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1. Main controllability problem
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Ω is a bounded open subset of IRN with boundary Γ.

Schrödinger equation in a bounded domain :

i
∂ψ

∂t
+ ∆ψ + u(t)µ(x)ψ = 0 in Ω× (0, T ),

ψ = 0 on Γ× (0, T ),

ψ(0) = ψ0 in Ω.

µ is a real potential usually depending only on the x-variable.

u is the real control depending only on the t-variable (amplitude).

Solution ψ is (a priori) a function with complex values.
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Question

For a fixed function µ with suitable properties, given a target ψ1, can
we choose a control u such that the solution ψ of the corresponding
Schrödinger equation satisfy

ψ(T ) = ψ1 ?

Immediate condition

As the potential u(t)µ(x) is real, we have conservation of the L2(Ω)-
norm. To show this property, multiply the equation by ψ̄ and integrate
on Ω then take the imaginary part. We obtain

d

dt
||ψ(t)||2

L2(Ω) = 0.

Therefore we have an immediate necessary condition

||ψ1||L2(Ω) = ||ψ0||L2(Ω).
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2. Classical properties of Schrödinger equation.
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Schrödinger equation with inital data ψ0 and right hand side f .

i
∂ψ

∂t
+ ∆ψ = f in Ω× (0, T ),

ψ = 0 on Γ× (0, T ),

ψ(0) = ψ0 in Ω.

What are the “good” functional spaces to solve this equation?

One can use a semi-group approach or, even simpler here, the Fourier

method which consists in expanding all functions on the basis of

eigenfunctions for the Laplace operator.
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Eigenfunctions of Laplace operator

−∆wj = λjwj in Ω, j = 1, · · · ,+∞
wj = 0 on Γ,

(wj, wk)L2(Ω) = δj,k.

We then have

L2(Ω) = {w =
+∞∑
j=1

ajwj,
+∞∑
j=1

|aj|2 < +∞},

H1
0(Ω) = {w =

+∞∑
j=1

ajwj,
+∞∑
j=1

λj|aj|2 < +∞},

H2(Ω) ∩H1
0(Ω) = {w =

+∞∑
j=1

ajwj,
+∞∑
j=1

λ2
j |aj|

2 < +∞},

· · ·
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Now we expand the datas on the basis (wj) and we define the trun-

cated series

ψ0 =
+∞∑
j=1

αjwj, ψM0 =
M∑
j=1

αjwj,

f(t) =
+∞∑
j=1

fj(t)wj fM(t) =
M∑
j=1

fj(t)wj.

For fixed M we look for ψM(t) =
∑M
j=1 aj(t)wj solution of the problem

with datas ψM0 and fM . This leads to a diagonal system

ia′j(t) = λjaj(t) + fj(t), j = 1, · · · ,M,

aj(0) = αj,
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This gives an explicit formula

aj(t) = αje
−iλjt − i

∫ t

0
e−iλj(t−s)fj(s)ds.

Now, for M > P , we can write the equation satisfied by

ψM − ψP =
M∑

j=P+1

ajwj

and it is easy to obtain estimates on this quantity depending on the

hypotheses on f and ψ0. The estimates have to be obtained directly

from the equation satisfied by aj and not from the explicit formula

giving aj.

We obtain the existence and uniqueness for a solution ψ with
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• If ψ0 ∈ L2(Ω) and f ∈ L1(0, T ;L2(Ω)) then ψ ∈ C([0, T ];L2(Ω)).

• If ψ0 ∈ H1
0(Ω) and f ∈ L1(0, T ;H1

0(Ω)) then ψ ∈ C([0, T ];H1
0(Ω)).

• If ψ0 ∈ H2(Ω) ∩ H1
0(Ω) and f ∈ L1(0, T ;H2(Ω) ∩ H1

0(Ω)) then

ψ ∈ C([0, T ];H2(Ω) ∩H1
0(Ω)).

• If ψ0 ∈ H∆(Ω) and f ∈ L1(0, T ;H∆(Ω)) then ψ ∈ C([0, T ];H∆(Ω)),

where

H∆(Ω) = {w ∈ H1
0(Ω), such that ∆w ∈ H1

0(Ω)}.

Notice that in that space H∆ we have no information on the trace of

the normal derivative....
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3. Negative results of controllability.

Ball, Marsden, Slemrod result (SIAM J. Control and

Optimization, 1982).
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Ball, Marsden and Slemrod considered the problem of bilinear control

∂y

∂t
+Ay + u(t)By = 0

where A generates a C0 semi group on a Banach space X with dimX =

+∞, and B is a bounded linear operator from X to X.

Then writing for solutions y the set of reachable states

R(y0) = {y(t), t ≥ 0, y(0) = y0, u ∈ Lrloc(0,+∞; IR), r > 1}

they prove that R(y0) is contained in a countable union of compact

sets, and therefore has an empty interior.

For a long time this result has prevented people from looking for

positive controllability results !



In our context, take A = −i∆ with Dirichlet boundary conditions and

Bψ = −iµ(x)ψ.

We know that A generates a C0 semi group on L2(Ω), on H1
0(Ω), on

H2(Ω) ∩H1
0(Ω) and also on H∆(Ω).

If µ is regular enough, multiplication by µ is immediately a bounded

linear operator in L2(Ω) and also in H1
0(Ω) and in H2(Ω) ∩H1

0(Ω).

Therefore, by taking u ∈ L2(0, T ) there is no chance to have a con-

trollability result in these spaces. In fact due to the group property

of Schrödinger equation, we can reverse the time and start from ψ1.

At any time T we would obtain a reachable set with empty interior,

whatever the control is.
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Situation fo H∆(Ω).

For H∆(Ω) the situation is more complex. Take µ regular and ψ ∈
H∆(Ω). Then of course µ.ψ ∈ H1(Ω) and µ.ψ/Γ = 0 so that µ.ψ ∈
H1

0(Ω).

Now we have

∆(µ.ψ) = µ.∆ψ + 2∇µ.∇ψ + ψ.∆µ

and we easily have ∆(µ.ψ) ∈ H1(Ω). But on the boundary we have,
writing ν for the outward unit normal vector on Γ (as ψ/Γ = 0)

∇ψ = (∇ψ.ν)ν

and therefore

∆(µ.ψ)/Γ = 2
∂µ

∂ν
·
∂ψ

∂ν
.
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This trace will vanish for all ψ ∈ H∆(Ω) if and only if

∂µ

∂ν
= 0

and in that case we also have a negative result because multiplication
by µ would be a bounded linear operator on H∆(Ω)!

But if µ is regular enough but such that

∂µ

∂ν
6= 0

then we have

µ.ψ ∈ H1
0(Ω), ∆ψ ∈ H1(Ω)

but in general

µ.ψ /∈ H∆(Ω).
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Remark.

Despite of the negative results, Karine Beauchard has tried and suc-

ceeded in proving local controllability results for the 1 dimensional

case, first of all, in an article in J. de Math. Pures et Appl. in 2005

in a very complex functional spaces framework, then, in collaboration

with Camille Laurent again in J. de Math. Pures et Appl. 2010, us-

ing the above remark on H∆(Ω). We will develop the latter method

below.
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4. Regularity result.
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It is well known that Schrödinger equation is not regularizing.... Nev-

ertheless, we will prove a kind of regularity result which will be es-

sential for the controllability result and which has its own interest.

This result has been proved by K.Beauchard and C.Laurent in the

1 dimensional case using arguments coming from harmonic analysis

and the explicit knowledge of eigenvalues and eigenfunctions of −∆

in the 1 dimensional case.

I will present here an extension to the general case which is proved

by arguments which appear to be completely different.....(J.-P.Puel,

Revista Mathematica Complutense, submitted)



Theorem 1 Let T be positive and Ω be a bounded open subset of

IRN of class C2,α with α > 0. For every ψ0 ∈ H∆(Ω) and for every

f ∈ L2(0, T ;H3(Ω) ∩H1
0(Ω)) the solution ψ of

i
∂ψ

∂t
+ ∆ψ = f in Ω× (0, T ),

ψ = 0 on Γ× (0, T ),

ψ(0) = ψ0 in Ω.

satisfies

ψ ∈ C([0, T ];H∆(Ω))

and there exists C > 0 independent of ψ0, g and h such that

||ψ||C([0,T ];H∆(Ω)) ≤ C(||ψ0||H∆(Ω) + ||f ||L2(0,T ;H3(Ω)∩H1
0(Ω))).
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Remark.

In fact we can take f such that f = g + h where

g ∈ L1(0, T ;H∆(Ω))

and

h ∈ L2(0, T ;H2(Ω) ∩H1
0(Ω)), ∆2h = 0, ∆h/Γ ∈ L

2(0, T ;L2(Γ)),

The proof will be given with this condition on the right hand side

which is more general.
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Indeed, If f ∈ L2(0, T ;H3(Ω) ∩ H1
0(Ω)), let us take g such that for

almost every t ∈ (0, T )

∆2g(t) = ∆2f(t) in Ω,

g = 0 on Γ,

∆g = 0 on Γ.

As ∆2f ∈ L2(0, T ;H−1(Ω)), this uniquely defines g with g ∈ L2(0, T ;H∆(Ω)).

Let us now write h = f − g. Then h ∈ L2(0, T ;H2(Ω) ∩ H1
0(Ω)),

∆h ∈ L2(0, T ;H1(Ω)) and

∆2h = 0 in Ω,

h = 0 on Γ,

∆h/Γ ∈ L
2(0, T ;H

1
2(Γ)).

19



Sketch of the proof.

The equation for ψ is linear. Therefore we can treat separately the

case h = 0 and the case ψ0 = 0 and g = 0.

The case h = 0 goes back to classical results which give a solution

in C([0, T ];H∆(Ω)). Therefore the only problem comes from the

case where h 6= 0, ψ0 = 0 and g = 0. By a density argument we

can restrict ourselves to h ∈ C∞0 ((0, T );H2(Ω) ∩ H1
0(Ω)), with ∆h ∈

C∞0 ((0, T );H1(Ω)) and such that

∆2h = 0 in Ω,

h = 0 on Γ,

∆h/Γ ∈ C
∞
0 ((0, T );H

1
2(Γ)).
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In that case we can take the derivative of the equation with respect

to time and obtain a regularity result on ∂ψ
∂t and therefore on ∆ψ

which implies that ∆ψ/Γ = 0. The only thing to prove the estimate

on ||ψ||C([0,T ];H∆(Ω)).

Let us define ξ = ∆ψ. Then ξ is solution to the equation, if we write

k = ∆h,

i
∂ξ

∂t
+ ∆ξ = k in Ω× (0, T ),

ξ = 0 on Γ× (0, T ),

ξ(0) = 0 in Ω.

Theorem 1 will be an immediate consequence of the following result
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Theorem 2 Assume that k ∈ L2(0, T ;L2(Ω)) with ∆k = 0 and k/Γ ∈
L2(0, T ;L2(Γ)). Then the solution ξ of the previous problem satisfies

ξ ∈ C([0, T ];H1
0(Ω))

and there exists a constant C > 0 independent of k such that

||ξ||C([0,T ];H1
0(Ω)) ≤ C||k/Γ||L2(0,T ;L2(Γ)).

Again here, by a density argument, it is enough to prove the theo-
rem for functions k which are C∞ with compact support in the time
variable.

Let us now set

ϕ = ∆ξ.
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Then ϕ satisfies the following equation (we recall that ∆k = ∆2h = 0)

i
∂ϕ

∂t
+ ∆ϕ = 0 in Ω× (0, T ),

ϕ = ∆h/Γ on Γ× (0, T ),

ϕ(0) = 0 in Ω.

Then Theorem 2 will be an immediate consequence of the following

result.

Theorem 3 As ∆h/Γ ∈ L2(0, T ;L2(Γ)), there exists a unique (weak)

solution ϕ to the previous problem with ϕ ∈ C([0, T ];H−1(Ω)) and

there exists a constant C > 0 independent of ∆h/Γ such that

||ϕ||C([0,T ];H−1(Ω)) ≤ C||∆h/Γ||L2(0,T ;L2(Γ)).
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In order to prove Theorem 3 we argue by transposition. Let z ∈
L1(0, T ;H1

0(Ω)) and let us define η as the solution of

i
∂η

∂t
+ ∆η = z in Ω× (0, T ),

η = 0 on Γ× (0, T ),

η(0) = 0 in Ω.

Then we know that η ∈ C([0, T ];H1
0(Ω)). Moreover we have

Lemma 4 If Ω is of class C2,α with α > 0, the function η satifies
∂η
∂ν ∈ L

2(0, T ;L2(Γ)) and the mapping z → ∂η
∂ν is linear continuous from

L1(0, T ;H1
0(Ω)) to L2(0, T ;L2(Γ)) so that there exists a constant

C > 0 independent of z such that

||
∂η

∂ν
||L2(0,T ;L2(Γ)) ≤ C||z||L1(0,T ;H1

0(Ω)).
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This regularity result has been proved by Elaine Maychtyngier (SIAM

J. Control and Optim., 32 (1), 24-34, 1994.) but we give here a

sketch of a slightly improved proof for sake of completeness by the

multiplier method with a specific multiplier.

Let w1 be the positive unitary eigenfunction of −∆ on Ω associated

with the first eigenvalue λ1. From the regularity of Ω we know that

w1 ∈ C1(Ω̄) and from the strong maximum principle there exists β > 0

such that

∀x ∈ Γ, −
∂w1

∂ν
(x) ≥ β > 0

We now take the mutiplier m = −∇w1 and multiply the equation

for η by m.∇η̄, then take the real part, taking into account that

divm = −∆w1 = λ1w1, and that on γ, ∇η = (∇η.ν)ν.
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After some standard calculations we obtain

1

2

∫ T

0

∫
Γ
|∇η.ν|2(m.ν)dγdt = Re

∫ T

0

∫
Ω
zm.∇η̄dxdt

−
λ1

2

∫ T

0

∫
Ω

(ηm.∇η̄ + ηz̄w1)dxdt+Re(
N∑

j,k=1

∫ T

0

∫
Ω

∂η

∂xj

∂mk

∂xj

∂η̄

∂xk
dxdt).

From the standard estimates on solutions η, we then obtain with a

constant C independent of z∫ T

0

∫
Γ
|∇η.ν|2dγdt ≤ C||z||2

L1(0,T ;H1
0(Ω))

.

This finishes the proof of Lemma 4.
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Now for every z ∈ L1(0, T ;H1
0(Ω)) let us define

L(z) =
∫ T

0

∫
Γ

∆h/Γ
∂η̄

∂ν
dγdt.

From Lemma 4 the mapping

z → L(z)

is an antilinear continuous form on L1(0, T ;H1
0(Ω)). Therefore, there

exists a unique element ϕ ∈ L∞(0, T ;H−1(Ω)) such that

∀z ∈ L1(0, T ;H1
0(Ω)),

∫ T

0
< ϕ, z̄ >H−1(Ω),H1

0(Ω) dt = L(z).

Moreover we have

||ϕ||L∞(0,T ;H−1(Ω)) ≤ C||∆h/Γ||L2(0,T ;L2(Γ)).
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When the data ∆h/Γ is taken in a dense subset of regular functions

(C∞ functions with compact support in space and time), it is well

known that the solution ϕ is regular and we have ϕ ∈ C([0, T ];H−1(Ω))

with the same estimate. Therefore, taking a sequence of regular datas

∆hn/Γ converging to ∆h/Γ we have, denoting by ϕn the corresponding

solution

||ϕm − ϕp||C([0,T ];H−1(Ω)) ≤ C||∆hm/Γ −∆h
p
/Γ||L2(0,T ;L2(Γ)).

This shows that ϕn is a Cauchy sequence in C([0, T ];H−1(Ω)) and of

course ϕn converges to ϕ so that ϕ ∈ C([0, T ];H−1(Ω)). This finishes

the proof of Theorem 3, and therefore of Theorem 2 and Theorem

1.
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