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Diffusion

Populations diffuse, substances (like particles in a solvent) diffuse, heat
propagates, electrons and ions diffuse, the momentum of a viscous
(Newtonian) fluid diffuses (linearly), there is diffusion in the markets, ...

• what is diffusion anyway? Is diffusion more or less random walk ?

• how to explain it with mathematics? is it pure or applied mathematics ?
what would Kolmogorov say?

• How much of it can be explained with linear models, how much is
essentially nonlinear?

• The stationary states of diffusion belong to an important world, elliptic
equations. Elliptic equations, linear and nonlinear, have many relatives:
diffusion, fluid mechanics, waves of all types, quantum mechanics, ...

The Laplacian ∆ is the King of Differential Operators.
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Diffusion in Wikipedia

Diffusion. The spreading of any quantity that can be described by the
diffusion equation or a random walk model (e.g. concentration, heat,
momentum, ideas, price) can be called diffusion.
Some of the most important examples are listed below.
* Atomic diffusion
* Brownian motion, for example of a single particle in a solvent
* Collective diffusion, the diffusion of a large number of (possibly
interacting) particles * Effusion of a gas through small holes.
* Electron diffusion, resulting in electric current
* Facilitated diffusion, present in some organisms.
* Gaseous diffusion, used for isotope separation
* Heat flow * Ito- diffusion * Knudsen diffusion
* Momentum diffusion, ex. the diffusion of the hydrodynamic velocity field
* Osmosis is the diffusion of water through a cell membrane. * Photon
diffusion
* Reverse diffusion * Self-diffusion * Surface diffusion
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The heat equation origins
We begin our presentation with the Heat Equation ut = ∆u
and the analysis proposed by Fourier, 1807, 1822
(Fourier decomposition, spectrum). The mathematical models of heat
propagation and diffusion have made great progress both in theory and
application.
They have had a strong influence on 5 areas of Mathematics:
PDEs, Functional Analysis, Inf. Dim. Dyn. Systems, Diff. Geometry and
Probability. And on / from Physics.

The heat flow analysis is based on two main techniques: integral
representation (convolution with a Gaussian kernel) and mode
separation:

u(x , t) =
∑

Ti (t)Xi (x)

where the Xi (x) form the spectral sequence

−∆Xi = λi Xi .

This is the famous linear eigenvalue problem, Spectral Theory.
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Linear heat flows
From 1822 until 1950 the heat equation has motivated
(i) Fourier analysis decomposition of functions (and set theory),
(ii) development of other linear equations
=⇒ Theory of Parabolic Equations

ut =
∑

aij∂i∂ju +
∑

bi∂iu + cu + f

Main inventions in Parabolic Theory:
(1) aij ,bi , c, f regular⇒ Maximum Principles, Schauder estimates,
Harnack inequalities; Cα spaces (Hölder); potential theory; generation of
semigroups.
(2) coefficients only continuous or bounded⇒W 2,p estimates,
Calderón-Zygmund theory, weak solutions; Sobolev spaces.

The probabilistic approach: Diffusion as an stochastic process: Bachelier,
Einstein, Smoluchowski; Kolmogorov, Wiener, Levy; Ito, Skorokhod, ...

dX = bdt + σdW
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Harnack inequalities; Cα spaces (Hölder); potential theory; generation of
semigroups.
(2) coefficients only continuous or bounded⇒W 2,p estimates,
Calderón-Zygmund theory, weak solutions; Sobolev spaces.

The probabilistic approach: Diffusion as an stochastic process: Bachelier,
Einstein, Smoluchowski; Kolmogorov, Wiener, Levy; Ito, Skorokhod, ...

dX = bdt + σdW

Juan Luis Vázquez (Univ. Autónoma de Madrid) Nonlinear Diffusion 7 / 51



Linear heat flows
From 1822 until 1950 the heat equation has motivated
(i) Fourier analysis decomposition of functions (and set theory),
(ii) development of other linear equations
=⇒ Theory of Parabolic Equations

ut =
∑

aij∂i∂ju +
∑

bi∂iu + cu + f

Main inventions in Parabolic Theory:
(1) aij ,bi , c, f regular⇒ Maximum Principles, Schauder estimates,
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Nonlinear heat flows

In the last 50 years emphasis has shifted towards the Nonlinear World.
Maths more difficult, more complex, and more realistic.
My group works in the areas of Nonlinear Diffusion and Reaction
Diffusion.
I will talk about the theory mathematically called Nonlinear Parabolic
PDEs. General formula

ut =
∑
∂iAi (u,∇u) +

∑
B(x ,u,∇u)

Typical nonlinear diffusion: Stefan Problem, Hele-Shaw Problem, PME:
ut = ∆(um), EPLE: ut = ∇ · (|∇u|p−2∇u).

Typical reaction diffusion: Fujita model ut = ∆u + up.

The fluid flow models: Navier-Stokes or Euler equation systems for
incompressible flow. Any singularities?

The geometrical models: the Ricci flow, movement by curvature.
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The Nonlinear Diffusion Models

The Stefan Problem (Lamé and Clapeyron, 1833; Stefan 1880)

SE :

{
ut = k1∆u for u > 0,
ut = k2∆u for u < 0. TC :

{
u = 0,
v = L(k1∇u1 − k2∇u2).

Main feature: the free boundary or moving boundary where u = 0. TC=
Transmission conditions at u = 0.
The Hele-Shaw cell (Hele-Shaw, 1898; Saffman-Taylor, 1958)

u > 0, ∆u = 0 in Ω(t); u = 0, v = L∂nu on ∂Ω(t).

The Porous Medium Equation→(hidden free boundary)

ut = ∆um, m > 1.

The p-Laplacian Equation, ut = div (|∇u|p−2∇u).

Recent interest in p = 1 (images) or p =∞ (geometry and transport)
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The Reaction Diffusion Models

The Standard Blow-Up model (Kaplan, 1963; Fujita, 1966)

ut = ∆u + up

Main feature: If p > 1 the norm ‖u(·, t)‖∞ of the solutions goes to infinity
in finite time. Hint: Integrate ut = up.
Problem: what is the influence of diffusion / migration?
General scalar model

ut = A(u) + f (u)

The system model: −→u = (u1, · · · ,um)→ chemotaxis system.
The fluid flow models: Navier-Stokes or Euler equation systems for
incompressible flow. Quadratic nonlinear, Mixed type Any singularities?
The geometrical models: the Ricci flow: ∂tgij = −Rij . This is a nonlinear
heat equation. Posed in the form of PDEs by R Hamilton, 1982. Solved
by G Perelman 2003.
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An opinion by John Nash, 1958:
The open problems in the area of nonlinear p.d.e. are very relevant to

applied mathematics and science as a whole, perhaps more so that the
open problems in any other area of mathematics, and the field seems
poised for rapid development. It seems clear, however, that fresh
methods must be employed...

Little is known about the existence, uniqueness and smoothness of
solutions of the general equations of flow for a viscous, compressible,
and heat conducting fluid...

Continuity of solutions of elliptic and parabolic equations,
paper published in Amer. J. Math, 80, no 4 (1958), 931-954.

De Giorgi, Ennio, Sulla differenziabilita e l’analiticita delle estremali degli
integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat.
(3) 3 (1957), 25–43.

J. Moser, A new proof of De Giorgi’s theorem concerning the regularity
problem for elliptic differential equations. Comm. Pure Appl. Math. 13
(1960) 457–468.
A Harnack inequality for parabolic differential equations, Comm. Pure
and Appl. Math. 17 (1964), 101–134.
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The Porous Medium - Fast Diffusion Equation
If you go to Wikipedia and look for the Diffusion Equation you will find

∂φ(~r , t)
∂t

= ∇ · (D(φ,~r)∇φ(~r , t))

It is not difficult from here to conclude that the simplest model of nonlinear
diffusion equation is maybe

ut = ∆um = ∇ · (c(u)∇u)

c(u) indicates density-dependent diffusivity

c(u) = mum−1[= m|u|m−1]

If m > 1 it degenerates at u = 0 , =⇒ slow diffusion

For m = 1 we get the classical Heat Equation.

On the contrary, if m < 1 it is singular at u = 0 =⇒ Fast Diffusion.

But power functions are tricky:
- c(u)→ 0 as u →∞ if m > 1 (“slow case”)
- c(u)→∞ as u →∞ if m < 1 (“fast case”)
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ut = ∆um = ∇ · (c(u)∇u)

c(u) indicates density-dependent diffusivity

c(u) = mum−1[= m|u|m−1]

If m > 1 it degenerates at u = 0 , =⇒ slow diffusion

For m = 1 we get the classical Heat Equation.

On the contrary, if m < 1 it is singular at u = 0 =⇒ Fast Diffusion.

But power functions are tricky:
- c(u)→ 0 as u →∞ if m > 1 (“slow case”)
- c(u)→∞ as u →∞ if m < 1 (“fast case”)

Juan Luis Vázquez (Univ. Autónoma de Madrid) Nonlinear Diffusion 13 / 51



The Porous Medium - Fast Diffusion Equation
If you go to Wikipedia and look for the Diffusion Equation you will find

∂φ(~r , t)
∂t

= ∇ · (D(φ,~r)∇φ(~r , t))

It is not difficult from here to conclude that the simplest model of nonlinear
diffusion equation is maybe

ut = ∆um = ∇ · (c(u)∇u)

c(u) indicates density-dependent diffusivity

c(u) = mum−1[= m|u|m−1]

If m > 1 it degenerates at u = 0 , =⇒ slow diffusion

For m = 1 we get the classical Heat Equation.

On the contrary, if m < 1 it is singular at u = 0 =⇒ Fast Diffusion.

But power functions are tricky:
- c(u)→ 0 as u →∞ if m > 1 (“slow case”)
- c(u)→∞ as u →∞ if m < 1 (“fast case”)

Juan Luis Vázquez (Univ. Autónoma de Madrid) Nonlinear Diffusion 13 / 51



The Porous Medium - Fast Diffusion Equation
If you go to Wikipedia and look for the Diffusion Equation you will find

∂φ(~r , t)
∂t

= ∇ · (D(φ,~r)∇φ(~r , t))

It is not difficult from here to conclude that the simplest model of nonlinear
diffusion equation is maybe

ut = ∆um = ∇ · (c(u)∇u)

c(u) indicates density-dependent diffusivity

c(u) = mum−1[= m|u|m−1]

If m > 1 it degenerates at u = 0 , =⇒ slow diffusion

For m = 1 we get the classical Heat Equation.

On the contrary, if m < 1 it is singular at u = 0 =⇒ Fast Diffusion.

But power functions are tricky:
- c(u)→ 0 as u →∞ if m > 1 (“slow case”)
- c(u)→∞ as u →∞ if m < 1 (“fast case”)

Juan Luis Vázquez (Univ. Autónoma de Madrid) Nonlinear Diffusion 13 / 51



The Porous Medium - Fast Diffusion Equation
If you go to Wikipedia and look for the Diffusion Equation you will find

∂φ(~r , t)
∂t

= ∇ · (D(φ,~r)∇φ(~r , t))

It is not difficult from here to conclude that the simplest model of nonlinear
diffusion equation is maybe

ut = ∆um = ∇ · (c(u)∇u)

c(u) indicates density-dependent diffusivity

c(u) = mum−1[= m|u|m−1]

If m > 1 it degenerates at u = 0 , =⇒ slow diffusion

For m = 1 we get the classical Heat Equation.

On the contrary, if m < 1 it is singular at u = 0 =⇒ Fast Diffusion.

But power functions are tricky:
- c(u)→ 0 as u →∞ if m > 1 (“slow case”)
- c(u)→∞ as u →∞ if m < 1 (“fast case”)

Juan Luis Vázquez (Univ. Autónoma de Madrid) Nonlinear Diffusion 13 / 51



The Porous Medium - Fast Diffusion Equation
If you go to Wikipedia and look for the Diffusion Equation you will find

∂φ(~r , t)
∂t

= ∇ · (D(φ,~r)∇φ(~r , t))

It is not difficult from here to conclude that the simplest model of nonlinear
diffusion equation is maybe

ut = ∆um = ∇ · (c(u)∇u)

c(u) indicates density-dependent diffusivity

c(u) = mum−1[= m|u|m−1]

If m > 1 it degenerates at u = 0 , =⇒ slow diffusion

For m = 1 we get the classical Heat Equation.

On the contrary, if m < 1 it is singular at u = 0 =⇒ Fast Diffusion.

But power functions are tricky:
- c(u)→ 0 as u →∞ if m > 1 (“slow case”)
- c(u)→∞ as u →∞ if m < 1 (“fast case”)

Juan Luis Vázquez (Univ. Autónoma de Madrid) Nonlinear Diffusion 13 / 51



The basics

For for m = 2 the equation is re-written as

1
2 ut = u∆u + |∇u|2

and you can see that for u ∼ 0 it looks like the eikonal equation

ut = |∇u|2

This is not parabolic, but hyperbolic (propagation along characteristics).
Mixed type, mixed properties.
No big problem when m > 1, m 6= 2. The pressure transformation gives:

vt = (m − 1)v∆v + |∇v |2

where v = cum−1 is the pressure; normalization c = m/(m − 1).
This separates m > 1 PME - from - m < 1 FDE
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Applied motivation for the PME

Flow of gas in a porous medium (Leibenzon, 1930; Muskat 1933)
m = 1 + γ ≥ 2 {

ρt + div (ρv) = 0,

v = − k
µ∇p, p = p(ρ).

Second line left is the Darcy law for flows in porous media (Darcy, 1856).
Porous media flows are potential flows due to averaging of Navier-Stokes
on the pore scales.

To the right, put p = po ρ
γ , with γ = 1 (isothermal), γ > 1 (adiabatic flow).

ρt = div (
k
µ
ρ∇p) = div (

k
µ
ρ∇(poρ

γ)) = c∆ργ+1.

Underground water infiltration (Boussinesq, 1903) m = 2
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Applied motivation II

Plasma radiation m ≥ 4 (Zeldovich-Raizer, ¡ 1950)
Experimental fact: diffusivity at high temperatures is not constant as in
Fourier’s law, due to radiation.

d
dt

∫
Ω

cρT dx =

∫
∂Ω

k(T )∇T · ndS.

Put k(T ) = koT n, apply Gauss law and you get

cρ
∂T
∂t

= div(k(T )∇T ) = c1∆T n+1.

→When k is not a power we get Tt = ∆Φ(T ) with Φ′(T ) = k(T ).

Spreading of populations (self-avoiding diffusion) m ∼ 2.
Thin films under gravity (no surface tension) m = 4.
Kinetic limits (Carleman models, McKean, PL Lions and Toscani et al.)
Many more (boundary layers, geometry).
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Planning of the Theory

These are the main topics of mathematical analysis (1958-2006):
The precise meaning of solution.

The nonlinear approach: estimates; functional spaces.

Existence, non-existence. Uniqueness, non-uniqueness.

Regularity of solutions: is there a limit? Ck for some k?

Regularity and movement of interfaces: Ck for some k?.

Asymptotic behaviour: patterns and rates? universal?

The probabilistic approach. Nonlinear process. Wasserstein estimates

Generalization: fast models, inhomogeneous media, anisotropic media,
applications to geometry or image processing; other effects.
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Barenblatt profiles (ZKB)

These profiles are the alternative to the Gaussian profiles.
They are source solutions. Source means that u(x , t)→ M δ(x) as t → 0.
Explicit formulas (1950):

B(x , t ; M) = t−αF(x/tβ), F(ξ) =
(

C − kξ2
)1/(m−1)

+

α = n
2+n(m−1)

β = 1
2+n(m−1) < 1/2

Height u = Ct−α

Free boundary at distance |x | = ctβ

Scaling law; anomalous diffusion versus Brownian motion
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Concept of solution

There are many concepts of generalized solution of the PME:

Classical solution: only in non-degenerate situations, u > 0.
Limit solution: physical, but depends on the approximation (?).
Weak solution Test against smooth functions and eliminate derivatives
on the unknown function; it is the mainstream; (Oleinik, 1958)∫ ∫

(u ηt −∇um · ∇η) dxdt +

∫
u0(x) η(x ,0) dx = 0.

Very weak ∫ ∫
(u ηt + um ∆η) dxdt +

∫
u0(x) η(x ,0) dx = 0.
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More on concepts of solution

Solutions are not always, not only weak:

Strong solution. More regular than weak but not classical: weak
derivatives are Lp functions. Big benefit: usual calculus is possible.
Semigroup solution / mild solution. The typical product of functional
discretization schemes: u = {un}n, un = u(·, tn),

ut = ∆Φ(u),
un − un−1

h
−∆Φ(un) = 0

Now put f := un−1, u := un, and v = Φ(u), u = β(v):

−h∆Φ(u) + u = f , −h∆v + β(v) = f .

”Nonlinear elliptic equations”; Crandall-Liggett Theorems Ambrosio, Savarè, Nochetto
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More on concepts of solution II

Solutions of more complicated diffusion-convection equations need new
concepts:

Viscosity solution Two ideas: (1) add artificial viscosity and pass to the
limit; (2) viscosity concept of Crandall-Evans-Lions (1984); adapted to
PME by Caffarelli-Vazquez (1999).
Entropy solution (Kruzhkov, 1968). Invented for conservation laws; it
identifies unique physical solution from spurious weak solutions. It is
useful for general models degenerate diffusion-convection models;

Renormalized solution (Di Perna - PLLions).

BV solution (Volpert-Hudjaev).

Kinetic solutions (Perthame,...).

Proper solutions (Galaktionov-Vazquez,...).
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Regularity results

The universal estimate holds (Aronson-Bénilan, 79):

∆v ≥ −C/t .

v ∼ um−1 is the pressure.
(Caffarelli-Friedman, 1982) Cα regularity: there is an α ∈ (0,1) such that
a bounded solution defined in a cube is Cα continuous.
If there is an interface Γ, it is also Cα continuous in space time.
How far can you go?
Free boundaries are stationary (metastable) if initial profile is quadratic
near ∂Ω: u0(x) = O(d2). This is called waiting time. Characterized by
JLV in 1983. Visually interesting in thin films spreading on a table.

Existence of corner points possible when metastable,⇒ no C1

Aronson-Caffarelli-V. Regularity stops here in n = 1
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Free Boundaries in several dimensions

A regular free boundary in n-D

(Caffarelli-Vazquez-Wolanski, 1987) If u0 has compact support, then after
some time T the interface and the solutions are C1,α.
(Koch, thesis, 1997) If u0 is transversal then FB is C∞ after T . Pressure
is “laterally” C∞. when it moves, it is always a broken profile .
A free boundary with a hole in 2D, 3D is the way of showing that focusing
accelerates the viscous fluid so that the speed becomes infinite. This is
blow-up for v ∼ ∇um−1. The setup is a viscous fluid on a table occupying
an annulus of radii r1 and r2. As time passes r2(t) grows and r1(t) goes to
the origin. As t → T , the time the hole disappears.
There is a solution displaying that behaviour Aronson et al., 1993,...
u(x , t) = (T − t)αF (x/(T − t)β). It is proved that β < 1.
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Parabolic to Elliptic
Semigroup solution / mild solution. The typical product of functional
discretization schemes: u = {un}n, un = u(·, tn),

ut = ∆Φ(u),
un − un−1

h
−∆Φ(un) = 0

Now put f := un−1, u := un, and v = Φ(u), u = β(v):

−h∆Φ(u) + u = f , −h∆v + β(v) = f .

”Nonlinear elliptic equations”; Crandall-Liggett Theorems Ambrosio, Savarè, Nochetto

Separation of variables. Put u(x , t) = F (x)G(t). Then PME gives

F (x)G′(t) = Gm(t)∆F m(x),

so that G′(t) = −Gm(t), i.e., G(t) = (m − 1)t−1/(m−1) if m > 1 and

−∆F m(x) = F (x), −∆v(x) = vp(x), p = 1/m.

This is more interesting for m < 1, specially for m = (n − 2)/(n − 2).
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Asymptotic behaviour I
Nonlinear Central Limit Theorem

Choice of domain: Rn. Choice of data: u0(x) ∈ L1(Rn). We can write

ut = ∆(|u|m−1u) + f

Let us put f ∈ L1
x,t . Let M =

∫
u0(x) dx +

∫∫
f dxdt .

Asymptotic Theorem [Kamin and Friedman, 1980; V. 2001] Let B(x , t ; M) be
the Barenblatt with the asymptotic mass M; u converges to B after
renormalization

tα|u(x , t)− B(x , t)| → 0

For every p ≥ 1 we have

‖u(t)− B(t)‖p = o(t−α/p′), p′ = p/(p − 1).

Note: α and β = α/n = 1/(2 + n(m − 1)) are the zooming exponents as
in B(x , t).
Starting result by FK takes u0 ≥ 0, compact support and f = 0.
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Calculations of entropy rates

We rescale the function as u(x , t) = r(t)n ρ(y r(t), s)
where r(t) is the Barenblatt radius at t + 1, and “new time” is
s = log(1 + t). Equation becomes

ρs = div (ρ(∇ρm−1 +
c
2
∇y2)).

Then define the entropy
E(u)(t) =

∫
(

1
m
ρm +

c
2
ρy2) dy

The minimum of entropy is identified as the Barenblatt profile.
Calculate

dE
ds

= −
∫
ρ|∇ρm−1 + cy |2 dy = −D

Moreover, dD
ds

= −R, R ∼ λD.

We conclude exponential decay of D and E in new time s, which is
potential in real time t.
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Some of our lines of research
Very fast diffusion flows, logarithmic diffusion, gradient diffusion
(p-Laplacian) flows
A Blanchet, M. Bonforte, J Dolbeault, G Grillo; with R. Iagar, ... Related
work by Carrillo, McCann, Markowcih, Toscani. Other direction: Fila and
Winkler

Flows on manifolds:
paper with Bonforte and Grillo in JEE, 2008;
paper with Lu, Lei, Villani in arXiv, june 2008 ...

Flows in inhomogeneous media.
papers with G. Reyes; with Reyes and Kamin, 2010.
elliptic work by Brezis, Eidus, Kamin, Tesei,
work by Karlsen et al for general variable coefficients

Dynamic boundary conditions.
papers with E. Vitillaro (M3AS, JDE);

Nonlinear diffusion with fractional diffusion operators.
Most works by Caffarelli, Silvestre, Cabré and others on stationary
problems ∼ 2004− 08. Parabolic work by Caffarelli, Chan, Vazquez,
Vasseur and Madrid Group. France: Serfaty and Sire.
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FDE Barenblatt profiles
We have well-known explicit formulas for Self-smilar Barenblatt profiles with
exponents less than one if 1 > m > (n − 2)/n:

B(x , t ; M) = t−αF(x/tβ), F(ξ) =
1

(C + kξ2)1/(1−m)

The exponents are α = n
2−n(1−m)

and β = 1
2−n(1−m)

> 1/2.

Solutions for m > 1 with fat tails (polynomial decay; anomalous distributions)

Big problem: What happens for m < (n − 2)/n?

Main items: existence for very general data, non-existence for very fast diffusion,
non-uniqueness for v.f.d., extinction, universal estimates, lack of standard
Harnack.
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Applied Motivation
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Carleman model

Simple case of Diffusive limit of kinetic equations. Two types of particles in a one
dimensional setting moving with speeds c and −c.
Densities are u and v respectively. Dynamics is

(1)

{
∂tu + c ∂x u = k(u, v)(v − u)

∂tv − c ∂x v = k(u, v)(u − v),

for some interaction kernel k(u, v) ≥ 0. Typical case k = (u + v)αc2.
Write now the equations for ρ = u + v and j = c(u − v) and pass to the limit
c = 1/ε→∞ and you will obtain to first order in powers or ε = 1/c:

(2)
∂ρ

∂t
=

1
2
∂

∂x

(
1
ρα

∂ρ

∂x

)
,

which is the FDE with m = 1− α, cf. Lions Toscani, 1997. The typical value α = 1
gives m = 0, a surprising equation that we will find below! The rigorous investigation of
the diffusion limit of more complicated particle/kinetic models is an active area of
investigation.
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Yamabe problem. Elliptic
Standard Yamabe problem . We have a Riemannian manifold (M, g0) in space
dimension n ≥ 3, Question: of finding another metric g in the conformal class of g0

having constant scalar curvature.
Write the conformal relation as

g = u4/(n−2)g0

locally on M for some positive smooth function u. The conformal factor is u4/(n−2).
Denote by R = Rg and R0 the scalar curvatures of the metrics g, g0 resp. Write ∆0 for
the Laplace-Beltrami operator of g0, we have the formula R = −u−NLu on M, with
N = (n + 2)/(n − 2) and

Lu := κ∆0u − R0u, κ =
4(n − 1)

n − 2
.

The Yamabe problem becomes then

(3) ∆0u −
(

n − 2
4(n − 1)

)
R0u +

(
n − 2

4(n − 1)

)
Rgu(n+2)/(n−2) = 0.

The equation should determine u (hence, g) when g0, R0 and Rg are known. In the
standard case we take M = Rn and g0 the standard metric, so that ∆0 is the standard
Laplacian, R0 = 0, we take Rg = 1 and then we get the well-known semilinear elliptic
equation with critical exponent.
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Yamabe problem. Evolution
Evolution Yamabe flow is defined as an evolution equation for a family of metrics. Used
as a tool to construct metrics of constant scalar curvature within a given conformal
class. Wwe look for a one-parameter family gt (x) = g(x , t) of metrics solution of the
evolution problem

(4) ∂tg = −R g, g(0) = g0 on M.

It is easy to show that this is equivalent to the equation

∂t (uN) = Lu, u(0) = 1 on M.

after rescaling the time variable. Let now (M, g0) be Rn with the standard flat metric, so
that R0 = 0. Put uN = v , m = 1/N = (n − 2)/(n + 2) ∈ (0, 1). Then

(5) ∂tv = Lvm,

which is a fast diffusion equation with exponent my ∈ (0, 1) given by

my =
n − 2
n + 2

, 1−my =
4

n + 2
.

If we now try separate variables solutions of the form v(x , t) = (T − t)αf (x), then
necessarily α = 1/(1−my ) = (n + 2)/4, and F = f m satisfies the semilinear elliptic
equation with critical exponent that models the stationary version:

(6) ∆F +
n + 2

4
F

n+2
n−2 = 0.
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Logarithmic Diffusion I
Special case: the limit case m = 0 of the PME/FDE in two space dimensions

∂tu = div (u−1∇u) = ∆ log(u).

Application to Differential Geometry: it describes the evolution of a conformally
flat metric g given by ds2 = u dr 2 by means of its Ricci curvature:

∂

∂t
gij = −2 Ricij = −R gij ,

where Ric is the Ricci tensor and R the scalar curvature.
This flow, proposed by R. Hamilton 1 is the equivalent of the Yamabe flow in two
dimensions. Remark: what we usually call the mass of the solution (thinking in
diffusion terms) becomes here the total area of the surface, A =

∫∫
u dx1dx2.

Work on existence, nonuniqueness, extinction, and asymptotics by several
authors around 1995:
Daskalopoulos, Del Pino
Di Bendedetto, Diller
Esteban, Rodriguez, Vazquez

1RS Hamilton, The Ricci flow on surfaces. Mathematics and general relativity,
237–262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988.
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Pictures

About fast diffusion in the limit

Evolution of the ZKB solutions; dimension n = 2.
exponent near m = 0
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Functional Analysis Program
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Main facts

Existence of an evolution semigroup.

u0 7→ St (u0) = u(t)

A key issue is the choice of functional space.
X = L1(Rn) (Brezis, Benilan, Crandall, 1971)
Y = L1

loc(Rn) (Herrero, Pierre 1985)
M = Locally bounded measures (Pierre, 1987; Dalhberg - Kenig 1988)
B = (possibly locally unbounded) Borel mesaures (Chasseigne-Vazquez ARMA
2002)

Positivity. Nonnegative data produce positive solutions.

”Smoothing effect”: In many cases Lp → Lq with q > p. Then solutions are C∞

smooth. In other cases, things go wrong (things=Functional Analysis)

Theory for two signs is still poorly understood.
Cf. Stefan Problem (Athanasopoulos, Caffarelli, Salsa)
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The good and bad range

Figure 1. The (m, p) diagram for the PME/FDE in dimensions n ≥ 3.
SE: smoothing effect, BE: backwards effect, IE: instantaneous extinction
Critical line p = n(1−m)/2 (in boldface)

More exponents appear. One is m = 0. A third exponent m = (n − 2)/(n + 2) (in
dimensions n ≥ 3), which is the inverse of the famous Sobolev exponent of the
elliptic theory. The relation is clear by separation of variables. Exercise
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The good and bad range II
Smoothing effect means that data in Lp imply that the weak solution is in L∞ for all
t > 0. Over the ”green” line the result is true even locally. Smoothing book, 2006,
for u0 ∈ Lp, Bonforte-Vazquez, preprint for u0 ∈ Lp

loc . Here, p = p∗ = n(1−m)/2.

Backwards effect is a strange effect. Data in Lp imply u(t) ∈ L1 for all t > 0
Smoothing book, 2006.

On the green line exactly there is extinction in finite time (not at the end value
p = 1). The correct extinction space is a Marcinkiewicz space: X = Mp∗(Rn)
Smoothing book, 2006.

For m < 0 below the green line there are no solutions. Vazquez 92,
Daskalopoulos del Pino 97.

For 1 > m > mc we can solve the initial value problem with any nonnegative
measure, even a Borel Measure because there are very good local estimates
Chasseigne-Vazquez 03. For m < mc Dirac masses cannot be initial data
Brezis-Friedman 83, Pierre 87.

Harnack holds for m > mc
2, but is very difficult for m < mc work just finished 3.

2M Bonforte- JL Vazquez, Global positivity estimates and Harnack inequalities for
the fast diffusion equation.J. Funct. Anal. 240 (2006), no. 2, 399–428

3M Bonforte- JL Vazquez, Positivity, local smoothing, and Harnack inequalities for
very fast diffusion equations, Preprint March 2008

Juan Luis Vázquez (Univ. Autónoma de Madrid) Nonlinear Diffusion 40 / 51



The good and bad range II
Smoothing effect means that data in Lp imply that the weak solution is in L∞ for all
t > 0. Over the ”green” line the result is true even locally. Smoothing book, 2006,
for u0 ∈ Lp, Bonforte-Vazquez, preprint for u0 ∈ Lp

loc . Here, p = p∗ = n(1−m)/2.

Backwards effect is a strange effect. Data in Lp imply u(t) ∈ L1 for all t > 0
Smoothing book, 2006.

On the green line exactly there is extinction in finite time (not at the end value
p = 1). The correct extinction space is a Marcinkiewicz space: X = Mp∗(Rn)
Smoothing book, 2006.

For m < 0 below the green line there are no solutions. Vazquez 92,
Daskalopoulos del Pino 97.

For 1 > m > mc we can solve the initial value problem with any nonnegative
measure, even a Borel Measure because there are very good local estimates
Chasseigne-Vazquez 03. For m < mc Dirac masses cannot be initial data
Brezis-Friedman 83, Pierre 87.

Harnack holds for m > mc
2, but is very difficult for m < mc work just finished 3.

2M Bonforte- JL Vazquez, Global positivity estimates and Harnack inequalities for
the fast diffusion equation.J. Funct. Anal. 240 (2006), no. 2, 399–428

3M Bonforte- JL Vazquez, Positivity, local smoothing, and Harnack inequalities for
very fast diffusion equations, Preprint March 2008

Juan Luis Vázquez (Univ. Autónoma de Madrid) Nonlinear Diffusion 40 / 51



The good and bad range II
Smoothing effect means that data in Lp imply that the weak solution is in L∞ for all
t > 0. Over the ”green” line the result is true even locally. Smoothing book, 2006,
for u0 ∈ Lp, Bonforte-Vazquez, preprint for u0 ∈ Lp

loc . Here, p = p∗ = n(1−m)/2.

Backwards effect is a strange effect. Data in Lp imply u(t) ∈ L1 for all t > 0
Smoothing book, 2006.

On the green line exactly there is extinction in finite time (not at the end value
p = 1). The correct extinction space is a Marcinkiewicz space: X = Mp∗(Rn)
Smoothing book, 2006.

For m < 0 below the green line there are no solutions. Vazquez 92,
Daskalopoulos del Pino 97.

For 1 > m > mc we can solve the initial value problem with any nonnegative
measure, even a Borel Measure because there are very good local estimates
Chasseigne-Vazquez 03. For m < mc Dirac masses cannot be initial data
Brezis-Friedman 83, Pierre 87.

Harnack holds for m > mc
2, but is very difficult for m < mc work just finished 3.

2M Bonforte- JL Vazquez, Global positivity estimates and Harnack inequalities for
the fast diffusion equation.J. Funct. Anal. 240 (2006), no. 2, 399–428

3M Bonforte- JL Vazquez, Positivity, local smoothing, and Harnack inequalities for
very fast diffusion equations, Preprint March 2008

Juan Luis Vázquez (Univ. Autónoma de Madrid) Nonlinear Diffusion 40 / 51



The good and bad range II
Smoothing effect means that data in Lp imply that the weak solution is in L∞ for all
t > 0. Over the ”green” line the result is true even locally. Smoothing book, 2006,
for u0 ∈ Lp, Bonforte-Vazquez, preprint for u0 ∈ Lp

loc . Here, p = p∗ = n(1−m)/2.

Backwards effect is a strange effect. Data in Lp imply u(t) ∈ L1 for all t > 0
Smoothing book, 2006.

On the green line exactly there is extinction in finite time (not at the end value
p = 1). The correct extinction space is a Marcinkiewicz space: X = Mp∗(Rn)
Smoothing book, 2006.

For m < 0 below the green line there are no solutions. Vazquez 92,
Daskalopoulos del Pino 97.

For 1 > m > mc we can solve the initial value problem with any nonnegative
measure, even a Borel Measure because there are very good local estimates
Chasseigne-Vazquez 03. For m < mc Dirac masses cannot be initial data
Brezis-Friedman 83, Pierre 87.

Harnack holds for m > mc
2, but is very difficult for m < mc work just finished 3.

2M Bonforte- JL Vazquez, Global positivity estimates and Harnack inequalities for
the fast diffusion equation.J. Funct. Anal. 240 (2006), no. 2, 399–428

3M Bonforte- JL Vazquez, Positivity, local smoothing, and Harnack inequalities for
very fast diffusion equations, Preprint March 2008

Juan Luis Vázquez (Univ. Autónoma de Madrid) Nonlinear Diffusion 40 / 51



The good and bad range II
Smoothing effect means that data in Lp imply that the weak solution is in L∞ for all
t > 0. Over the ”green” line the result is true even locally. Smoothing book, 2006,
for u0 ∈ Lp, Bonforte-Vazquez, preprint for u0 ∈ Lp

loc . Here, p = p∗ = n(1−m)/2.

Backwards effect is a strange effect. Data in Lp imply u(t) ∈ L1 for all t > 0
Smoothing book, 2006.

On the green line exactly there is extinction in finite time (not at the end value
p = 1). The correct extinction space is a Marcinkiewicz space: X = Mp∗(Rn)
Smoothing book, 2006.

For m < 0 below the green line there are no solutions. Vazquez 92,
Daskalopoulos del Pino 97.

For 1 > m > mc we can solve the initial value problem with any nonnegative
measure, even a Borel Measure because there are very good local estimates
Chasseigne-Vazquez 03. For m < mc Dirac masses cannot be initial data
Brezis-Friedman 83, Pierre 87.

Harnack holds for m > mc
2, but is very difficult for m < mc work just finished 3.

2M Bonforte- JL Vazquez, Global positivity estimates and Harnack inequalities for
the fast diffusion equation.J. Funct. Anal. 240 (2006), no. 2, 399–428

3M Bonforte- JL Vazquez, Positivity, local smoothing, and Harnack inequalities for
very fast diffusion equations, Preprint March 2008

Juan Luis Vázquez (Univ. Autónoma de Madrid) Nonlinear Diffusion 40 / 51



The good and bad range II
Smoothing effect means that data in Lp imply that the weak solution is in L∞ for all
t > 0. Over the ”green” line the result is true even locally. Smoothing book, 2006,
for u0 ∈ Lp, Bonforte-Vazquez, preprint for u0 ∈ Lp

loc . Here, p = p∗ = n(1−m)/2.

Backwards effect is a strange effect. Data in Lp imply u(t) ∈ L1 for all t > 0
Smoothing book, 2006.

On the green line exactly there is extinction in finite time (not at the end value
p = 1). The correct extinction space is a Marcinkiewicz space: X = Mp∗(Rn)
Smoothing book, 2006.

For m < 0 below the green line there are no solutions. Vazquez 92,
Daskalopoulos del Pino 97.

For 1 > m > mc we can solve the initial value problem with any nonnegative
measure, even a Borel Measure because there are very good local estimates
Chasseigne-Vazquez 03. For m < mc Dirac masses cannot be initial data
Brezis-Friedman 83, Pierre 87.

Harnack holds for m > mc
2, but is very difficult for m < mc work just finished 3.

2M Bonforte- JL Vazquez, Global positivity estimates and Harnack inequalities for
the fast diffusion equation.J. Funct. Anal. 240 (2006), no. 2, 399–428

3M Bonforte- JL Vazquez, Positivity, local smoothing, and Harnack inequalities for
very fast diffusion equations, Preprint March 2008
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The good and bad range III

Figure 2. Left: (m, p) diagram for the PME/FDE in dimension n = 2
Right: (m, p) diagram for the PME/FDE in dimension n = 1

There is existence and non-uniqueness if n = 1 and −1 < m < 0
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The question of intrinsic regularity
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Universal Pointwise Estimates for Good Fast
Diffusion

CASE mc < m < 1 This range has wonderful a priori estimates of local type. We
assume that u ≥ 0.

If u0 ∈ L1
loc(Rn) then for all t > 0 we have u(·, t) ∈ L∞(Rn), cf. Herrero-Pierre,

1985.

There is a universal constant C > 0 such that if v = um−1

(7) t |∆v | ≤ C, t |vt

v
| ≤ C, t

|∇v |2

v
≤ C.

Estimates for the PME were original of Aronson, Crandall and Benilan. 4 5

Note that v satisfies the quadratic equation

vt = v∆v − γ|∇v |2, γ = 1/(1−m).

4DG Aronson, Ph. Bénilan, Regularité des solutions de l’équation des milieux
poreux dans RN . C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 2, A103–A105.

5Ph. Bénilan, MG Crandall. Regularizing effects of homogeneous evolution
equations. Contributions to analysis and geometry (Baltimore, Md., 1980), pp. 23–39,
Johns Hopkins Univ. Press, Baltimore, Md., 1981.
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Universal Estimates continued

Universal estimates have been found in other problems.

Some can can be found for the heat equation. They also work for the p-Laplacian
equation (fast or slow) in similar exponent ranges6

Similar estimates were discovered by Yau and Li 7 for flows on manifolds and they
prove that they produce continuity.

Hamilton for the Ricci flow. 8

For m ≤ mc the first estimate from below fails and the second also from below
and the third from above.

6JR Esteban, JL Vázquez. Régularité des solutions positives de l’équation
parabolique p-laplacienne. [Regularity of nonnegative solutions of the p-Laplacian
parabolic equation] C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 3, 105–110.

7Li, Peter; Yau, Shing-Tung, On the parabolic kernel of the Schrödinger operator.
Acta Math. 156 (1986), no. 3-4, 153–201.

8RS Hamilton, The Harnack estimate for the Ricci flow. J. Differential Geom. 37
(1993), no. 1, 225–243.
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The Aronson Caffarelli Estimate for PME

CASE m > 1 Aronson-Caffarelli’s result 9 is a positivity estimate for the PME,
m > 1, valid for all nonnegative weak solutions defined in the whole space.
We take a point x0 and a ball BR(x0) and try to see how positive is the solution at
time t0 if there is a ”mass” MR(x0) =

∫
BR (x0)

u0(x) dx at t = 0. It says

(8)
MR(x0)

Rd ≤ C1 R2/(m−1) t−
1

m−1 + C2 R−d td/2uλ/2(t , x0).

with λ = 2 + d(m − 1). C1 and C2 given positive constants depending only on m
and d . Looking at the three terms we discover that there is a time t∗ where the
second is already less than the first one. We can calculate this intrinsic positivity
time as t∗ = C(m, d)Rλ/Mm−1.

For t > t∗ the third one is positive, hence u(x0, t) > 0. Hence, for all large t we
have u = O(td/λ). OK!

We go on to prove that u ∈ Cα for some α > 0. There is no way you can get
positivity for small times because of finite propagation (free boundaries).

9Aronson, D. G.; Caffarelli, L. A. The initial trace of a solution of the porous medium
equation. Trans. Amer. Math. Soc. 280 (1983), no. 1, 351–366.
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AC Type Estimate for Good Fast Diffusion
In the paper Bonforte- Vazquez, Global positivity estimates and Harnack
inequalities for the fast diffusion equation. J. Funct. Anal., 2006
we take the approach to regularity through positivity inspired by the work of Di
Benedetto and collaborators for PME, FDE and PLE using intrinsic versions of
Harnack.
We study local solutions of the FDE in the good exponent range mc < m < 1.
The change in the sign of the exponent m − 1 implies that we get good lower
estimates for 0 < t ≤ t∗ if the ideas of AC can be made to work. Moreover, we
can continue these estimates for t ≥ t∗ thanks to the fortunate circumstance that
we have further differential inequalities, like ∂tu ≥ −Cu/t in the case of the
Cauchy problem. We get a continuation of the lower bounds with optimal decay
rates in time. The final form is

(9) u(t , x) ≥ MR(x0) H(t/tc), MR(x0) = R−d
∫

BR (x0)

u0 dx .

The critical time is defined as before; the function H(η) is defined as Kη1/(1−m) for
η ≤ 1 while H(η) = Kη−dϑ for η ≥ 1, with K = K (m, d). Note that for 0 < t < tc
the lower bound means

u(t , x0) ≥ k(m, d)(t/R2)1/(1−m)

which is independent of the initial mass.
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The AC Estimate for Bad Fast Diffusion
We know that for m,mc all kinds of functional disasters may happen. In particular,
extinction in finite holds for all integrable data (and some more) so that positivity
for long times must be excluded. Let u be a local solution with extinction time > 0.
We prove this result in M Bonforte- JL Vazquez, Positivity, local smoothing, and
Harnack inequalities for very fast diffusion equations, Preprint.

Theorem

Let 0 < m < 1 and let u be the solution to the FDE under the above assumptions. Let
x0 be a point in Ω and let d(x0, ∂Ω) ≥ 5R. Then the following inequality holds for all
0 < t < T

(10) R−d
∫

BR (x0)

u0(x) dx ≤ C1 R−2/(1−m) t
1

1−m + C2 T
1

1−m R−2 t−
m

1−m um(t , x0).

with C1 and C2 given positive constants depending only on d. This implies that there
exists a time t∗ such that for all t ∈ (0, t∗]

(11) um(t , x0) ≥ C′1 R2−d‖u0(x)‖L1(BR )T
− 1

1−m t
m

1−m .

where C′1 > 0 depends only on d; t∗ depends on R and ‖u0(x)‖L1(BR ) but not on T .
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The local boundedness result for Fast Diffusion

The main result of this part is the local upper bound that applies for the same type
of solution and initial data, under different restrictions on p. Here is the precise
formulation.
We take d ≥ 3. recall that mc = (d − 2)/d , that pc = d(1−m)/2.

Theorem

Let p ≥ 1 if m > mc or p > pc if m ≤ mc . Then there are positive constants C1, C2 such
that for any 0 < R1 < R0 we have

sup
x∈BR1

u(t , x) ≤ C1

tdϑp

[∫
BR0

|u0(x)|p dx

]2ϑp

+ C2

[
t

R2
0

] 1
1−m

.(12)

We recall that ϑp = 1/(2p − d(1−m)) = 1/2(p − pc). The constants Ci depend
on m, d and p, R1 and R0 and blow up when R1/R0 → 1; an explicit formula for Ci

can be found.
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Local Boundedness II

The proof consists in two steps: (1) The norm ‖u(·, t)‖Lp
loc

grows with time in a
controlled way in terms of its value at t = 0, if p ≥ 1, p > 1−m. This uses
Herrero-Pierre’s approach.

(2) Solutions in Lp
x,t locally in space/time are in fact bounded in a smaller cylinder

if p > pc . This uses Moser iteration.

Local Boundedness implies existence of Large Solucions having boundary data
u = +∞. Such solutions form the Maximal Semigroup. A reference is E
Chasseigne, JL Vazquez, Theory of extended solutions for fast-diffusion
equations in optimal classes of data. Radiation from singularities. Arch. Ration.
Mech. Anal. 164 (2002), no. 2, 133–187.

Reference for more general PME and Fast Diffusion ut = ∆Φ(u) in good fast
diffusion: P. Daskalopoulos, C. Kenig. Degenerate diffusions. Initial value
problems and local regularity theory. EMS Tracts in Mathematics, 1. European
Mathematical Society (EMS), Zürich, 2007.
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Flows on manifolds
Paper: “Local Aronson-Bénilan estimates and entropy formulae for porous
medium and fast diffusion equations on manifolds”,Peng Lu, Lei Ni, Juan-Luis
Vazquez and Cedric Villani, JMPA, to appear online (2008)
Main result: Let u be a positive smooth solution to PME, m > 1, on a cylinder
Q := B(Ω,R)× [0,T ]. Let v be the pressure and let vR,T

max := maxB(Ω,R)×[0,T ] v.
(1) Assume that Ricci curvature Ric ≥ 0 on B(Ω,R). Then, for any α > 1 we have

(13)
|∇v |2

v
− αvt

v
≤ aα2

(
1
t

+
vR,T

max

R2 (C1 + C2(α))

)
on Q′ := B(Ω,R/2)× [0,T ]. Here, a := n(m−1)

n(m−1)+2 = (m − 1)κ, and the positive
constants C1 and C2(α) depend also on m and n.
(2) Assume that Ric ≥ −(n − 1)K 2 on B(Ω,R) for some K ≥ 0. Then, for any
α > 1, we have that on Q′,

(14)
|∇v |2

v
− αvt

v
≤ aα2

(
1
t

+ C3(α)K 2vR,T
max

)
+ aα2 vR,T

max

R2

(
C2(α) + C′1(KR)

)
.

Here, a and C2(α) are as before and the positive constants C3(α) and C′1(KR)
depend also on m and n. Acceptable values of the constants are:

C1 := 40(m − 1)(n + 2), C2(α) :=
200aα2m2

α− 1
C3(α) :=

(m − 1)(n − 1)

α− 1
, C′1(KR) := 40(m − 1)[3 + (n − 1)(1 + KR)].
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