 1 at the
origin, we obtain the following polynomial decay rate:

E(t) ≤ C(E(0))[E(0)
−p+1

2 + t(p − 1)]
2

−p+1 .

We can find more interesting explicit decay rates in D. C.,
I.Lasiecka and M.Cavalcanti. [JDE/07].
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We observe that in the particular case when m(x) = x − x0,
x ∈ R

3 and x0 ∈ R
3 is a fixed point in R

3, we have

div m = 3, divT mT = 2 + (m · ν)Tr B. (17)

where B is the second fundamental form of M (the shape
operator) and Tr is the trace. Let ϕ and m defined as above.
We also have,

∇Tϕ ·∇T mT ·∇Tϕ = |∇Tϕ|
2 +(m ·ν)(∇Tϕ ·B ·∇Tϕ). (18)
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Shape Operator

Remark

The sign of B can change in the literature. In our case, we
remember that B = −dN, where N is the Gauss map related to
ν.
The formulas (17) can be rewritten by

div m = 3, divT mT = 2 + 2H (m · ν). (19)

where H = trB
2 is the mean curvature of M.
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Proof of the Main Result

We shall work with regular solutions and by using density
arguments we can extend the results for weak solutions.

Our main task is to obtain the following estimate:
∫ T

0
E(t)dt ≤ C

(
E(T ) +

∫ T

0

∫

M
a(x)

(
g(ut)

2 + u2
t

)
dMdt

)
,

for some positive constant C > 0. From this estimate we
deduce the desired decay rates estimates following (verbatim)
the ideas firstly introduced by Lasiecka and Tataru [DIE/93].

Lemma 1. Let M ⊂ R
3 be oriented regular compact surface

without boundary and q a regular vector field with
q = qT + (q · ν)ν. Then, for every regular solution u of (3) we
have the following identity
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The First Identity

[∫

M
ut qT · ∇T u dM

]T

0

+
1
2

∫ T

0

∫

M
(divT qT )

{
|ut |

2 − |∇T u|2
}

dMdt (20)

+

∫ T

0

∫

M
∇T u · ∇T qT · ∇T u dMdt

+

∫ T

0

∫

M
a(x)g(ut)(qT · ∇T u)dMdt = 0.
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Employing (20) with q(x) = m(x) = x − x0 for some x0 ∈ R
3

fixed and taking (17) and (18) into account, we infer

[∫

M
ut mT · ∇T u dM

]T

0
+

∫ T

0

∫

M

{
|ut |

2 − |∇T u|2
}

dMdt

+

∫ T

0

∫

M
[|∇T u|2 + (m · ν)(∇T u · B · ∇T u)]dMdt (21)

+

∫ T

0

∫

M
(m · ν)H

{
|ut |

2 − |∇T u|2
}

dMdt

+

∫ T

0

∫

M
a(x)g(ut)(mT · ∇T u)dMdt = 0.
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Second Identity

Lemma 2 Let u be a weak solution to problem (3) and
ξ ∈ C1(M). Then

[∫

M
ut ξ u dM

]T

0
(22)

=

∫ T

0

∫

M
ξ|ut |

2dMdt −
∫ T

0

∫

M
ξ|∇T u|2dMdt

−

∫ T

0

∫

M
(∇T u · ∇T ξ)u dMdt

−

∫ T

0

∫

M
a(x)g(ut) ξ u dMdt .
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Substituting ξ = 1
2 in (22) and combining the obtained result

with identity (21) we deduce

[∫

M
ut mT · ∇T u dM

]T

0
+

1
2

[∫

M
ut u dM

]T

0
(23)

+

∫ T

0
E(t)dt +

∫ T

0

∫

M
a(x)g(ut)(mT · ∇T u)dMdt

+
1
2

∫ T

0

∫

M
a(x)g(ut)u dMdt

= −

∫ T

0

∫

M
(m · ν)H

{
|ut |

2 − |∇T u|2
}

dMdt .

−

∫ T

0

∫

M
(m · ν)(∇T u · B · ∇T u)dMdt .
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Observe that some terms in (23) are easily handled by using
the Cauchy Schwarz and Poincaré inequalities as well as the
inequality ab ≤ 1

4εa2 + εb2 and exploiting the energy identity

E(T )− E(0) = −

∫ T

0

∫

M
a(x)g(ut)ut dMdt
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Analysis of the terms which involve the shape operator B

Let us focus our attention on the shape operator
B : TxM → TxM. There exist an orthonormal basis {e1,e2} of
TxM such that Be1 = k1e1 and Be2 = k2e2 and k1 and k2 are
the principal curvatures of M at x . The matrix of B with respect
to the basis {e1,e2} is given by

B :=

(
k1 0
0 k2

)
.

Setting ∇T u = (ξ, η) the coordinates of ∇T u in the basis
{e1,e2}, for each x ∈ M, we deduce that
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∇T u · B · ∇T u = k1ξ
2 + k2η

2. (24)

Then, from (40), we infer

(m · ν)

[
(∇T u · B · ∇T u)−

1
2

Tr(B)|∇T u|2
]

(25)

= (m · ν)

[
(k1 − k2)

2
ξ2 +

(k2 − k1)

2
η2
]
.

Remark: Observe that this is the moment that the intrinsic
properties of the manifold M appear, that is,
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Necessity of umbilical nondissipative region (by parts)

we strongly need that the term −
∫ T

0

∫
M(m · ν)Hu2

t dMdt lies in
a region where the damping term is effective. Remember that
the damping term is effective on an open set M∗ which
contains M\∪k

i=1 M0i . So, assuming that H ≤ 0 and since
m(x) · ν(x) ≤ 0 on M0, we have

−

∫ T

0

∫

M0

(m · ν)H |ut |
2 dMdt ≤ 0.

In addition, supposing that M0i is umbilical for every
i = 1, . . . , k, then, having (25) in mind, we also have that

∫ T

0

∫

M0i

(m · ν)
[
H|∇T u|2 − (∇T u · B · ∇T u)

]
dMdt = 0,

i = 1, . . . , k .
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Observe that if M0 is a piece of a conical surface M, that is,
m(x) · ν(x) = 0, for all x ∈ M0, we also deduce that

−

∫ T

0

∫

M0

(m · ν)H |ut |
2 dMdt = 0.

∫ T

0

∫

M0

(m · ν)
[
H|∇T u|2 − (∇T u · B · ∇T u)

]
dMdt = 0.
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The general case - |k1 − k2| small by parts

More generally, assuming that the principal curvatures k1 and
k2 satisfy |k1(x)− k2(x)| < εi (here, εi is assumed sufficiently
small) for all x ∈ M0i , i = 1, · · · , k , we deduce that

∣∣∣∣∣

k∑

i=1

∫ T

0

∫

M0i

(m · ν)
[
H|∇T u|2 − (∇T u · B · ∇T u)

]
dMdt

∣∣∣∣∣

≤
k∑

i=1

∫ T

0

∫

M0i

|(m · ν)||k1 − k2||ξ
2 + η2|dMdt

≤
k∑

i=1

Riεi

∫ T

0

∫

M0i

|∇T u|2dMdt ≤ 2
k∑

i=1

Riεi

∫ T

0
E(t)dt ,

where Ri = maxx∈M0i
||x − x0||

R3 .
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Set M2 = M\∪k
i=1 M0i . In the case where M0i are umbilical,

(or conical) and disjoint, recalling (23) taking (25) we deduce

∫ T

0
E(t)dt ≤ −

[∫

M
ut mT · ∇T u dM

]T

0
−

1
2

[∫

M
ut u dM

]T

0

+

∫ T

0

∫

M2

(m · ν)
[
H|∇T u|2 − (∇T u · B · ∇T u)

]
dMdt

−

∫ T

0

∫

M2

(m · ν)H |ut |
2 dMdt (26)

−

∫ T

0

∫

M
a(x)g(ut)(mT · ∇T u)dMdt

−
1
2

∫ T

0

∫

M
a(x)g(ut)u dMdt .
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Inverse Inequality

Note that if a = 0, that is, if one has the linear wave equation
{

utt −∆Mu = 0 in M× (0,∞)

u(x ,0) = u0(x); ut(x ,0) = u1(x), x ∈ M.

then, E(T ) = E(0) for all T ≥ 0 and from (26) we easily deduce
the inverse inequality

E0 ≤ C
∫ T

0

∫

M2

[
u2

t + |∇T u|2
]

dMdt ,

where C is a positive constant and M2 = M\∪k
i=1 M0i .
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1
2

∫ T

0
E(t)dt ≤ |χ|+ C1

∫ T

0

∫

M
a(x) (g(ut))

2dMdt(27)

+ C1

∫ T

0

∫

M2

[|∇T u|2 + a(x)u2
t ]dMdt

where

χ = −

[∫

M
ut mT · ∇T u dM

]T

0
−

1
2

[∫

M
ut u dM

]T

0

C1 := max
{
||a||∞[2−1λ−1

1 + 8 R2], ||B||R + |H|R, R |H|a−1
0

}
,

||B|| = sup
x∈M

|Bx |, and |Bx | = sup
{v∈TxM;|v |=1}

|Bxv |.
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Intrinsic “cut-off”

It remains to estimate the quantity
∫ T

0

∫
M2

|∇T u|2 dMdt in
terms of the damping term∫ T

0

∫
M[a(x) |g(ut)|

2 + a(x) |ut |
2]dMdt . For this purpose we

have to built a “cut-off” function ηε on a specific neighborhood
of M2. First of all, define η̃ : R → R such that

η̃(x) =





1 if x ≤ 0
(x − 1)2 if x ∈ [1/2,1]

0 if x > 1

and it is defined on (0,1/2) in such a way that η̃ is a
non-increasing function of class C1. For ε > 0, set
η̃ε(x) := η̃(x/ε).
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It is straightforward that there exists a constant M which does
not depend on ε such that

|η̃′ε(x)|
2

η̃ε(x)
≤

M
ε2

for every x < ε.
Now, let ε > 0 be such that

ω̃ε := {x ∈ M; d(x ,
k⋃

i=1

∂M0i) < ε}

is a tubular neighborhood of
⋃k

i=1 ∂M0i and ωε := ω̃ε ∪M2 is
contained in M∗. Define ηε : M → R as
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ηε(x) =





1 if x ∈ M2

η̃ε(d(x ,M2)) if x ∈ ωε\M2

0 otherwise.

It is straightforward that ηε is a function of class C1 on M due
to the smoothness of ∂M2 and ∂ωε. Notice also that

|∇Tηε(x)|2

ηε(x)
=

|η̃′ε(d(x ,M2))|
2

η̃ε(d(x ,M2))
≤

M
ε2 (28)

for every x ∈ ωε\M2. In particular, |∇Tηε|
2

ηε
∈ L∞(ωε).
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Taking ξ = ηε in the identity (22) we obtain

∫ T

0

∫

ωε

ηε|∇T u|2dMdt (29)

= −

[∫

ωε

utuηε dM
]T

0
+

∫ T

0

∫

ωε

ηε|ut |
2 dM

−

∫ T

0

∫

ωε

u(∇T u · ∇Tηε)dMdt −
∫ T

0

∫

ωε

a(x)g(ut)uηε dMdt .

After some estimates we arrive to the following inequality
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1
2

∫ T

0

∫

ωε

ηε|∇T u|2 dMdt (30)

≤ |Y|+
λ−1

1 ||a||L∞(M)

4α

∫ T

0

∫

M
a(x) |g(ut)|

2 dM

+2α
∫ T

0
E(t)dt +

M
2ε2

∫ T

0

∫

ωε

|u|2 dMdt ,

+a−1
0

∫ T

0

∫

M
a(x)u2

t dMdt .

where α > 0 is an arbitrary number and

Y := −

[∫

ωε

utuηε dM
]T

0
. (31)
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Thus, combining (30) and (27), having in mind that

1
2

∫ T

0

∫

M2

|∇T u|2 dMdt ≤
1
2

∫ T

0

∫

ωε

ηε|∇T u|2 dMdt

and choosing α = 1/16C1 we deduce

1
4

∫ T

0
E(t)dt ≤ |χ|+ 2C1|Y| (32)

+C2

∫ T

0

∫

M
[a(x) |g(ut)|

2 + a(x) |ut |
2]dMdt

+
MC1

ε2

∫ T

0

∫

ωε

|u|2 dMdt ,

where C2 = max{C1,8C2
1λ

−1
1 ||a||L∞(M),2C1a−1

0 }.

Valéria N. Domingos Cavalcanti Universidade Estadual de Ma ringá - Brazil VIII ENAMA - Recife - PE Joint works with M. Cava lcanti,Stabilization of dissipative models on manifolds



On the other hand, the following estimate holds

|χ|+ 2C2|Y| ≤ C(E(0) + E(T )) (33)

= C

[
2 E(T ) +

∫ T

0

∫

M
a(x)g(ut)ut dM

]
,

where C is a positive constant which depends also on R. Then,

T E(T ) ≤

∫ T

0
E(t)dt (34)

≤ C E(T ) + C

[∫ T

0

∫

M
[a(x) |g(ut)|

2 + a(x) |ut |
2]dMdt

]

+ C
∫ T

0

∫

ωε

|u|2 dMdt ,
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where C is a positive constant which depends on
a0, ||a||∞, λ1,R, |H|, ||B|| and M

ε2 . Our aim is to estimate the last
term on the RHS of (34). In order to do this let us consider the
following lemma, where T0 is a positive constant which is
sufficiently large.

Lemma

Under the hypothesis of Theorem 2, there exists a positive constant
C(E(0)) such that if u is the solution of (3) with weak initial data, we
have

∫ T

0

∫

M

|u|2 dM dt (35)

≤ C(E(0))

{∫ T

0

∫

M

(
a(x)g2(ut ) + a(x)u2

t

)
dM dt

}
,

for all T > T0.
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In order to prove the above lemma we argue by contradiction
and it is essential to use the uniqueness result which comes
from the Inverse Inequality or, more generally we can also
employ Triggiani and Yao’s [AMO/02] Uniqueness result in the
proof.

Inequalities (34) and (35) lead us to the following result.

Proposition 5.2.2: For T > 0 large enough, the solution u of
(3) satisfies

E(T ) ≤ C
∫ T

0

∫

M

[
a(x) |ut |

2 + a(x) |g (ut)|
2
]

dMdt (36)

where the constant C = C(T ,E(0),a0, λ1,R, ||B||, M
ε2 ).

From this point we are able to employ Lasiecka and Tataru’s
method [DIE/93] in order to obtain the desired decay rates.
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Generalization of umbilical and conical surfaces - New regi ons

Invoking the second fundamental identity one more time now
with ξ = (m · ν)H we deduce

∫ T

0

∫

M
(m · ν)H

[
|ut |

2 − |∇T u|2
]

dMdt (37)

=

[∫

M
(m · ν)H ut u dM

]T

0

+

∫ T

0

∫

M
(∇T u · ∇T (m · ν)H)u dMdt

+

∫ T

0

∫

M
a(x)g(ut) (m · ν)H u dMdt .
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Substituting (37) in (23) we infer

[∫

M
ut mT · ∇T u dM

]T

0
+

1
2

[∫

M
ut u dM

]T

0
(38)

+

∫ T

0
E(t)dt +

∫ T

0

∫

M
a(x)g(ut)(mT · ∇T u)dMdt

+
1
2

∫ T

0

∫

M
a(x)g(ut)u dMdt = −

[∫

M
(m · ν)H ut u dM

]T

0

−

∫ T

0

∫

M
(∇T u · ∇T (m · ν)H)u dMdt

−

∫ T

0

∫

M
a(x)g(ut) (m · ν)H u dMdt .

−

∫ T

0

∫

M
(m · ν)(∇T u · B · ∇T u)dMdt .
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Analysis of −
∫ T

0

∫
M
(m · ν)(∇T u · B · ∇T u)dMdt

Setting ∇T u = (ξ, η) the coordinates of ∇T u in the basis
{e1,e2}, for each x ∈ M, we deduce that

∇T u · B · ∇T u = k1ξ
2 + k2η

2.
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Geometric Conditions

The sub-surface M0 without damping must have nonnegative
Gaussian curvature, that is, K = k1k2 ≥ 0, with k1, k2 ≤ 0
connected, and the closure of the Gauss map must be
contained in an open semi-sphere (the last condition is required
in order to guarantee that x − x0(x) · ν(x) ≤ 0 for all x ∈ M0.
The above geometric condition, now in terms of the Gaussian
curvature K = k1k2 instead of the Mean curvature H = k1+k2

2
allow us to generalize our previous results. However, observe
that we strongly need a Unique Continuation Property based on
Carleman estimates which has been proved by Triggiani and
Yao [AMO/02] for wave propagation on compact manifolds.
Note that umbilical and conical sub-surfaces satisfy the above
condition. In addition, we can consider new sub-surfaces
without damping. See figures below:
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M0 possesses Gaussian curvature K > 0

M1
M0

x0

◦

◦

M∗

❍❍❍❍❍❍❍❍❍❍❍

❍❍✟✟✟✟✟✟✟✟✟✟✟

❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵✐

②
x − x0

✟✟✯
ν(x)

❅
❅■x − x0 ν(x)

❵❵•

The observer is at x0. The subset M0 is the “visible” part of M
(K > 0 on M0) and M1 is its complement. The subset M∗ is an
open set that contains M\M0 and the damping is effective there.
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Note that conical or cylindrical surfaces K = 0 (where
(x − x0) · ν ≤ 0) can be also considered.

✫✪
✬✩ ✫✪

✬✩
✟✟✟
✟✟✟✟

✟✟✟✟

✟✟✟✟

✟✟✟✟✟

✟✟✟✟✟

✟✟✟✟✟

✟✟✟✟✟

✟✟✟✟✟✟✟✟✟✟✟

x0•❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅❅■

✻

ν(x)
x − x0

���
�

�
��

�
�
�

�
�
�

�
�
��

�
�
�

�
�
�

�
��

�
�
��

✟✟✟✟✟✟✟✟✟✟✟✟
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Torus - we can avoid damping where m(x) · ν(x) ≤ 0 and K ≥ 0

✚✙
✛✘

✚✙
✛✘

x0•❍❍❍❍❍❍❍❍❨
��✒

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳②
❆
❆❆❑ ν(x)

ν(x)
x − x0x − x0

❅❅■
K > 0

K < 0
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Further Remarks

It is important to mention that the techniques developed until
now can be naturally extended for a finite number of observers
x1, · · · , xn in connection with a finite number of disjoint regions
satisfying our geometrical impositions U1, · · · ,Un. Indeed, for
the sake of simplicity let us consider the simple case where we
have just two observers located at x1 and x2 and U1 and U2 are
umbilical. Thus, it is sufficient to make use of the multiplier
q · ∇T u where q is defined by

q(x) :=
{

x − xi if x ∈ Ui , i = 1,2,
smoothly extended in M\(U1 ∪ U2)

(39)

accordingly the figure below.
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Note that it is necessary to put damping in D where (x − xi) · ν(x) ≤ 0,
i = 1, 2.

•◗
◗

◗
◗

◗
◗

◗
◗

◗◗

•✑
✑

✑
✑

✑
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✑

✑✑

•✑
✑
✑
✑

✑
✑
✑

✑
✑✑

•◗
◗
◗
◗

◗
◗
◗

◗
◗◗

x2x1
U1 U2D
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Observe that if we consider x1 and x2 in the opposite side with
respect to the center of the sphere and sufficiently far from
each other, the damping can be made effective in an arbitrarily
small neighborhood of the meridian. This almost reaches the
sharp result for the linear case due to Bardos, Lebeau and
Rauch [SICON/99]. However, note that we have a nonlinear
and localized damping. In addition, we can extend our results
for the semi-linear wave equation as well having in ming we
need a unique continuation property based on Carleman
estimates.
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If A and A′ are antipodal points the damping can be reduced as A and A′

go to infinity

Figure: Observe that if we consider A and A′ observers opposite with
respect to the center of the Torus and sufficiently far from each other,
the area without damping can be made effective in a large region (in
blue)
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Analogous considerations can be done for a finite number of glued
regions according to figure below. Note that it is necessary to put
damping in D̃, in D̂ and, in addition, in D where (if) (x − xi) · ν(x) ≤ 0,
i = 1, 2.
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Intrinsic Vision - A Sharp Result

The main goal of the second part of this talk is to improve
considerably our previous result reducing arbitrarily the volume
of the region where the dissipative effect lies. Denoting by g the
Riemannian metric induced on M by R

3, we prove that for each
ǫ > 0, there exist an open subset V ⊂ M and a smooth
function f : M → R such that

meas(V ) ≥ meas(M)− ǫ, Hessf ≈ g

on V and infx∈V |∇f (x)| > 0. This new intrinsic multiplier ∇f (x),
instead of the previous one m(x) = x − x0, will play a crucial
role when establishing the desired uniform decay rates of the
energy.
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In what follows we are going to proceed the proof of the main
result. It will be done by several steps and we are going to use
some identities which had been presented before.
The first step is to consider an identity we have already
presented, namely.

Proposition 4.2.1. Let M ⊂ R
3 be an oriented regular

compact surface without boundary and q a vector field of class
C1. Then, for every regular solution u of (3) we have the
following identity:
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[∫

M
ut q · ∇T u dM

]T

0

+
1
2

∫ T

0

∫

M
(divT q)

{
|ut |

2 − |∇T u|2
}

dMdt

+

∫ T

0

∫

M
∇T u · ∇T q · ∇T u dMdt

+

∫ T

0

∫

M
a(x)g(ut)(q · ∇T u)dMdt = 0.

The proof is based in multiplying the equation by q · ∇T u and
integrating by parts.
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Employing the above inequality with q(x) = ∇T f where
f : M → R is a C3 function to be determined later, we infer

[∫

M
ut ∇T f · ∇T u dM

]T

0

+
1
2

∫ T

0

∫

M
∆Mf

{
|ut |

2 − |∇T u|2
}

dMdt

+

∫ T

0

∫

M
(∇T u · Hess(f ) · ∇T u)dMdt

+

∫ T

0

∫

M
a(x)g(ut)(∇T f · ∇T u)dMdt = 0.
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Lemma 4.2.3. Let u be a weak solution to problem (3) and
ξ ∈ C1(M). Then

[∫

M
ut ξ u dM

]T

0
=

∫ T

0

∫

M
ξ|ut |

2dMdt

−

∫ T

0

∫

M
ξ|∇T u|2dMdt

−

∫ T

0

∫

M
(∇T u · ∇T ξ)u dMdt

−

∫ T

0

∫

M
a(x)g(ut) ξ u dMdt .

The proof is based in multiplying the equation by ξ u and
integrating by parts.
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Substituting ξ = α > 0 in the last inequality and combining the
obtained result with the previous identity we deduce

∫ T

0

∫

M
(
∆Mf

2
− α) |ut |

2 dMdt .

+

∫ T

0

∫

M

[
(∇T u · Hess(f ) · ∇T u) +

(
α−

∆Mf
2

)
|∇T u|2

]
dMdt

= −

[∫

M
ut ∇T f · ∇T u dM

]T

0
− α

[∫

M
ut u dM

]T

0

−α

∫ T

0

∫

M
a(x)g(ut)u dMdt

−

∫ T

0

∫

M
a(x)g(ut)(∇T f · ∇T u)dMdt .
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This is the moment where the properties of function f play an
important role. Note that what we just need is to find a subset
V of M such that

C
∫ T

0

∫

V

[
u2

t + |∇T u|2
]

dMdt

≤

∫ T

0

∫

V
(
∆Mf

2
− α) |ut |

2 dMdt

+

∫ T

0

∫

V

[
(∇T u · Hess(f ) · ∇T u) +

(
α−

∆Mf
2

)
|∇T u|2

]
dMdt ,

for some positive constant C, provided that α is suitably chosen.
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Assuming, for a moment, that the last inequality holds we obtain

2C
∫ T

0
E(t)dt ≤ C

∫ T

0

∫

M\V

[
u2

t + |∇T u|2
]

dMdt (40)

+

∣∣∣∣∣

[∫

M
ut ∇T f · ∇T u dM

]T

0

∣∣∣∣∣+ α

∣∣∣∣∣

[∫

M
ut u dM

]T

0

∣∣∣∣∣

+

∣∣∣∣∣α
∫ T

0

∫

M
a(x)g(ut)u dMdt

∣∣∣∣∣

+

∣∣∣∣∣

∫ T

0

∫

M
a(x)g(ut)(∇T f · ∇T u)dMdt

∣∣∣∣∣ .
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The above inequality is controlled considering a standard
procedure. The main idea behind this procedure is to consider
the dissipative area, namely, M∗, containing the set M\V . It is
important to observe that M∗ is as small as big V can be.

The next steps are devoted to the construction of a function f as
well as a subset V of M such that the desired inequality holds.
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Construction of the function f - local version

Let M be a compact n-dimensional Riemannian manifold
(without boundary) with Riemmanian metric g of class C2. Let
∇ denote the Levi-Civita connection. Fix p ∈ M. Our aim is to
construct a function f : Vp → R such that Hessf ≈ g and
infx∈Vp |∇f (x)| > 0, where Vp is a neighborhood of p and the
Hessian of f is seen as a bilinear form defined on the tangent
space TpM of M at p.

We begin with an orthonormal basis (e1, . . . ,en) of TpM. Define
a normal coordinate system (x1, . . . , xn) in a neighborhood Ṽp

of p such that ∂/∂xi (p) = ei(p) for every i = 1, . . . ,n. It is well
known that in this coordinate system we have that Γk

ij (p) = 0,

where Γk
ij are the Christoffel symbols with respect to

(x1, . . . , xn).
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The Hessian with respect to (x1, . . . , xn) is given by

Hessf
(

∂

∂xi
,
∂

∂xj

)
=

∂2f
∂xi∂xj

−
n∑

k=1

Γk
ij
∂f
∂xk

.

The Laplacian of f is the trace of the Hessian with respect to
the metric g. If g ij denote the components of the Riemannian
metric with respect to (x1, . . . , xn) and g ij are the components of
the inverse matrix of g ij , then the Laplacian of f is given by

∆f =
∑

i ,j

g ijHessf
(

∂

∂xi
,
∂

∂xj

)
.
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Consider the function f : Ṽp → R defined by

f (x) = x1 +
1
2

n∑

i=1

x2
i .

It is immediate that ∆f (p) = n and |∇f (p)| = 1. Moreover,
Hessf (p) = g(p), which implies that

Hessf (p)(v , v) = |v |2p .

We are interested in finding a neighborhood Vp ⊂ Ṽp of p and a
strictly positive constant C such that

Valéria N. Domingos Cavalcanti Universidade Estadual de Ma ringá - Brazil VIII ENAMA - Recife - PE Joint works with M. Cava lcanti,Stabilization of dissipative models on manifolds



C
∫ T

0

∫

Vp

(
|∇u|2 + u2

t

)
dMdt

≤

∫ T

0

∫

Vp

[
Hessf (∇u,∇u) +

(
α−

∆f
2

)
|∇u|2 +

(
∆f
2

− α

)
u2

t

]
dMdt

(41)
for some α ∈ R.

We claim that if we consider α = n
2 − 1

2 and C = 1/4 we obtain
the desired inequality, what means that it is enough to prove
that there exist Vp ⊂ Ṽp verifying

∫ T

0

∫

Vp

Hessf (∇u,∇u) +
(

n
2
−

3
4
−

∆f
2

)
|∇u|2dMdt ≥ 0
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and

∫ T

0

∫

Vp

(
∆f
2

−
n
2
+

1
4

)
u2

t dMdt ≥ 0.

In order to prove the existence of a subset Vp ⊂ Ṽp where the
first inequality holds, let θ1 be the smooth field of symmetric
bilinear form on Ṽp defined as

θ1(X ,Y ) = Hessf (X ,Y ) +

(
n
2
−

3
4
−

∆f
2

)
g(X ,Y )

where X and Y are vector fields on Ṽp.
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It is clearly a positive definite bilinear form on p since
Hessf (p)(X ,Y ) = g(p)(X ,Y ) and

θ1(p)(X ,Y ) =
1
4

g(p)(X ,Y ).

Therefore, there exist a neighborhood V̂p such that θ1 is
positive definite and

∫ T

0

∫

V̂p

Hessf (∇u,∇u) +
(

n
2
−

3
4
−

∆f
2

)
|∇u|2dMdt ≥ 0.
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To prove the existence of V̆p ⊂ Ṽp such that the desired
inequality holds is easier. It is enough to notice that at p we
have that (

∆f (p)
2

−
n
2
+

1
4

)
=

1
4

and the existence of V̆p ⊂ Ṽp is immediate. Furthermore we
can eventually choose a smaller Vp such that
infx∈Vp |∇f (x)| > 0. Therefore the existence of Vp ⊂ Ṽp such
that infx∈Vp |∇f (x)| > 0 and (41) holds is settled.
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In what follows, V̄ denotes the closure of V and ∂V denotes the
boundary of V . When V̄ ⊂ W is bounded, we say that V is
compactly contained in W and we denote by V ⊂⊂ W .

Theorem

Let (M,g) be a two dimensional Riemannian manifold. Then,
for every ǫ > 0, there exist a finite family {Vi}i=1...k of open sets
with smooth boundary, smooth functions fi : V̄i → R and a
constant C > 0 such that

1 The subsets V̄i are pairwise disjoint;
2 vol(

⋃k
i=1 Vi) ≥ vol(M)− ǫ;

3 Inequality (41) holds for every fi ;
4 infx∈Vi

|∇f (x)| > 0 for every i = 1, · · · , k.
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In order to prove this Theorem let us consider the following
steps:

First of all, it is possible to get open subsets {W̃j}j=1,...,s with
smooth boundaries and a family of smooth functions
{f̃j : W̃j → R}j=1,...,s such that {W̃j}j=1,...,s is a cover of M and

each f̃j satisfies Inequality (41). Moreover, we can choose W̃j in
such a way that their boundaries intercept themselves
transversally and three or more boundaries do not intercept
themselves at the same point.
Set by A :=

⋃s
j=1 ∂W̃j . Then, M\A is a disjoint union of

connected open sets
⋃k

i=1 Wi such that ∂Wi is a piecewise
smooth curve.
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Each Wi is contained in some W̃j . Therefore, for each Wi ,
choose a function f̂i := f̃j |Wi

.
The open subsets Vi , i = 1, . . . , k , we are looking for are
subsets of Wi . We can choose them in such a way that

1 Vi ⊂⊂ Wi ;
2 ∂Vi is smooth;
3 vol(Wi)− vol(Vi) < ǫ/k .

Finally, if we set fi = f̂i |V̄i
, we prove the theorem.
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Theorem

Let (M,g) be a two-dimensional Riemannian manifold. Fix
ǫ > 0. Then, there exist a smooth function f : M → R such that
inequality (41) and the condition infx∈Vi

|∇f (x)| > 0 hold in a
subset V with vol(V ) ≥ vol(M)− ǫ.

In order to give an idea of the proof, consider Theorem 4 and
the constructions made in its proof. Denote
λ := min

i 6=j
dist(Vi ,Vj) > 0. Consider a tubular neighborhood V δ

of V = ∪k
i=1Vi of the points whose distance is less than or

equal to δ < λ/4. Then, it is possible to define a smooth
(cut-off) function given by
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η : M → R such that

η(x) =





1 if x ∈ V
0 if x ∈ M\V δ

between 0 and 1 otherwise.

Now, notice that f : M → R defined by

f (x) =

{
f̂i(x)η(x) if x ∈ Wi ;
0 otherwise

is smooth and satisfy inequality (41) and the condition
infx∈V |∇f (x)| > 0. In addition, the inequality
vol(V ) ≥ vol(M)− ǫ holds, which settles the theorem.
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Final Conclusions

Although the intrinsic result is sharp with respect to the volume
where the damping acts, we do not have any control about the
regions that can be left free of damping. The connected disjoint
components of V can be extremely small. See figure below.
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M0 is a non-dissipative area (in white) arbitrarily large while the demarcated
area (in black) contains dissipative effects and can be considered arbitrarily
small, both totally distributed on M.
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In the other direction, the external vision states that some
umbilical domains of surfaces in R

3 can be left free of damping.
Therefore the next step is to combine the ideas of both
techniques and try to put the damping in a arbitrarily small
domain, but in such a way that domains with interesting
properties can be left free of damping.

Valéria N. Domingos Cavalcanti Universidade Estadual de Ma ringá - Brazil VIII ENAMA - Recife - PE Joint works with M. Cava lcanti,Stabilization of dissipative models on manifolds



Finally it is worth mentioning that combining the techniques
developed in [MAA/08] and [TRANS AMS/09] we can reduce
arbitrarily the superficial measure of the dissipative area. Here
the vector field q is defined as

q(x) :=





x − xi if x ∈ Ui , i = 1, 2,

∇f (x),Hess(f ) ≈ g, if x is in some small white domain of

D

smoothly extended otherwise

where g is the Riemannian metric on M (see Figure below).
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Note that it is necessary to put damping in D where
(x − xi) · ν(x) ≤ 0, i = 1,2.
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Analogous considerations can be done for a finite number of glued
regions according to figure below. Note that it is necessary to put
damping in D̃, in D̂ and, in addition, in D where (if) (x − xi) · ν(x) ≤ 0,
i = 1, 2.
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Wave Equation on Compact Manifolds

The main goal now is to generalize the results presented
previously for n-dimensional compact Riemannian manifolds
(M,g) with or without boundary. We proceed as follows:

1 We prove that for every x ∈ M (including the case x ∈ ∂M),
there exist a neighborhood that can be left without
damping;

2 We prove that every radially symmetric portion can be left
without damping;

3 Let ε > 0 and V1, . . . ,Vk be domains as in (i) and (ii) which
closures are pairwise disjoint. We prove that there exist a
V ⊃ ∪k

i=1Vi that can be left without damping and such that
meas(V ) ≥ meas(M)− ε and
meas(V ∩ ∂M) ≥ meas(∂M)− ε.
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∂M ∩ (M\V ) ∂M ∩ V��✒

Ω ��✠

A radially symmetric region Ω

Figure: The demarcated region M\V (in black) illustrates the damped
region on the compact manifold M with boundary ∂M, which can be
considered as small as desired. Ω is a radially symmetric region
without damping. The measure of ∂M ∩ (M\V ) can also be arbitrarily
small
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In particular several radially symmetric domains can be left
without damping in a similar way as in Figure above. For this
purpose, we construct an intrinsic multiplier that plays an
important role when establishing the desired uniform decay
rates of the energy. Fix ǫ > 0. This multiplier is given by
〈∇f ,∇u〉, where f : M → R is a smooth function such that its
Hessian ∇2f is closely related to g on an open subset V ⊂ M
that satisfies meas(V ) ≥ meas(M)− ǫ,
meas(V ∩ ∂M) ≥ meas(∂M)− ǫ and 〈∇f , ν〉 < 0 on V ∩ ∂M.

The complete proof of the above result can be found in
[ARMA/10].
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Final Conclusion

The results in terms of the ray of the geometric optics are more
general than our results for the linear case. But our results also
consider the nonlinear case and give explicitly examples of
regions that can be left without damping, which can be a
difficult task if we use the hypothesis on the ray of geometric
optics on a general compact Riemannian manifold.

There are a lot to be done in this direction, I mean, about the
relationship between these two different kind of hypothesis.

The last result obtained in this context was published recently:
D.C.; CAVALCANTI,M. M.; FUKUOKA, R.; TOUNDYKOV,D. .
Unified Approach to Stabilization of Waves on Compact
Surfaces by Simultaneous Interior and Boundary Feedbacks of
Unrestricted Growth. Applied Mathematics and Optimization,
(2014).
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THANK YOU VERY MUCH!
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