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1. Setting of the controllability problem.
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From now on we consider the case of dimension N ≤ 3.

Proposition 1 Let µ ∈ H3(Ω). For every ψ0 ∈ H∆(Ω) and every

u ∈ L2(0, T ), there exists a unique solution ψ ∈ C([0, T ];H∆(Ω)) to

the Schrödinger equation

i
∂ψ

∂t
+ ∆ψ + u.µ.ψ = 0 in Ω× (0, T ),

ψ = 0 on Γ× (0, T ),

ψ(0) = ψ0 in Ω.

Proof. For each u ∈ L2(0, T ) fixed, given ε > 0 we can divide (0, T )

in k subintervals (T0 = 0, T1), (T1, T2), ... , (Tk−1, Tk = T ) such that

||u||L2(Tj−1,Tj)
≤ ε.
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We will prove the proposition for ||u||L2(0,T ) small enough on the
interval (0, T ) and as the argument will be independent on the size of
the initial data ψ0, the same arguments on each subinterval will give
the complete result.

If ψ ∈ C([0, T ];H∆(Ω)) as µ ∈ H3(Ω) we see that µ.ψ ∈ C([0, T ];H3(Ω)∩
H1

0(Ω)) with

||µ.ψ||C([0,T ];H3(Ω))∩H1
0(Ω)) ≤ Cµ||ψ||C([0,T ];H∆(Ω)).

Therefore u.µ.ψ ∈ L2(0, T ;H3(Ω) ∩ H1
0(Ω)) and we can define ψ̂ =

S(ψ) as the solution of the following Schrödinger equation

i
∂ψ̂

∂t
+ ∆ψ̂ + u.µ.ψ = 0 in Ω× (0, T ),

ψ̂ = 0 on Γ× (0, T ),

ψ̂(0) = ψ0 in Ω.
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From the regularity result proved in Part I we have

ψ̂ = S(ψ) ∈ C([0, T ];H∆(Ω)).

Now we have

||S(ψ1 − ψ2||C([0,T ];H∆(Ω)) ≤ C||u.µ.(ψ
1 − ψ2)||L2(0,T ;H3(Ω)∩H1

0(Ω))

≤ C.Cµ||u||L2(0,T )||ψ
1 − ψ2||C([0,T ];H∆(Ω)).

Taking ||u||L2(0,T ) small enough so that C.Cµ.||u||L2(0,T ) ≤
1
2 we see

that S is a strict contraction and therefore has a unique fixed point

which is solution to our problem.
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Comment.

•We now have a correct functional setting for our controllability prob-
lem which avoids the negative result of Ball, Marsden and Slemrod
as multiplication by µ is not (in general) a bounded linear operator in
H∆(Ω).

• We would like to study the local controllability problem in a neigh-
borhood of the first eigenfunction w1. We have already noticed that,
due to the reversibility of Schrödinger equation, it is sufficient to start
from the initial value ψ0 = w1 and to try to reach (in time T

2 a target
ψ1 in a (small) neighborhood of w1.

• This problem is completely open in dimension N ≥ 2 ! It has been
solved in dimension 1 by Karine Beauchard and Camille Laurent (J.
de Math. Pures et Appl. 2010) and we will present their result below.
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2. Linearization.
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We now take the problem

i
∂ψ

∂t
+ ∆ψ + u.µ.ψ = 0 in Ω× (0, T ),

ψ = 0 on Γ× (0, T ),

ψ(0) = w1 in Ω.

We want to study the mapping T defined from L2(0, T ) to H∆(Ω) by

T (u) = ψ(T ).

When u = 0 the solution is

w(t) = e−iλ1tw1

and we have

T (0) = w(T ) = e−iλ1Tw1.
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Lemma 2 The mapping T is continuously differentiable on L2(0, T )
and we have for every u and v in L2(0, T )

DT (u)[v] = z(T )

where z is the solution to the following equation

i
∂z

∂t
+ ∆z + u.µ.z + v.µ.ψ = 0 in Ω× (0, T ),

z = 0 on Γ× (0, T ),

z(0) = 0 in Ω.

Proof.
Existence and uniqueness for the solution z can be done exactly with
the same arguments as the ones used in Proposition 1. Let us write
ψ the solution associated with u and ψ̂ the solution associated with
u+ v and ξ = ψ̂ − ψ − z. We have
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i
∂ξ

∂t
+ ∆ξ + u.µ.ξ + v.µ.(ψ̂ − ψ) = 0 in Ω× (0, T ),

ξ = 0 on Γ× (0, T ),

ξ(0) = 0 in Ω.

Then

||ξ||C([0,T ];H∆(Ω)) ≤ C.Cµ||v||L2(0,T )||ψ̂ − ψ||C([0,T ];H∆(Ω))

and

||ψ̂ − ψ||C([0,T ];H∆(Ω)) ≤ C.Cµ||v||L2(0,T )||ψ̂||C([0,T ];H∆(Ω)).

This shows the differentiability of T and that DT (u)[v] = z(T ). The

continuity of u→ DT (u) is immediate.
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The difference between the cases of dimension N = 1 and dimension

N ≥ 2 will appear in the fact that for N = 1 we will be able to

find conditons on µ which are often satisfied such that DT (0) will be

surjective (so that the linearized problem will be controllable) whereas

in dimension N ≥ 2 this will not be possible and in general, the

linearized problem at u = 0 will not be controllable.
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3. 1-dimensional case. Controllability of the linearized problem

at u = 0.
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Here we work on the interval (0,1) for the x variable. We have

λj = j2π2, wj =
√

2 sin(
√
λjx), w1(t) =

√
2e−iπ

2t sin(πt)

We want to show that (under good hypotheses on µ), if we consider

the problem

i
∂z

∂t
+ i

∂2z

∂x2
+ v.µ.w1 = 0 on (0,1)× (0, T ),

z(0, t) = z(1, t) = 0,

z(x,0) = 0 on (0,1),

for every z1 ∈ H∆(0,1), there exists a control v ∈ L2(0, T ) (with real

values) such that z(T ) = z1 with continuity of the mapping z1 → v.
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We can write

z1 =
∑
k≥1

bkwk with ||z1||2H∆(0,1) =
∑
k≥1

k6|bk|2 < +∞.

If we look for z in the form

z(t) =
∑
k≥1

βk(t)wk,

we have for each k ≥ 1

iβ′k(t) = k2π2βk(t)− v(t)(
∫ 1

0
µ(x)w1(x)wk(x)dx)e−iπ

2t,

βk(0) = 0,

so that, writing µ1,k =
∫ 1
0 µ(x)w1(x)wk(x)dx,

iβk(t) = e−ik
2π2t

∫ t

0
v(s)ei(k

2−1)π2sµ1,kds.
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We now want to find v such that for every k ≥ 1, βk(T ) = bk so that

ibke
ik2π2T = µ1,k

∫ T

0
v(s)ei(k

2−1)π2sds.

Of course a first necessary condition on µ is ∀k ≥ 1, µ1,k 6= 0.

Proposition 3 Let us assume that µ ∈ H3(0,1) and satisfies

∃C > 0, ∀k ≥ 1, |µ1,k| ≥
C

k3
.

Then there exists a constant C > 0 and v ∈ L2(0, T ) with real values,
such that

ibke
ik2π2T = µ1,k

∫ T

0
v(s)ei(k

2−1)π2sds

∫ T

0
|v(s)|2ds ≤ C

∑
k≥1

k6|bk|2.
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Define

b̃k = i
bk
µ1,k

eik
2π2T .

The assumption on µ implies that
∑
k≥1 |̃bk|2 < +∞.

Writing ωk = (k + 1)2 − 1 for k ≥ 0 and ωk = −ω−k for k < 0, as
ωk+1 − ωk → +∞ when k → +∞, for any T > 0, the family (ωk)k∈Z
is a Riesz basis in L2(0, T ). Choosing b̃k = ¯̃b−k for k < 0 we can find
v ∈ L2(0, T ) with real values and two constants C1 > 0 and C2 > 0
such that for every k ∈ Z∫ T

0
v(s)eiωksds = b̃k

C1
∑
k≥1

|̃bk|2 ≤
∫ T

0
|v(s)|2dt ≤ C2

∑
k≥1

|̃bk|2.

This proves Proposition 3.
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Comment.

A Riesz basis is the image by an isomorphism of an orthonormal

family. It is in fact a Riesz basis on the closure of its span.

The fact that ωk+1−ωk → +∞ when k → +∞ implies that the family

(ωk)k∈Z is a Riesz basis in L2(0, T ) for T > 0 comes from Ingham

inequality and a version proved by A.Haraux (J. Math. Pures et Appl.,

68:457465, 1989.)

A Riesz basis has a biorthogonal family which is also a Riesz basis

and the solution v of ∫ T

0
v(s)eiωksds = b̃k

can be written in terms of this biorthogonal family.
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Condition on µ.

By an immediate calculation (integration by parts) we can show that

µ1,k =
∫ 1

0
µ(x) sin(πx) sin(kπx)dx =

2π

k3π3((−1)k+1µ′(1)− µ′(0))

+
1

k3π3

∫ 1

0
cos(kπx)(µ′′′(x) sin(πx) + 3πµ′′(x) cos(πx)

+3π2µ′(x) sin(πx) + π3µ(x) cos(πx))dx.

As cos(kπx) converges to 0 weakly in L2(0,1) when k → +∞ the inte-

gral term in the right hans side tends to 0 when k → +∞. Therefore,

for k large, the main term will be the first one.

We then have the following result.
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Proposition 4 If µ ∈ H3(0,1) satisfies

∀k ≥ 1, µ1,k 6= 0 and µ′(0)± µ′(1) 6= 0,

then there exists C > 0 such that

|µ1,k| ≥
C

k3
.

These conditions are not difficult to ensure, and they are generically

satisfied by µ. For example, µ(x) = x2 satisfies the conditions.
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4. 1-dimensional case. Controllability result.
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Theorem 5 Let µ ∈ H3(0,1) satisfying

∃C > 0, ∀k ≥ 1, |µ1,k| ≥
C

k3
.

Then for every T > 0, there exists η > 0 such that for every ψ1 ∈
H∆(0,1) with ||ψ1 − e−iπ

2Tw1||H∆(0,1) ≤ η, there exists a control u ∈
L2(0, T ) with real values such that the corresponding solution ψ of
Schrödinger equation satisfies

ψ(T ) = ψ1.

Moreover there exists a constant C > 0 such that we can choose the
control u with

||u||L2(0,T ) ≤ C||ψ1 − e−iπ
2Tw1||H∆(0,1).

As already noticed, this also implies an analogous result with initial
condition ψ(0) = ψ0 with ||ψ0 − w1||H∆(0,1) ≤ η.
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The proof of Theorem 5 is now classical. We consider the mapping

T already defined and we want to show that there exists u ∈ L2(0, T )

such that

T (u) = ψ1.

We know that

• T (0) = e−iπ
2Tw1

• T is a C1 mapping from L2(0, T ) to H∆(0,1).

• The controllability of the linearized problem at u = 0 (with conti-

nuity of the control with respect to the target) says that DT (0) has

a right (continuous) inverse.
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Therefore, there exists a neighborhood of e−iπ
2Tw1 (say a ball of

radius η) in H∆(0,1) such that for every ψ1 in this neighborhood, we

can find a control u ∈ L2(0, T ) (with real values) such that

||u||L2(0,T ) ≤ C||ψ1 − e−iπ
2Tw1||H∆(0,1)

and

T (u) = ψ1.

This finishes the proof of Theorem 5.
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Open problems.

• What can we say in the case of dimension N ≥ 2?

• What happens in a neighborhood of other eigenfunctions?

• What happens for the case of the whole real line, even with the

harmonic oscillator (which has a discrete spectrum) ?
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