Some controllability properties for Schrödinger equations and open problems. Part II.

Jean-Pierre Puel
Ikerbasque and BCAM, Bizkaia Technology Park, Building 500,
Derio, 48160, Spain
and

Laboratoire de Mathématiques de Versailles, Université de Versailles Saint-Quentin, 45 avenue des Etats Unis, 78035 Versailles Cedex, France

1. Setting of the controllability problem.

From now on we consider the case of dimension $N \leq 3$.

Proposition 1 Let $\mu \in H^3(\Omega)$. For every $\psi_0 \in H_{\Delta}(\Omega)$ and every $u \in L^2(0,T)$, there exists a unique solution $\psi \in C([0,T]; H_{\Delta}(\Omega))$ to the Schrödinger equation

$$i\frac{\partial \psi}{\partial t} + \Delta \psi + u.\mu.\psi = 0 \text{ in } \Omega \times (0,T),$$

 $\psi = 0 \text{ on } \Gamma \times (0,T),$
 $\psi(0) = \psi_0 \text{ in } \Omega.$

Proof. For each $u \in L^2(0,T)$ fixed, given $\epsilon > 0$ we can divide (0,T) in k subintervals $(T_0 = 0,T_1), (T_1,T_2), \ldots, (T_{k-1},T_k = T)$ such that $||u||_{L^2(T_{j-1},T_j)} \leq \epsilon$.

We will prove the proposition for $||u||_{L^2(0,T)}$ small enough on the interval (0,T) and as the argument will be independent on the size of the initial data ψ_0 , the same arguments on each subinterval will give the complete result.

If $\psi \in C([0,T]; H_{\Delta}(\Omega))$ as $\mu \in H^3(\Omega)$ we see that $\mu.\psi \in C([0,T]; H^3(\Omega) \cap H_0^1(\Omega))$ with

$$||\mu.\psi||_{C([0,T];H^3(\Omega))\cap H^1_0(\Omega))} \le C_\mu ||\psi||_{C([0,T];H_{\Delta}(\Omega))}.$$

Therefore $u.\mu.\psi \in L^2(0,T;H^3(\Omega)\cap H^1_0(\Omega))$ and we can define $\widehat{\psi} = \mathcal{S}(\psi)$ as the solution of the following Schrödinger equation

$$i\frac{\partial \widehat{\psi}}{\partial t} + \Delta \widehat{\psi} + u.\mu.\psi = 0 \text{ in } \Omega \times (0,T),$$

 $\widehat{\psi} = 0 \text{ on } \Gamma \times (0,T),$
 $\widehat{\psi}(0) = \psi_0 \text{ in } \Omega.$

From the regularity result proved in Part I we have

$$\widehat{\psi} = \mathcal{S}(\psi) \in C([0,T]; H_{\Delta}(\Omega)).$$

Now we have

$$||\mathcal{S}(\psi^{1} - \psi^{2})||_{C([0,T];H_{\Delta}(\Omega))} \leq C||u.\mu.(\psi^{1} - \psi^{2})||_{L^{2}(0,T;H^{3}(\Omega)\cap H_{0}^{1}(\Omega))}$$

$$\leq C.C_{\mu}||u||_{L^{2}(0,T)}||\psi^{1} - \psi^{2}||_{C([0,T];H_{\Delta}(\Omega))}.$$

Taking $||u||_{L^2(0,T)}$ small enough so that $C.C_{\mu}.||u||_{L^2(0,T)} \leq \frac{1}{2}$ we see that \mathcal{S} is a strict contraction and therefore has a unique fixed point which is solution to our problem.

Comment.

- We now have a correct functional setting for our controllability problem which avoids the negative result of Ball, Marsden and Slemrod as multiplication by μ is not (in general) a bounded linear operator in $H_{\Delta}(\Omega)$.
- We would like to study the local controllability problem in a neighborhood of the first eigenfunction w_1 . We have already noticed that, due to the reversibility of Schrödinger equation, it is sufficient to start from the initial value $\psi_0 = w_1$ and to try to reach (in time $\frac{T}{2}$ a target ψ_1 in a (small) neighborhood of w_1 .
- This problem is completely open in dimension $N \ge 2$! It has been solved in dimension 1 by Karine Beauchard and Camille Laurent (J. de Math. Pures et Appl. 2010) and we will present their result below.

2. Linearization.

We now take the problem

$$i\frac{\partial \psi}{\partial t} + \Delta \psi + u.\mu.\psi = 0 \text{ in } \Omega \times (0,T),$$

 $\psi = 0 \text{ on } \Gamma \times (0,T),$
 $\psi(0) = w_1 \text{ in } \Omega.$

We want to study the mapping \mathcal{T} defined from $L^2(0,T)$ to $H_{\Delta}(\Omega)$ by

$$\mathcal{T}(u) = \psi(T).$$

When u = 0 the solution is

$$w(t) = e^{-i\lambda_1 t} w_1$$

and we have

$$\mathcal{T}(0) = w(T) = e^{-i\lambda_1 T} w_1.$$

Lemma 2 The mapping \mathcal{T} is continuously differentiable on $L^2(0,T)$ and we have for every u and v in $L^2(0,T)$

$$D\mathcal{T}(u)[v] = z(T)$$

where z is the solution to the following equation

$$i\frac{\partial z}{\partial t} + \Delta z + u.\mu.z + v.\mu.\psi = 0 \text{ in } \Omega \times (0,T),$$

 $z = 0 \text{ on } \Gamma \times (0,T),$
 $z(0) = 0 \text{ in } \Omega.$

Proof.

Existence and uniqueness for the solution z can be done exactly with the same arguments as the ones used in Proposition 1. Let us write ψ the solution associated with u and $\hat{\psi}$ the solution associated with u+v and $\xi=\hat{\psi}-\psi-z$. We have

$$i\frac{\partial \xi}{\partial t} + \Delta \xi + u.\mu.\xi + v.\mu.(\hat{\psi} - \psi) = 0 \text{ in } \Omega \times (0,T),$$

 $\xi = 0 \text{ on } \Gamma \times (0,T),$
 $\xi(0) = 0 \text{ in } \Omega.$

Then

$$||\xi||_{C([0,T];H_{\Delta}(\Omega))} \le C.C_{\mu}||v||_{L^{2}(0,T)}||\widehat{\psi}-\psi||_{C([0,T];H_{\Delta}(\Omega))}$$

and

$$||\widehat{\psi} - \psi||_{C([0,T];H_{\Delta}(\Omega))} \le C.C_{\mu}||v||_{L^{2}(0,T)}||\widehat{\psi}||_{C([0,T];H_{\Delta}(\Omega))}.$$

This shows the differentiability of \mathcal{T} and that $D\mathcal{T}(u)[v] = z(T)$. The continuity of $u \to D\mathcal{T}(u)$ is immediate.

The difference between the cases of dimension N=1 and dimension $N\geq 2$ will appear in the fact that for N=1 we will be able to find conditons on μ which are often satisfied such that $D\mathcal{T}(0)$ will be surjective (so that the linearized problem will be controllable) whereas in dimension $N\geq 2$ this will not be possible and in general, the linearized problem at u=0 will not be controllable.

3. 1-dimensional case. Controllability of the linearized problem at u=0.

Here we work on the interval (0,1) for the x variable. We have

$$\lambda_j = j^2 \pi^2, \quad w_j = \sqrt{2} \sin(\sqrt{\lambda_j} x), \quad w_1(t) = \sqrt{2} e^{-i\pi^2 t} \sin(\pi t)$$

We want to show that (under good hypotheses on μ), if we consider the problem

$$i\frac{\partial z}{\partial t} + i\frac{\partial^2 z}{\partial x^2} + v.\mu.w_1 = 0 \text{ on } (0,1) \times (0,T),$$

 $z(0,t) = z(1,t) = 0,$
 $z(x,0) = 0 \text{ on } (0,1),$

for every $z_1 \in H_{\Delta}(0,1)$, there exists a control $v \in L^2(0,T)$ (with real values) such that $z(T) = z_1$ with continuity of the mapping $z_1 \to v$.

We can write

$$z_1 = \sum_{k \ge 1} b_k w_k$$
 with $||z_1||^2_{H_{\Delta}(0,1)} = \sum_{k \ge 1} k^6 |b_k|^2 < +\infty$.

If we look for z in the form

$$z(t) = \sum_{k \ge 1} \beta_k(t) w_k,$$

we have for each $k \geq 1$

$$i\beta'_k(t) = k^2 \pi^2 \beta_k(t) - v(t) \left(\int_0^1 \mu(x) w_1(x) w_k(x) dx \right) e^{-i\pi^2 t},$$

$$\beta_k(0) = 0,$$

so that, writing $\mu_{1,k} = \int_0^1 \mu(x) w_1(x) w_k(x) dx$,

$$i\beta_k(t) = e^{-ik^2\pi^2t} \int_0^t v(s)e^{i(k^2-1)\pi^2s} \mu_{1,k}ds.$$

We now want to find v such that for every $k \geq 1$, $\beta_k(T) = b_k$ so that

$$ib_k e^{ik^2\pi^2T} = \mu_{1,k} \int_0^T v(s)e^{i(k^2-1)\pi^2s} ds.$$

Of course a first necessary condition on μ is $\forall k \geq 1, \ \mu_{1,k} \neq 0$.

Proposition 3 Let us assume that $\mu \in H^3(0,1)$ and satisfies

$$\exists C > 0, \quad \forall k \ge 1, \quad |\mu_{1,k}| \ge \frac{C}{k^3}.$$

Then there exists a constant C > 0 and $v \in L^2(0,T)$ with real values, such that

$$ib_k e^{ik^2\pi^2T} = \mu_{1,k} \int_0^T v(s)e^{i(k^2-1)\pi^2s} ds$$

$$\int_0^T |v(s)|^2 ds \le C \sum_{k>1} k^6 |b_k|^2.$$

Define

$$\tilde{b}_k = i \frac{b_k}{\mu_{1,k}} e^{ik^2 \pi^2 T}.$$

The assumption on μ implies that $\sum_{k\geq 1} |\tilde{b}_k|^2 < +\infty$. Writing $\omega_k = (k+1)^2 - 1$ for $k\geq 0$ and $\omega_k = -\omega_{-k}$ for k<0, as $\omega_{k+1} - \omega_k \to +\infty$ when $k\to +\infty$, for any T>0, the family $(\omega_k)_{k\in Z}$ is a Riesz basis in $L^2(0,T)$. Choosing $\tilde{b}_k = \bar{\tilde{b}}_{-k}$ for k<0 we can find $v\in L^2(0,T)$ with real values and two constants $C_1>0$ and $C_2>0$ such that for every $k\in Z$

$$\int_0^T v(s)e^{i\omega_k s}ds = \tilde{b}_k$$

$$C_1 \sum_{k\geq 1} |\tilde{b}_k|^2 \leq \int_0^T |v(s)|^2 dt \leq C_2 \sum_{k\geq 1} |\tilde{b}_k|^2.$$

This proves Proposition 3.

Comment.

A Riesz basis is the image by an isomorphism of an orthonormal family. It is in fact a Riesz basis on the closure of its span.

The fact that $\omega_{k+1}-\omega_k\to +\infty$ when $k\to +\infty$ implies that the family $(\omega_k)_{k\in \mathbb{Z}}$ is a Riesz basis in $L^2(0,T)$ for T>0 comes from Ingham inequality and a version proved by A.Haraux (J. Math. Pures et Appl., 68:457465, 1989.)

A Riesz basis has a biorthogonal family which is also a Riesz basis and the solution \boldsymbol{v} of

$$\int_0^T v(s)e^{i\omega_k s}ds = \tilde{b}_k$$

can be written in terms of this biorthogonal family.

Condition on μ .

By an immediate calculation (integration by parts) we can show that

$$\mu_{1,k} = \int_0^1 \mu(x) \sin(\pi x) \sin(k\pi x) dx = \frac{2\pi}{k^3 \pi^3} ((-1)^{k+1} \mu'(1) - \mu'(0))$$

$$+ \frac{1}{k^3 \pi^3} \int_0^1 \cos(k\pi x) (\mu'''(x) \sin(\pi x) + 3\pi \mu''(x) \cos(\pi x)$$

$$+ 3\pi^2 \mu'(x) \sin(\pi x) + \pi^3 \mu(x) \cos(\pi x)) dx.$$

As $\cos(k\pi x)$ converges to 0 weakly in $L^2(0,1)$ when $k\to +\infty$ the integral term in the right hans side tends to 0 when $k\to +\infty$. Therefore, for k large, the main term will be the first one.

We then have the following result.

Proposition 4 If $\mu \in H^3(0,1)$ satisfies

$$\forall k \geq 1, \quad \mu_{1,k} \neq 0 \quad and \quad \mu'(0) \pm \mu'(1) \neq 0,$$

then there exists C > 0 such that

$$|\mu_{1,k}| \ge \frac{C}{k^3}.$$

These conditions are not difficult to ensure, and they are generically satisfied by μ . For example, $\mu(x)=x^2$ satisfies the conditions.

4. 1-dimensional case. Controllability result.

Theorem 5 Let $\mu \in H^3(0,1)$ satisfying

$$\exists C > 0, \quad \forall k \ge 1, \quad |\mu_{1,k}| \ge \frac{C}{k^3}.$$

Then for every T>0, there exists $\eta>0$ such that for every $\psi_1\in H_{\Delta}(0,1)$ with $||\psi_1-e^{-i\pi^2T}w_1||_{H_{\Delta}(0,1)}\leq \eta$, there exists a control $u\in L^2(0,T)$ with real values such that the corresponding solution ψ of Schrödinger equation satisfies

$$\psi(T) = \psi_1.$$

Moreover there exists a constant C>0 such that we can choose the control u with

$$||u||_{L^2(0,T)} \le C||\psi_1 - e^{-i\pi^2 T} w_1||_{H_{\Delta}(0,1)}.$$

As already noticed, this also implies an analogous result with initial condition $\psi(0) = \psi_0$ with $||\psi_0 - w_1||_{H_{\Lambda}(0,1)} \leq \eta$.

The proof of Theorem 5 is now classical. We consider the mapping $\mathcal T$ already defined and we want to show that there exists $u\in L^2(0,T)$ such that

$$\mathcal{T}(u) = \psi_1.$$

We know that

$$\bullet \ \mathcal{T}(0) = e^{-i\pi^2 T} w_1$$

- \mathcal{T} is a C^1 mapping from $L^2(0,T)$ to $H_{\Delta}(0,1)$.
- The controllability of the linearized problem at u=0 (with continuity of the control with respect to the target) says that $D\mathcal{T}(0)$ has a right (continuous) inverse.

Therefore, there exists a neighborhood of $e^{-i\pi^2T}w_1$ (say a ball of radius η) in $H_{\Delta}(0,1)$ such that for every ψ_1 in this neighborhood, we can find a control $u\in L^2(0,T)$ (with real values) such that

$$||u||_{L^2(0,T)} \le C||\psi_1 - e^{-i\pi^2 T} w_1||_{H_{\Delta}(0,1)}$$

and

$$\mathcal{T}(u) = \psi_1.$$

This finishes the proof of Theorem 5.

Open problems.

- What can we say in the case of dimension $N \ge 2$?
- What happens in a neighborhood of other eigenfunctions?
- What happens for the case of the whole real line, even with the harmonic oscillator (which has a discrete spectrum)?