Some controllability properties for
Schrodinger equations and open problems.
Part II.

Jean-Pierre Puel
Ikerbasque and BCAM, Bizkaia Technology Park, Building 500,
Derio, 48160, Spain
and
LLaboratoire de Mathématiques de Versailles, Université de Versailles
Saint-Quentin, 45 avenue des Etats Unis, 78035 Versailles Cedex,
France



1. Setting of the controllability problem.



From now on we consider the case of dimension N < 3.

Proposition 1 Let p € H3(Q). For every ¢ € Ha(S2) and every
w € L2(0,T), there exists a unique solution ¢ € C([0,T]; HA(S2)) to
the Schrodinger equation

i%—f + A 4 u.pap =0 in Q x (0,T),

vw=0onT x(0,7T),
¥ (0) = g in Q.

Proof. For each uw € L2(0,T) fixed, given € > 0 we can divide (0,7T)
in k subintervals (Top = 0,717), (11,1%), ... , (T),_1,T, = T) such that

||u||L2(Tj_1,Tj) < e.



We will prove the proposition for ||u||L2(O,T) small enough on the
interval (0,7) and as the argument will be independent on the size of
the initial data g, the same arguments on each subinterval will give
the complete result.

If € C([0,T]; HA(R)) as u € H3(2) we see that p.¢p € C([0,T]; H3(2)N
HA(£2)) with

Yl oo,y 13 @))nmE () = Culldlleqom;Ha):

Therefore w.u.ap € L2(0,T; H3(2) N H3(2)) and we can define ¢ =
S(v) as the solution of the following Schrddinger equation
O

iE—I—A@—I—u.u.sz in Q x (0,7),

v =0o0onT x(0,7),
P(0) = ¢g in Q.



From the regularity result proved in Part I we have

b =8S) € C([0,T]; HA(S2)).

Now we have

1S = ¥2lloor:HA ) < Cllup.(wh — ¢2)||L2(0,T;H3(Q)mﬂg(§z))
< C.Cullull 2010 = Y2 llo((0.17: B A ()

Taking H“”L?(o 7y Small enough so that C.CM.H’U,HLQ(O Ty < % we see
that § is a strict contraction and therefore has a unique fixed point
which is solution to our problem.



Comment.

e We now have a correct functional setting for our controllability prob-
lem which avoids the negative result of Ball, Marsden and Slemrod
as multiplication by p is not (in general) a bounded linear operator in
Ha(S2).

e \We would like to study the local controllability problem in a neigh-
borhnood of the first eigenfunction wi. We have already noticed that,
due to the reversibility of Schrodinger equation, it is sufficient to start
from the initial value ¢ = wy and to try to reach (in time % a target

11 in a (small) neighborhood of wj.

e [ his problem is completely open in dimension N > 2 ! It has been
solved in dimension 1 by Karine Beauchard and Camille Laurent (J.
de Math. Pures et Appl. 2010) and we will present their result below.
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2. Linearization.



We now take the problem

i({;—?f—l—Aw—l—u.,u.w:O in Q2 x (0,7T),

vw=0o0nT x(0,7T),
w(O)zwl in 2.

We want to study the mapping 7 defined from L2(0,T) to HA(2) by
T (u) = (T).
When v = 0 the solution is
w(t) = e My,
and we have

T(0) = w(T) = e M Ty,



Lemma 2 The mapping T is continuously differentiable on LQ(O,T)
and we have for every uw and v in L?(0,T)

DT (u)[v] = 2(T)
where z is the solution to the following equation
0z

v + Az4+u.p.z+v.pap =0 in Q2 x (0,T),
z=0onT x (0,7),
2(0) =0 in Q.

Proof.

Existence and uniqueness for the solution z can be done exactly with
the same arguments as the ones used in Proposition 1. Let us write
) the solution associated with » and i the solution associated with

uw+vand € =Y — i — z. We have



.0

v + A+ upéF+ovp(p—9)=0in Q x (0,T),
E=0onT x (0,7),
£(0) =0 in Q.
Then
Ellc(o,11: A () < C-CM||U||L2(O,T)||1E —Yllco1:HA(Q))
and

1% = Ylleqom:ma)) < C-Cullvllr20 myllPlle(o,m: 1))
This shows the differentiability of 7 and that D7 (u)[v] = 2(T). The
continuity of u — DT (u) is immediate.
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The difference between the cases of dimension N = 1 and dimension
N > 2 will appear in the fact that for N = 1 we will be able to
find conditons on u which are often satisfied such that D7 (0) will be
surjective (so that the linearized problem will be controllable) whereas
in dimension N > 2 this will not be possible and in general, the
linearized problem at v = 0 will not be controllable.
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3. l1-dimensional case. Controllability of the linearized problem
at v = 0.
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Here we work on the interval (0,1) for the z variable. We have

Aj = i°n?, w; = \/§Sin(,/)\jaz), wq(t) = \/§e_m2t sin(t)

We want to show that (under good hypotheses on p), if we consider
the problem

Oz 0%z
v -+ o> + v.u.wy =0 on (0,1) x (0,T),

2(0,t) = z(1,t) = 0,

z(x,0) =0 on (0,1),
for every z1 € Ha(0,1), there exists a control v € L2(0,T) (with real
values) such that z(T) = z1 with continuity of the mapping z1 — w.
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We can write

. 2 2
z1 = Y bpw with ||z1||HA(071) =) kO|by|? < +oo.
k>1 E>1
If we look for z in the form
z2(t) = ) Br(t)wy,
k>1
we have for each £ >1

(D) = Kr20(0) — ([ p(aun @wg(a)da)e ™,

Br(0) =0,
so that, writing uj j = fOl w(x)wq (z)w(x)d,

.2 2, 1 (1.2 2
iBL(t) = otk t/o ’U(S)ez(k —1)m Sﬂl,kd&
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We now want to find v such that for every k> 1, 8.(T) = b, so that

D D T 12 2
ibkezk T _ Nl,k/o U(S)ez(k —1)7 Sds.

Of course a first necessary condition on p is Vk > 1, pq g 7 0.

Proposition 3 Let us assume that € H3(0,1) and satisfies

C

ﬁ.

T hen there exists a constant C' > 0 and v € LQ(O,T) with real values,
such that

1C' >0, Vk>1, |,u]_,k| >

T

1.2, 2 (1.2 2
ibkezk T _ :ul,k/ ’U(S)ez(k —1)7%s g

0

T
| 1(o)Pds < ¢ Y Kby
0 k>1
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Define
Bk — bk eik27r2T
M1k

The assumption on g implies that Si>1 5|2 < +oo.

Writing wr, = (k+1)2 —1 for k > 0 and w, = —w_;, for k < 0, as
W41 — Wi, — +oo when k — +o0, for any T > 0, the family (wg)rez
is a Riesz basis in L2(0,T). Choosing b, =b_; for k < 0 we can find
v € L?(0,T) with real values and two constants C; > 0 and Cy > 0
such that for every k € Z

T . _
/O v(s)e'™k°ds = by,

7 12 I 2 7 12
C1 Y Bl < [ () Pde < O 3 [Byf2
k>1 0 k>1

T his proves Proposition 3.
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Comment.

A Riesz basis is the image by an isomorphism of an orthonormal
family. It is in fact a Riesz basis on the closure of its span.

The fact that wi41 —wp — +0o0 when £k — +oo implies that the family
(wi)rez is a Riesz basis in L?(0,T) for T > 0 comes from Ingham
inequality and a version proved by A.Haraux (J. Math. Pures et Appl.,
68:457465, 1989.)

A Riesz basis has a biorthogonal family which is also a Riesz basis
and the solution v of

T . _
/O v(s)e'™kds = by,

can be written in terms of this biorthogonal family.
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Condition on .
By an immediate calculation (integration by parts) we can show that

pg = /01 p(e) sin(mz) sin(kra)de = k§:3(<—1>’“+1u’<1> — 1 (0))

# /O * cos(krz) (4" (x) sin(rz) + 3mu () cos(rmz)
43724/ (z) sin(mz) + 73 () cos(mx))dx.

As cos(kmz) converges to 0 weakly in L2(0,1) when k — 400 the inte-
gral term in the right hans side tends to O when k£ — 4o00. Therefore,
for k£ large, the main term will be the first one.

We then have the following result.
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Proposition 4 If u € H3(0, 1) satisfies

Vk>1, p17#0 and p'(0)+ /(1) #0,

then there exists C' > 0 such that

C

|,Udl,k| > 13

These conditions are not difficult to ensure, and they are generically
satisfied by u. For example, u(x) = x2 satisfies the conditions.
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4. 1-dimensional case. Controllability result.
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Theorem 5 Let € H3(0,1) satisfying

C

pck

Then for every T' > 0, there exists n > 0 such that for every 1 €
HA(O,1) with || — e‘”QTw1||HA(O,1) <, there exists a control u &
L2(0,T) with real values such that the corresponding solution i of
Schrodinger equation satisfies

Y(T) = 1.
Moreover there exists a constant C > 0 such that we can choose the
control u with

1C > O, Vk Z 1, |,UJ1,k| Z

—im2T
lull 2207y < ClI1 — e ™ Twr I, 0.1)

AS already noticed, this also implies an analogous result with initial
condition (0) = o With ||[vo — willg,(0.1) < n-
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The proof of Theorem 5 is now classical. We consider the mapping
T already defined and we want to show that there exists u € L2(0,T)
such that

T (u) = 1.
We know that

° T(O) — e—iWQTwl

e 7 is a C! mapping from L2(0,T) to HA(0,1).

e The controllability of the linearized problem at v = 0 (with conti-
nuity of the control with respect to the target) says that D7 (0) has

a right (continuous) inverse.
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T herefore, there exists a neighborhood of e‘”QTwl (say a ball of

radius n) in HA (0, 1) such that for every 7 in this neighborhood, we
can find a control w € L2(0,T) (with real values) such that

i 2T
lull 20y < Cllvr — e Twillga0,1)

and

T (u) = 1.

This finishes the proof of Theorem 5.
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Open problems.
e What can we say in the case of dimension N > 27
e \What happens in a neighborhood of other eigenfunctions?

e What happens for the case of the whole real line, even with the
harmonic oscillator (which has a discrete spectrum) ?
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