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Preface

These are lectures notes for a mini-course at the VI ENAMA - Encontro Na-
cional de Análise Matemática e Aplicações - held in Aracaju, Brazil, in Novem-
ber 2012. I would like to thank the organizing and scientific committees of the
VI ENAMA, and the colleagues from the Federal University of Sergipe for their
hospitality. The purpose of these notes is to present briefly some recent ad-
vances in problems in approximation theory and its applications to the theory
of the Riemann zeta-function.

The first chapter covers foundational material in harmonic analysis related
to the theory of functions of exponential type. We start with Poisson summation
formula and quickly move to two celebrated results: the Paley-Wiener theorem
and the Plancherel-Polya theorem. These are then applied to obtain useful
interpolation formulas and Bernstein’s inequality.

The second chapter introduces the reader to a classical problem in the in-
terface of approximation theory and harmonic analysis, the so called Beurling-
Selberg extremal problem. In this setting the goal is to approximate (minimizing
the L1(R)-norm) a given real function by an entire function of prescribed expo-
nential type. We have no ambition to cover in its full the vast material related
to this topic. Our goal is to present some of the recent advances in this the-
ory, in the form of a general method (which we call the Gaussian subordination
method) to generate the solution of this problem for a wide class of even, odd
and truncated real functions.

The third chapter describes three applications of these extremal functions
to the theory of the Riemann zeta-function. Specifically, our goal is to provide
the best (up to date) bounds, under the assumption of the Riemann hypothesis,
for three objects related to ζ(s), namely, the size of ζ(s) in the critical line, the
argument function S(t), and its antiderivative S1(t).

I would like to thank in particular the outstanding group of mathematicians
with whom I have collaborated in these research projects: Vorrapan Chandee
(Univ. of Montreal), Friedrich Littmann (North Dakota State Univ.), Micah
Milinovich (Univ. of Mississipi) and Jeffrey D. Vaaler (The Univ. of Texas at
Austin). Chapters 2 and 3 basically summarize our recent joint projects.

Rio de Janeiro, October 2012,
Emanuel Carneiro.
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Chapter 1

Harmonic analysis tools

1.1 The Poisson summation formula
If f ∈ L1(R) we define its Fourier transform by

f̂(ξ) =

∫
R
e−2πixξ f(x) dx.

In an analogous manner, if we identify periodic functions (of period 1) with
functions defined on the torus T = R/Z, and if g ∈ L1(T), we define its Fourier
coefficients by

ĝ(k) =

∫
T
e−2πixk g(x) dx,

where k ∈ Z. Given a measurable function f on R, we consider its periodization

Pf (x) =
∑
m∈Z

f(x+m). (1.1)

Naturally, if we do not impose any decay on f , one can not infer any sort of
convergence for the sum (1.1). However, if we assume f ∈ L1(R), we will have
Pf with period 1 and

‖Pf‖L1(T) =

∫ 1

0

∣∣∣∣∣∑
m∈Z

f(x+m)

∣∣∣∣∣ dx ≤
∫ 1

0

∑
m∈Z
|f(x+m)| dx

=
∑
m∈Z

∫ 1

0

|f(x+m)| dx =
∑
m∈Z

∫ m+1

m

|f(y)| dy = ‖f‖L1(R).

Therefore Pf ∈ L1(T) and we can calculate its Fourier coefficients. An applica-
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tion of Fubini’s theorem gives us

P̂f (k) =

∫ 1

0

e−2πixk

(∑
m∈Z

f(x+m)

)
dx =

∑
m∈Z

∫ 1

0

e−2πixk f(x+m)dx

=
∑
m∈Z

∫ m+1

m

e−2πiyk f(y) dy =

∫
R
e−2πiyk f(y) dy = f̂(k).

(1.2)

If, for instance, we have the decay estimates

|f(x)| ≤ C

(1 + |x|)1+δ
and |f̂(ξ)| ≤ C

(1 + |ξ|)1+δ
, (1.3)

for some δ > 0 and some constant C > 0, the series (1.1) defining Pf will
be absolutely convergent, thus defining a continuous function. Moreover, from
(1.2) and (1.3), the Fourier inversion for the continuous periodic function Pf
will hold pointwise, i.e.

Pf (x) =
∑
k∈Z

P̂f (k) e2πixk ,

and this is equivalent to∑
m∈Z

f(x+m) =
∑
k∈Z

f̂(k) e2πixk (1.4)

for all x ∈ R. Expression (1.4) is known as the Poisson summation formula.

Our objective now is to weaken the decay conditions (1.3) in a way that we
can still obtain (1.4) pointwise. Recall that a function f : R → C of bounded
variation is said to be normalized if

f(x) =
1

2

{
f(x+) + f(x−)

}
for all x ∈ R, where f(x±) are the lateral limits at the point x. From the basic
theory of Fourier series (see for instance [13, Theorem 8.43]), we know that
if P : T → C is a normalized function of bounded variation then the Fourier
inversion holds pointwise , i.e.

P (x) = lim
N→∞

N∑
k=−N

P̂ (k) e2πixk (1.5)

for all x ∈ T.

Theorem 1.1 (Poisson summation formula). Let f ∈ L1(R) be a normalized
function of bounded variation. Then we have

lim
N→∞

N∑
m=−N

f(x+m) = lim
N→∞

N∑
k=−N

f̂(k) e2πikx

for all x ∈ R.
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Proof. As before, let Pf (x) =
∑
m∈Z f(x + m). We know that Pf ∈ L1(T),

since f ∈ L1(R). Let x0 ∈ [−1/2, 1/2) be a point where the sum is absolutely
convergent (in particular |Pf (x0)| < ∞). For any other point x ∈ [−1/2, 1/2),
say x > x0, the difference |f(x + m) − f(x0 + m)| is less than or equal to the
variation of f on the interval [x0 + m,x + m], and therefore the sum of these
increments is less than or equal to the total variation of f (let us call it V f).
Therefore∑

m∈Z
|f(x+m)| ≤

∑
m∈Z
|f(x0 +m)|+

∑
m∈Z
|f(x+m)− f(x0 +m)|

≤
∑
m∈Z
|f(x0 +m)|+ V f <∞ ,

from which we conclude that the sum is absolutely convergent for each x ∈ T.
Now observe that for each partition −1/2 = a0 < a1 < ... < ak = 1/2, we have

k∑
i=1

|Pf (ai)− Pf (ai−1)| =
k∑
i=1

∣∣∣∣∣∑
m∈Z

{
f(ai +m)− f(ai−1 +m)

}∣∣∣∣∣
≤

k∑
i=1

∑
m∈Z

∣∣f(ai +m)− f(ai−1 +m)
∣∣ ≤ V f,

and therefore Pf has bounded variation. Finally, since f is normalized, we have
for each point x ∈ [−1/2, 1/2)

lim
ε→0

1

2

{
Pf (x+ ε) + Pf (x− ε)

}
= lim
ε→0

1

2

∑
m∈Z

{
f(x+ ε+m) + f(x− ε+m)

}
=
∑
m∈Z

1

2
lim
ε→0

{
f(x+ ε+m) + f(x− ε+m)

}
=
∑
m∈Z

f(x+m) = Pf (x),

where we used dominated convergence to move the limit inside, since for ε < 1/2
we have

|f(x+ ε+m)| ≤ |f(x+m)|+ V f[x+m,x+m+1/2]

and
|f(x− ε+m)| ≤ |f(x+m)|+ V f[x+m−1/2,x+m].

Therefore Pf is normalized and the result now follows from (1.5).

1.2 The Paley-Wiener theorem
In this section we investigate the relation between the growth of a function

and the size of the support of its Fourier transform. For δ > 0, we shall say that
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an entire function F : C → C has exponential type 2πδ, if for each ε > 0 there
exists a constant Cε such that

|F (z)| ≤ Cε e(2πδ+ε)|z|,

for all z ∈ C. In other words, for each ε > 0, we have

|F (z)| = O
(
e(2πδ+ε)|z|).

The class of entire functions with exponential type at most 2πδ will be called
E2πδ. We shall say that an entire function F ∈ Lp(R) if the restriction of F to
the real axis (call it F |R) belongs to Lp, i.e. if∫ ∞

−∞
|F (x)|p dx <∞,

when 1 ≤ p <∞, and supx∈R |F (x)| <∞, if p =∞.

Theorem 1.2 (Paley-Wiener). For an entire function F ∈ L2(R) the two con-
ditions below are equivalent:

(i) F has exponential type 2πδ.

(ii) The Fourier transform of F |R is supported on [−δ, δ].

Proof. Here we shall essentially follow [44, Chapter XVI]. A different proof is
presented in [40, Chapter III].

Step 1: (ii) ⇒ (i). If f = F̂ |R is supported on [−δ, δ], then f ∈ L1(R) ∩ L2(R)
and

F (x) =

∫ δ

−δ
f(t) e2πitx dt. (1.6)

The right-hand side of (1.6) extends to an entire function and thus

F (z) =

∫ δ

−δ
f(t) e2πitz dt. (1.7)

If z = x+ iy, from (1.7) it is clear that

|F (z)| ≤ e2πδ|y|
∫ δ

−δ
|f(t)| dt ,

which shows that F has exponential type 2πδ.

Step 2: (i)⇒ (ii). This is the deep part of the theorem. We must show that if
F ∈ E2πδ ∩ L2(R) then

f(t) =

∫ ∞
−∞

F (ξ) e−2πitξ dξ (1.8)
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is zero for almost all t outside [−δ, δ], where the integral in (1.8) is meant as
the L2-limit of the truncated integrals

∫ R
−R as R → ∞. Consider the following

function
g(z; θ) =

∫
γθ

F (w) e−2πwz dw, (1.9)

where the integral is taken over the ray γθ = {arg(w) = −θ}, i.e. w = ρe−iθ,
with ρ varying from 0 to ∞.

Let z = x + iy. We first claim that the integral in (1.9) is absolutely and
uniformly convergent on each closed half-plane contained in the open half-plane

x cos θ + y sin θ > δ.

Note that this is the open half-plane (that does not contain the origin) delimited
by the tangent to the circle |w| = δ at the point δeiθ. Let us call this open half-
plane by Hθ. In fact, if z belongs to a closed half-plane Γ entirely contained in
Hθ, we put w = ρ e−iθ on the integrand of (1.9) to see that

∣∣F (w) e−2πwz
∣∣ = O

{
e(2πδ+ε)ρ−<

(
2π(x+iy)ρ e−iθ

)}
= O

{
e(2πδ+ε)ρ−2π(x cos θ+y sin θ)ρ

}
,

for all ε > 0. We can then choose ε sufficiently small such that the last expression
decays exponentially fast with ρ, uniformly on Γ, thus proving our claim. In
particular, by Morera’s theorem, z 7→ g(z; θ) is analytic in Hθ.

Secondly, we observe that if 0 < |θ′ − θ′′| < π, the functions g(z; θ′) and
g(z; θ′′) coincide on the intersection of the half-planes Hθ′ and Hθ′′ . In fact, let
us suppose without loss of generality that θ′ < θ′′, and let z ∈ Hθ′ ∩Hθ′′ . It is
easy to see geometrically that z ∈ Hθ for any θ′ ≤ θ ≤ θ′′, and that the integrand
G(w) of (1.9), considered as a function of w alone, decays exponentially to 0
as |w| → ∞ in the angle [−θ′′,−θ′] (since this decay rate depends only on the
distance from z to Hθ′ and Hθ′′). By Cauchy’s theorem we can change the ray
of integration and thus g(z; θ′) = g(z; θ′′).

Let g0(z) = g(z; 0) and g1(z) = g(z;π). We now observe that g0 and g1

are analytic in the half-planes x > 0 and x < 0, respectively, and are analytic
continuations of each other across the segments y > δ and y < −δ of the
imaginary axis. To see this, let x ≥ ε > 0 and note that

|g0(z)| =
∣∣∣∣∫ ∞

0

F (w) e−2πw(x+iy) dw
∣∣∣∣

≤
(∫ ∞

0

|F (w)|2 dw
)1/2(∫ ∞

0

e−4πεw dw
)1/2

.

Therefore, by Morera’s theorem, g0 is analytic for x > 0. In an analogous
manner, one shows that g1 is analytic for x < 0. Consider now g2 = g(z, π/2).
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We know that g2 is analytic in Hπ
2
and from the previous paragraph we also

know it agrees with g0 in H0 ∩Hπ
2
. Since g0 is analytic in the whole half-plane

x > 0, it follows that g2 is the analytic continuation of g0 across the segment
y > δ of the imaginary axis. Similarly, g2 is the analytic continuation of g1

across the same segment. A similar argument holds for y < −δ.

We are now able to conclude the proof. Recall that

g0(x+ iy) =

∫ ∞
0

F (ξ) e−2πξ(x+yi) dξ.

Since ∫ ∞
0

∣∣F (ξ)
∣∣2 ∣∣1− e−2πξx

∣∣2 dξ → 0

as x→ 0+, we see by Plancherel’s theorem that g0(x+ iy) tends to∫ ∞
0

F (ξ) e−2πξyi dξ

in L2 as x→ 0+. In an analogous manner

g1(x+ iy) = −
∫ 0

−∞
F (ξ) e−2πξ(x+yi) dξ

tends to

−
∫ 0

−∞
F (ξ) e−2πξyi dξ

in L2 as x→ 0−. We conclude that g0(x+ iy)− g1(−x+ iy) tends to

f(y) =

∫ ∞
−∞

F (ξ) e−2πξyi dξ

as x→ 0+. However we know that g0(x+ iy)−g1(−x+ iy)→ 0 pointwise when
x→ 0+, for all |y| > δ. Hence f ≡ 0 on [−δ, δ]c and the proof is complete.

1.3 The Plancherel-Polya theorem

1.3.1 Statement and proof
The objective of this section is to prove the following result of Plancherel

and Polya [33].

Theorem 1.3 (Plancherel-Polya). Let F be an entire function of exponential
type 2πδ such that its restriction to the real axis belongs to Lp(R), for some p
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with 0 < p <∞. Given ∆ > 0 let {λm}m∈Z be a sequence of real numbers such
that |λm − λn| ≥ ∆, for all m,n ∈ Z. Then∑

m∈Z
|F (λm)|p ≤ C

∫ ∞
−∞
|F (x)|p dx,

where C = C(p, δ,∆).

Proof. We start by noticing that, since z 7→ |F (z)|p is a subharmonic function,
the mean value property gives us

|F (λm)|p ≤ 1

m(B(∆/2))

∫
(x,y)∈B(∆/2)

|F (λm + x+ iy)|p dx dy

≤ 1

m(B(∆/2))

∫ ∆
2

−∆
2

∫ ∆
2

−∆
2

|F (λm + x+ iy)|p dx dy,

where B(r) is the ball of radius r centered at the origin, and m(B(r)) is its
volume. If we sum the last expression over m ∈ Z, and use the fact that the
λm’s are at a distance ∆ apart of each other, we find

∑
m∈Z
|F (λm)|p ≤ 1

m(B(∆/2))

∫ ∆
2

−∆
2

∫ ∞
−∞
|F (x+ iy)|p dx dy. (1.10)

We will show that, for any y ∈ R, we have∫ ∞
−∞
|F (x+ iy)|p dx ≤ e2πδp|y|

∫ ∞
−∞
|F (x)|p dx. (1.11)

Clearly, the combination of (1.10) and (1.11) finish the proof of the theorem.
The hard part is indeed the proof of (1.11) that shall make use of three lemmas
as follows.

1.3.2 Auxiliary lemmas
We keep denoting z = x+ iy. Let G(z) be an analytic function on the half-

plane y > 0, that is continuous on y ≥ 0. Let a be a positive number and define
the function Ψ(z) by

Ψ(z) =

∫ a

−a
|G(z + s)|p ds,

where the path of integration is the segment [−a, a]. Observe that Ψ(z) is
defined and continuous for y ≥ 0.

Lemma 1.4. Let D be a bounded and closed domain contained in the half-plane
y ≥ 0. Then the maximum of Ψ(z) is attained in the boundary of D.
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Proof. From the fact that |G(z)|p is subharmonic we have

|G(ζ)|p ≤ 1

2π

∫ 2π

0

∣∣G(ζ + reiϕ
)∣∣p dϕ,

where the circle |z − ζ| ≤ r is contained in the half-plane y ≥ 0. Therefore, for
z = x+ iy and r ≤ y we have

Ψ(z) =

∫ a

−a
|G(z + s)|p ds

≤
∫ a

−a

(
1

2π

∫ 2π

0

∣∣G(z + s+ reiϕ
)∣∣p dϕ) ds

=
1

2π

∫ 2π

0

Ψ
(
z + reiϕ

)
dϕ.

Thus Ψ is subharmonic on the half-plane y ≥ 0 and the result now follows from
the maximum principle.

Lemma 1.5. Let
M = sup

x∈R
Ψ(x)

and
N = sup

y≥0
Ψ(iy).

Suppose that M and N are finite and that G(z) has exponential type on the
half-plane y ≥ 0. Then

Ψ(z) ≤ max{M,N}

for all z in the half-plane y ≥ 0.

Proof. The hypothesis that G(z) has exponential type on the half-plane y ≥ 0
guarantees the existence of positive numbers B and b such that

|G(z)| ≤ Beb|z| (1.12)

if z = x+ iy, with y ≥ 0. Let ε > 0 and define

Gε(z) = G(z) e−ε
[
(z+a) e−πi/4

]3/2

; (1.13)

Ψε(z) =

∫ a

−a

∣∣Gε(z + s)
∣∣p ds.

Above we choose the branch of
[
(z + a) e−πi/4

]3/2 with positive real part when
x > −a and y ≥ 0. From (1.12) and (1.13) we have∣∣Gε(z)∣∣ ≤ B eb|z|−εγ|z+a|3/2

(1.14)
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and ∣∣Gε(z)∣∣ ≤ ∣∣G(z)
∣∣

for x > −a and y ≥ 0, where γ = cos 3π
8 . Therefore we have∣∣Ψε(z)
∣∣ ≤ ∣∣Ψ(z)

∣∣
when x ≥ 0 and y ≥ 0, and in particular∣∣Ψε(x)

∣∣ ≤M (1.15)

for x ≥ 0, and ∣∣Ψε(iy)
∣∣ ≤ N (1.16)

for y ≥ 0. Let z0 be a point on the quadrant x > 0, y > 0. We now apply Lemma
1.4 to Ψε and the domain D = {z = x + iy; x ≥ 0, y ≥ 0, |z| ≤ R}. Assume
that the radius R is sufficiently large so that z0 ∈ D and that the maximum
over the curved part of the boundary is at most max{M,N} (this can be done
by (1.14)). By Lemma 1.4, (1.15) and (1.16) we arrive at∣∣Ψε(z0)

∣∣ ≤ max{M,N}.

This reasoning holds for any ε > 0. By considering ε→ 0+ we find that∣∣Ψ(z)
∣∣ ≤ max{M,N}

for any z in the first quadrant x ≥ 0 and y ≥ 0. The proof for the quadrant
x ≤ 0 and y ≥ 0 is analogous.

Lemma 1.6. In addition to the hypotheses of Lemma 1.5 assume that

lim
y→∞

G(x+ iy) = 0 (1.17)

uniformly on the strip −a ≤ x ≤ a. Then N ≤ M and therefore, for y ≥ 0, we
have ∫ a

−a
|G(z + s)|p ds = Ψ(z) ≤M.

Proof. Assume thatG(z) is not identically zero (otherwise the result is obviously
true). Due to (1.17) we have Ψ(iy)→ 0 as y →∞, and thus the supremum N
over the imaginary axis must be attained at a certain point iy0. If y0 = 0 we
have

N = Ψ(iy0) = Ψ(0) ≤M.

If y0 > 0 and N > M , we would have, by Lemma 1.5, the subharmonic function
Ψ attaining its maximum over the half-plane y ≥ 0 at an interior point, and
thus Ψ would have to be constant, giving us a contradiction. Therefore we must
have N ≤M .
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Proof of the key inequality (1.11). After going through these three auxiliary lem-
mas, we are now in position to prove inequality (1.11) and complete the proof
of the Plancherel-Polya theorem. It suffices to prove (1.11) in the case y > 0.
Let ε > 0 be given. We will apply Lemmas 1.5 and 1.6 to the function

G(z) = F (z) ei(2πδ+ε)z.

Observe that G(z) satisfies all the hypotheses of Lemmas 1.5 and 1.6. The
number M defined in Lemma 1.5 is finite since

M ≤
∫ ∞
−∞
|G(x)|p dx =

∫ ∞
−∞
|F (x)|p dx.

Applying the conclusion of Lemma 1.6 to z = iy we have

e−p(2πδ+ε)y
∫ a

−a
|F (s+ iy)|p ds =

∫ a

−a
|G(s+ iy)|p ds

≤
∫ ∞
−∞
|F (x)|p dx.

Since this result holds for any a > 0 and any ε > 0 we obtain the desired result
by making a→∞ and ε→ 0+. The proof is complete.

1.4 Interpolation formulas

1.4.1 Basic results
We shall see here that entire functions of a prescribed exponential type (with

an Lp condition on the real axis) are completely determined by their values on a
set of well-spaced points. Recall that an entire function F ∈ Lp(R), 1 ≤ p <∞,
if ∫ ∞

−∞
|F (x)|p dx <∞.

In case F ∈ L2(R), its Fourier transform is defined as

F̂ (t) = lim
R→∞

∫ R

−R
F (x) e−2πixt dt,

where the limit is taken in the L2-sense. By the Paley-Wiener theorem, we
know that F has exponential type 2πδ and belongs to L2(R) if and only if F̂ is
supported on [−δ, δ], and so

F (z) =

∫ δ

−δ
F̂ (t) e2πitz dt (1.18)

for all z ∈ C.
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Theorem 1.7. Let F be an entire function of exponential type π such that
F ∈ Lp(R) for some p with 1 ≤ p <∞. Then

F (z) =
sinπz

π

∑
n∈Z

(−1)n
F (n)

(z − n)
, (1.19)

where the expression on the right-hand side of (1.19) converges uniformly on
compact subsets of C.

If p = 2, the Fourier transform F̂ (t) occurring in (1.18) has the following
Fourier expansion (as functions in L2[− 1

2 ,
1
2 ])

F̂ (t) =
∑
m∈Z

F (m)e−2πimt. (1.20)

If p = 1, the right-hand side of (1.20) is absolutely convergent, and as F̂ is
continuous, equality (1.20) holds pointwise. In particular

F̂ (0) =
∑
m∈Z

F (m)

and
0 = F̂

(
1
2

)
=
∑
m∈Z

(−1)m F (m). (1.21)

Proof. Let us start with the statements about the Fourier transforms. If p = 2, it
is clear from (1.18) that {F (m)}m∈Z are the Fourier coefficients of F̂ (thought as
a periodic function of period 1). The Fourier expansion (1.20) is a consequence
of this. If p = 1, the function F̂ will be a continuous function supported on
[− 1

2 ,
1
2 ] and again, by (1.18), its Fourier coefficients will be {F (m)}m∈Z. By the

theorem of Plancherel and Polya, the sequence {|F (m)|}m∈Z is summable and
we conclude that (1.20) holds pointwise.

We now prove (1.19) when p ≤ 2. In this case, there is no loss of generality
in assuming p = 2 since, if p < 2, we have F bounded on the real axis (by the
theorem of Plancherel and Polya) and thus F ∈ L2(R). Define

vN (t) =

N∑
m=−N

F (m) e−2πimt.

We already know that vN → F̂ in L2[− 1
2 ,

1
2 ] when N → ∞ (therefore we have

convergence in L1[− 1
2 ,

1
2 ] as well). Thus

F (z) =

∫ 1
2

− 1
2

F̂ (t) e2πitz dt = lim
N→∞

∫ 1
2

− 1
2

vN (t) e2πitz dt

= lim
N→∞

∫ 1
2

− 1
2

N∑
m=−N

F (m) e2πit(z−m) dt

14



= lim
N→∞

N∑
m=−N

F (m)

∫ 1
2

− 1
2

e2πit(z−m) dt

= lim
N→∞

N∑
m=−N

F (m)
sinπ(z −m)

π(z −m)
. (1.22)

Since {F (m)}m∈Z is square summable, it is not hard to check that the sum on the
right-hand side of (1.22) converges absolutely and uniformly on compact subsets
of C (apply Hölder’s inequality and use that | sin(πz)/πz| � eπ|=(z)|/(1 + |z|)),
thus defining an entire function. We have then established (1.19) in these cases.

To treat the case where F ∈ Lp(R) with 2 < p <∞, we consider the entire
function

R(z) =


F (z)− F (0)

z
, if z 6= 0;

F ′(0), if z = 0.

(1.23)

It is clear that R is an entire function with the same exponential type as F .
Moreover, since F ∈ Lp(R), an application of Hölder’s inequality will give R ∈
L1(R). We now use the interpolation formula for R (already established)

F (z)− F (0)

z
=

sinπz

π

F ′(0)

z
+
∑
n6=0

(−1)n
F (n)− F (0)

(z − n)n

 ,

together with (1.21)
0 = R̂

(
1
2

)
=
∑
n∈Z

(−1)nR(n),

and the identity

π

sinπz
=

1

z
+
∑
n 6=0

(−1)n
(

1

(z − n)
+

1

n

)
.

We then get

F (z) = F (0) +
sinπz

π

F ′(0) +
∑
n 6=0

(−1)nF (n)

(
1

(z − n)
+

1

n

)

−F (0)
∑
n 6=0

(−1)n
(

1

(z − n)
+

1

n

)
=

sinπz

π

∑
n∈Z

(−1)n
F (n)

(z − n)

+ F (0) +
sinπz

π

{∑
n∈Z

(−1)nR(n)− F (0)
π

sinπz

}

15



=
sinπz

π

∑
n∈Z

(−1)n
F (n)

(z − n)
.

Once more, it is clear that the last series converges absolutely and uniformly on
compact subsets of C via Hölder’s inequality, since

∑
n |F (n)|p converges and

| sin(πz)/πz| � eπ|=(z)|/(1 + |z|).

A careful reading of the last details of the previous proof gives us the fol-
lowing corollary.

Corollary 1.8. Let F be an entire function of exponential type π such that the
entire function R defined in (1.23) belongs to Lp(R) for some p with 1 ≤ p <∞.
Then

F (z) =
sinπz

π

F ′(0) +
F (0)

z
+
∑
n6=0

(−1)nF (n)

(
1

(z − n)
+

1

n

) , (1.24)

where the expression on the right-hand side of (1.24) converges uniformly on
compact subsets of C.

Observe in particular that we can apply Corollary 1.8 when F is an entire
function of type π bounded on R. Both Theorem 1.7 and Corollary 1.8 assume
F ∈ Eπ. Similar interpolation formulas can be obtained when F ∈ E2πδ by
considering G(z) = F (z/2δ). In this case, the interpolation points will be
(1/2δ)Z. One can also consider the translation H(z) = F (z − α) to interpolate
H at Z + α, when H ∈ Eπ.

1.4.2 Bernstein’s inequality
We start here with the following proposition.

Proposition 1.9. Let F be a function of exponential type 2πδ such that the
entire function R defined by

R(z) =


F (z)− F (0)

z
, if z 6= 0;

F ′(0), if z = 0,

is such that R ∈ L2(R). Then F ′ has exponential type 2πδ as well.

Proof. By the Paley-Wiener theorem we have R̂ with support in [−δ, δ] and

R(z) =

∫ δ

−δ
R̂(t) e2πitz dt,

for all z ∈ C. Differentiating we have

F ′(z)z − F (z) + F (0)

z2
= R′(z) =

∫ δ

−δ
2πit R̂(t) e2πitz dt,

and from here we see that R′ has exponential type 2πδ and so does F ′.
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We now want to show that if F has an Lp integrability when restricted to
the real axis, so does F ′. The case p =∞ of this claim is known as Bernstein’s
inequality and is proved below.

Theorem 1.10 (Bernstein’s inequality). Let F be an entire function of expo-
nential type 2πδ that is bounded on the real axis. Then

sup
x∈R
|F ′(x)| ≤ 2πδ sup

x∈R
|F (x)|.

Proof. We may suppose δ > 0 since the case δ = 0 follows by taking limits
(hence for δ = 0 the constants are the only admissible functions). We may also
suppose δ = 1/2, for otherwise we consider G(z) = F (z/2δ). From Corollary
1.8 we have

F (z) =
sinπz

π

F ′(0) +
F (0)

z
+
∑
n 6=0

(−1)nF (n)

(
1

(z − n)
+

1

n

) . (1.25)

The termwise differentiation of (1.25) leads to a series converging uniformly on
compact subsets of C. Therefore, denoting by F1(z) the function inside the
curly brackets in (1.25) we have

F ′(x) = cosπxF1(x) +
sinπx

π

∑
n∈Z

(−1)n+1 F (n)

(x− n)2
.

Taking x = 1
2 in the last expression we have

F ′
(

1
2

)
=

4

π

∑
n∈Z

(−1)n+1 F (n)

(2n− 1)2
, (1.26)

and thus∣∣F ′( 1
2

)∣∣ ≤ 4

π

(∑
n∈Z

1

(2n− 1)2

)
sup
x∈R
|F (x)| = π sup

x∈R
|F (x)|. (1.27)

For the general case, we take x0 ∈ R and consider G(z) = F
(
x0 + z − 1

2

)
.

Applying (1.27) to G we have∣∣F ′(x0)
∣∣ =

∣∣G′( 1
2

)∣∣ ≤ π sup
x∈R
|G(x)| = π sup

x∈R
|F (x)|.

Note from the previous proof that, in fact, from (1.26) we have

F ′(x) =
4

π

∑
n∈Z

(−1)n+1F
(
x+ n− 1

2

)
(2n− 1)2

(1.28)

for any x ∈ R. This formula is the source of many applications, in particular
the next one.
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Theorem 1.11. Let F be an entire function of exponential type 2πδ that is
bounded on the real axis. Then for any w : [0,∞)→ [0,∞) which is convex and
non-decreasing we have∫ ∞

−∞
w
(
(2πδ)−1|F ′(x)|

)
dx ≤

∫ ∞
−∞

w(|F (x)|) dx.

In particular, putting w(u) = up for p ≥ 1, we have(∫ ∞
−∞
|F ′(x)|pdx

)1/p

≤ (2πδ)

(∫ ∞
−∞
|F (x)|p dx

)1/p

. (1.29)

Remark. Note that the limiting case of (1.29) (when p = ∞) is exactly Bern-
stein’s inequality.

Proof. It suffices to consider the case δ = 1
2 , since the general case follows by a

simple change of variables. From formula (1.28) we know that

|F ′(x0)| ≤ 4

π

∑
n∈Z

∣∣F (x0 + n− 1
2

)∣∣
(2n− 1)2

,

for any x0 ∈ R. We consider the probability measure µx0
given by

µx0
=

4

π2

∑
n∈Z

1

(2n− 1)2
δ(
x0+n− 1

2

) ,
where δa is the Dirac delta supported at the point x = a. From Jensen’s
inequality we have

w

(∫ ∞
−∞
|F (x)| dµx0(x)

)
≤
∫ ∞
−∞

w(|F (x)|) dµx0(x).

We now integrate with respect to the variable x0 and use the fact that w is
non-decreasing to get∫ ∞

−∞
w
(
π−1|F ′(x0)|

)
dx0 ≤

∫ ∞
−∞

w

(∫ ∞
−∞
|F (x)| dµx0

(x)

)
dx0

≤
∫ ∞
−∞

∫ ∞
−∞

w(|F (x)|) dµx0
(x)dx0

=

∫ ∞
−∞

(
4

π2

∑
n∈Z

w
(∣∣F (x0 + n− 1

2

)∣∣)
(2n− 1)2

)
dx0

=
∑
n∈Z

4

π2(2n− 1)2

∫ ∞
−∞

w
(∣∣F (x0 + n− 1

2

)∣∣) dx0

=

∫ ∞
−∞

w(|F (x)|) dx,

and this concludes the proof.
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1.4.3 Interpolation formulas involving derivatives
We saw in the previous sections that a function of exponential type π (with

mild decay on the real axis) is completely determined by its values at the in-
tegers. We shall see in this section that, if we move to the bigger class of
exponential type 2π, we will need more information (say, at the integers) to
completely determine our function. It turns out the the values of the function
and its derivative at the integers are sufficient to recover the original function,
as the following theorem of Vaaler [43, Theorem 9] shows.

Theorem 1.12. Let F be an entire function of exponential type 2π such that
F ∈ Lp(R) for some p with 1 ≤ p <∞. Then

F (z) =

(
sinπz

π

)2
{∑
m∈Z

F (m)

(z −m)2
+
∑
n∈Z

F ′(n)

(z − n)

}
, (1.30)

where the expression on the right-hand side of (1.30) converges uniformly on
compact subsets of C.

If p = 2, the Fourier transform F̂ (t) occurring in (1.18) has the form

F̂ (t) = (1− |t|)uF (t) + (2πi)−1 sgn(t) vF (t) (1.31)

for almost all t ∈ [−1, 1], where uF and vF are periodic functions in L2[0, 1]
with period 1 and Fourier series expansions

uF (t) =
∑
m∈Z

F (m) e−2πimt, (1.32)

and
vF (t) =

∑
n∈Z

F ′(n) e−2πint. (1.33)

If p = 1, then (1.32) and (1.33) are absolutely convergent, uF and vF are
continuous, and (1.31) holds for all t ∈ [−1, 1]. In particular

F̂ (0) = uF (0) =
∑
m∈Z

F (m), (1.34)

and
0 = vF (0) =

∑
n∈Z

F ′(n). (1.35)

Proof. We consider first the case 1 ≤ p ≤ 2. In this case, by the theorem of
Plancherel and Polya, we know that F is bounded, and thus F ∈ L2(R). From
the Paley-Wiener theorem we have that F̂ is supported on [−1, 1] and belongs
to L2[−1, 1]. For 0 ≤ t < 1 we define

uF (t) = F̂ (t) + F̂ (t− 1) (1.36)
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and
vF (t) = 2πi

{
tF̂ (t) + (t− 1)F̂ (t− 1)

}
. (1.37)

We then extend the domain of uF and vF to R by requiring that both functions
have period 1. Since F̂ ∈ L2[−1, 1], it is clear that both uF and vF are in L2[0, 1].
The identity (1.31) follows easily from (1.36), (1.37) and the periodicity of uF
and vF . To obtain (1.32) and (1.33) we note that

F (n) =

∫ 1

0

{
F̂ (t) + F̂ (t− 1)

}
e2πint dt =

∫ 1

0

uF (t) e2πint dt

and

F ′(n) =

∫ 1

−1

2πit F̂ (t) e2πint dt

=

∫ 1

0

2πi
{
tF̂ (t) + (t− 1)F̂ (t)

}
e2πint dt

=

∫ 1

0

vF (t) e2πint dt

for each integer n. Thus F (n) and F ′(n) are the Fourier coefficients of uF and
vF , respectively. Observe now that(

sinπz

πz

)2

=

∫ 1

−1

(1− |t|) e2πitz dt

and

z

(
sinπz

πz

)2

=
1

2πi

∫ 1

−1

sgn(t) e2πitz dt.

From these two identities we have, for each positive integer N ,(
sinπz

π

)2
{

N∑
m=−N

F (m)

(z −m)2
+

N∑
n=−N

F ′(n)

(z − n)

}

=

∫ 1

−1

{
(1− |t|)uF (t,N) + (2πi)−1 sgn(t) vF (t,N)

}
e2πitz dt,

(1.38)

where

uF (t,N) =

N∑
m=−N

F (m) e−2πimt

and

vF (t,N) =

N∑
n=−N

F ′(n) e−2πint.

Since the sequences {F (m)}m∈Z and {F ′(n)}n∈Z are square summable (by the
theorem of Plancherel-Polya and Theorem 1.11), the left-hand side of (1.38)
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converges uniformly on compact subsets of C as N → ∞. On the right-hand
side of (1.38) we have uF (·, N) → uF and vF (·, N) → vF in L2, and from this
we establish (1.30).

If p = 1, by the theorem of Plancherel-Polya and Theorem 1.11, we know
that {F (m)}m∈Z and {F ′(n)}n∈Z are summable, thus uF and vF have absolutely
convergent Fourier series and we may take uF and vF to be continuous periodic
functions. Since F̂ (t) is now continuous and supported on [−1, 1], the identity
(1.31) must hold pointwise for all t ∈ [−1, 1]. If we let t = 0 we easily derive
(1.34) and (1.35).

When 2 < p <∞ we make use of the entire function

R(z) =


F (z)− F (0)

z
, if z 6= 0;

F ′(0), if z = 0,

(1.39)

and its derivative

R′(z) =


zF ′(z)− F (z) + F (0)

z2
, if z 6= 0;

1
2F
′′(0), if z = 0.

Since R has the same exponential type of F , and R ∈ L2(R), we have already
established that

R(z) = lim
N→∞

(
sinπz

π

)2
{

N∑
m=−N

R(m)

(z −m)2
+

N∑
n=−N

R′(n)

(z − n)

}
(1.40)

uniformly on compact subsets of C. We multiply both sides of the expression
(1.40) by z and use the definitions of R and R′ to rewrite

F (z)− F (0) = lim
N→∞

(
sinπz

π

)2
{

N∑
m=−N

F (m)

(z −m)2
+

N∑
n=−N

F ′(n)

(z − n)

+

N∑
k=−N

R′(k)− F (0)

N∑
l=−N

1

(z − l)2

}
.

(1.41)

As the identity ∑
l∈Z

1

(z − l)2
=
( π

sinπz

)2

is well known, all we have to show is that

lim
N→∞

N∑
k=−N

R′(k) = 0. (1.42)
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By Theorem 1.11 we know that F and F ′ are in Lp(R) and an application of
Hölder’s inequality shows us that R ∈ L1(R). In this case, identity (1.42) follows
from (1.35) and this finishes the proof.

Our next result extends this interpolation formula for the case when F has
exponential type 2π, and R ∈ Lp(R) for some finite p. This has appeared in
[43, Theorem 10].

Corollary 1.13. Let F be an entire function of exponential type 2π such that
R defined by (1.39) belongs to Lp(R) for some p with 1 ≤ p <∞. Then

F (z) =

(
sinπz

π

)2
{∑
m∈Z

F (m)

(z −m)2
+
F ′(0)

z

+
∑
n∈Z
n 6=0

F ′(n)

(
1

(z − n)
+

1

n

)
+AF

 ,

(1.43)

where the expression on the right-hand side of (1.43) converges uniformly on
compact subsets of C and AF is a constant given by

AF =
1

2
F ′′(0) +

∑
k∈Z
k 6=0

F (0)− F (k)

k2
. (1.44)

Proof. Since R ∈ Lp(R) we may apply Theorem 1.12. As in the previous proof
we find that (1.40) and (1.41) hold. We now reorganize (1.41) using the expres-
sion for the derivative R′(z) as follows

F (z) = lim
N→∞

(
sinπz

π

)2
{

N∑
m=−N

F (m)

(z −m)2
+
F ′(0)

z

+

N∑
n=−N
n 6=0

F ′(n)

(
1

(z − n)
+

1

n

)
+

1

2
F ′′(0) +

N∑
k=−N
k 6=0

F (0)− F (k)

k2

 .

(1.45)

For a function of exponential type 2π, we have already seen that the fact that
F ∈ Lp(R) implies that F ∈ Lq(R) if p < q. We may therefore assume without
loss of generality that 1 < p <∞. It follows that∑

m∈Z
m6=0

|F (m)m−1|p =
∑
m∈Z
m 6=0

|R(m) + F (0)m−1|p

≤ 2p
∑
m∈Z
m6=0

{
|R(m)|p + |F (0)m−1|p

}
<∞,

(1.46)
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and ∑
n∈Z
n 6=0

|F ′(n)n−1|p =
∑
n∈Z
n 6=0

|R′(n) +R(n)n−1|p

≤ 2p
∑
n∈Z
n 6=0

{
|R′(n)|p + |R(n)n−1|p

}
<∞.

(1.47)

From the series defining AF we have∑
k∈Z
k 6=0

∣∣(F (0)− F (k))k−2
∣∣ =

∑
k∈Z
k 6=0

|R(k)| |k|−1 <∞. (1.48)

Estimates (1.46), (1.47) and (1.48), together with (1.45), show that the right-
hand side of (1.43) converges uniformly on compacts subsets of C (easy applica-
tion of Hölder’s inequality), with AF given by the absolutely convergent series
(1.44). This concludes the proof.
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Chapter 2

The Beurling-Selberg
extremal problem

2.1 Introduction
After a brief review of some useful harmonic analysis tools in our first chap-

ter, we now direct our interest to certain problems in approximation theory.
Recall that an entire function F : C → C is of exponential type at most 2πδ if
for every ε > 0 there exists a positive constant Cε, such that the inequality

|F (z)| ≤ Cε e(2πδ+ε)|z|

holds for all complex numbers z.

Given a real function f : R→ R and δ > 0, we address here the problem of
finding an entire function K of exponential type 2πδ such that∫ ∞

−∞
|K(x)− f(x)| dx (2.1)

is minimized. Such a function is called a best approximation of f . This is a
classical problem in harmonic analysis and approximation theory, considered by
Bernstein, Akhiezer, Krein, Nagy and others, since at least 1938. In particular,
Krein [24] in 1938 and Nagy [41] in 1939 published seminal papers solving this
problem for a wide class of functions f(x).

For applications to analytic number theory, it is convenient to consider an
additional restriction: we ask that K(z) is real on R and that K(x) ≥ f(x) for
all x ∈ R. In this case, a minimizer of the integral (2.1) is called an extremal
majorant of f(x) (or extremal upper one-sided approximation). Extremal mi-
norants are defined analogously. Beurling started working on this one-sided
extremal problem, independently, in the late 1930’s, and obtained the solution
for f(x) = sgn(x) and an inequality for almost periodic functions in an unpub-
lished manuscript. The one-sided extremals for the signum function were later
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used by Selberg [37] to obtain the solution of the extremal problem for charac-
teristic functions of intervals (of integer size, the general case was settled later,
by B. Logan and alternatively by F. Littmann [30]) and a sharp form of the large
sieve inequality. In these notes we are mostly interested in the one-sided version
of this problem and, therefore, we shall be referring to it as the Beurling-Selberg
extremal problem. A further discussion of the early development of this theory
with many of its applications is presented in the excellent survey [43] by J. D.
Vaaler.

The problem (2.1) is hard in the sense that there is no general known way
to produce a solution given any f : R → R. Besides the original examples
f(x) = sgn(x) of Beurling and f(x) = χ[a,b](x) of Selberg, the solution for the
exponential family f(x) = e−λ|x|, λ > 0, was discovered by Graham and Vaaler
in [19], with a first glimpse of the technique of integration on the free parameter
λ to produce solutions for a family of even and odd functions. Later, the problem
for f(x) = xn sgn(x) and f(x) = (x+)n, where n is a positive integer, was consid-
ered by Littmann in [27, 28, 29]. Using the exponential subordination, Carneiro
and Vaaler in [8, 9] extended the construction of extremal approximations for
a class of even functions that includes f(x) = log |x|, f(x) = log

(
(x2 + 1)/x2

)
and f(x) = |x|α, with −1 < α < 1. The analogous exponential subordination
framework for truncated and odd functions was treated in [6].

Other classical applications of the solutions of these problems to analytic
number theory include Hilbert-type inequalities [8, 19, 28, 32, 43], Erdös-Turán
discrepancy inequalities [8, 25, 43], optimal approximations of periodic functions
by trigonometric polynomials [2, 8, 9, 43] and Tauberian theorems [19]. The
extremal problem in higher dimensions, with applications, is considered in [1,
20]. Approximations in Lp-norms with p 6= 1 are treated, for instance, in [15].

Our focus in this section is to present the recent advances in this field, in
the form of a general method to produce extremal majorants and minorants
for classes of even, odd and truncated functions subject to a certain Gaussian
subordination, as developed in the works [5] and [7]. This is the most general
method up to date to produce such special functions.

2.2 The extremal problem for the Gaussian

2.2.1 Statements of the main theorems
We consider the problem of majorizing and minorizing the Gaussian function

x 7→ Gλ(x) = e−πλx
2

(2.2)

on R by entire functions of exponential type. Here λ > 0 is a parameter. We
make use of classical interpolation techniques (as developed in Chapter 1) and
integral representations to achieve this goal.
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For each positive value of λ we define two entire functions of the complex
variable z as follows:

Lλ(z) =
(cosπz

π

)2
{ ∞∑
m=−∞

Gλ
(
m+ 1

2

)(
z −m− 1

2

)2 +

∞∑
n=−∞

G′λ
(
n+ 1

2

)(
z − n− 1

2

)}, (2.3)

Mλ(z) =
( sinπz

π

)2
{ ∞∑
m=−∞

Gλ(m)

(z −m)2
+

∞∑
n=−∞

G′λ(n)

(z − n)

}
. (2.4)

The function Lλ(z) is a real entire function of exponential type 2π which inter-
polates both the values of Gλ(z) and the values of its derivative G′λ(z) on the
coset Z + 1

2 . Similarly, the function Mλ(z) is a real entire function of exponen-
tial type 2π which interpolates both the values of Gλ(z) and the values of its
derivative G′λ(z) on the integers Z. We will show that these functions satisfy
the basic inequality

Lλ(x) ≤ Gλ(x) ≤Mλ(x) (2.5)

for all real x. Moreover, we will show that the value of each of the two integrals∫ ∞
−∞

{
Gλ(x)− Lλ(x)

}
dx and

∫ ∞
−∞

{
Mλ(x)−Gλ(x)

}
dx,

is minimized.

In order to state a more precise form of our main results for the Gaussian
function, we make use of the basic theta functions. Here v is a complex variable,
τ is a complex variable with ={τ} > 0, q = eπiτ , and e(z) = e2πiz. Our notation
for the theta functions is standard and follows that of Chandrasekharan [11].
Thus we define

θ1(v, τ) =

∞∑
n=−∞

q(n+ 1
2 )2

e
(
(n+ 1

2 )v
)
, (2.6)

θ2(v, τ) =

∞∑
n=−∞

(−1)nqn
2

e(nv), (2.7)

θ3(v, τ) =

∞∑
n=−∞

qn
2

e(nv). (2.8)

We note that for a fixed value of τ with ={τ} > 0, each of the functions
v 7→ θ1(v, τ), v 7→ θ2(v, τ), and v 7→ θ3(v, τ) is an even entire function of v. The
function v 7→ θ1(v, τ) is periodic with period 2, and satisfies the identity

θ1(v + 1, τ) = −θ1(v, τ) (2.9)

for all complex v. Both of the functions v 7→ θ2(v, τ), and v 7→ θ3(v, τ), are
periodic with period 1. They are related by the identity

θ2(v + 1
2 , τ) = θ3(v, τ). (2.10)
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The transformation formulas for the theta functions (see [11, Chapter V, The-
orem 9, Corollary 1]) provide a connection with the Gaussian function Gλ(z).
In particular we have

∞∑
n=−∞

(−1)nGλ(n− v) = λ−
1
2 θ1

(
v, iλ−1

)
, (2.11)

∞∑
n=−∞

Gλ(n+ 1
2 − v) = λ−

1
2 θ2

(
v, iλ−1

)
, (2.12)

∞∑
n=−∞

Gλ(n− v) = λ−
1
2 θ3

(
v, iλ−1

)
. (2.13)

We consider now the problem of minorizing Gλ(z) on R by a real entire
function of exponential type at most 2π.

Theorem 2.1 (Extremal minorant for the Gaussian). Let F (z) be a real entire
function of exponential type at most 2π such that

F (x) ≤ Gλ(x)

for all real x. Then ∫ ∞
−∞

F (x) dx ≤ λ− 1
2 θ2

(
0, iλ−1

)
, (2.14)

and there is equality in (2.14) if and only if F (z) = Lλ(z).

Here is the analogous result for the problem of majorizing Gλ(z) on R by a
real entire function of exponential type at most 2π.

Theorem 2.2 (Extremal majorant for the Gaussian). Let F (z) be a real entire
function of exponential type at most 2π such that

Gλ(x) ≤ F (x)

for all real x. Then

λ−
1
2 θ3

(
0, iλ−1

)
≤
∫ ∞
−∞

F (x) dx, (2.15)

and there is equality in (2.15) if and only if F (z) = Mλ(z).

By a simple change of variables, using Theorem 2.1 and Theorem 2.2, one
can check that the real entire functions z 7→ Lλδ−2(δz) and z 7→Mλδ−2(δz) are
the unique extremal minorant and majorant, respectively, of exponential type
2πδ for the function Gλ(x).

The entire functions Lλ(z) and Mλ(z) have exponential type 2π, and the
restrictions of these functions to R are both integrable. Hence their Fourier
transforms

L̂λ(t) =

∫ ∞
−∞

Lλ(x) e(−xt) dx, and M̂λ(t) =

∫ ∞
−∞

Mλ(x) e(−xt) dx,
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are both continuous, and both Fourier transforms are supported on the compact
interval [−1, 1]. These Fourier transforms can be given explicitly in terms of the
theta functions, as a simple application of Theorem 1.12.

Theorem 2.3. If −1 ≤ t ≤ 1 then the Fourier transforms t 7→ L̂λ(t) and
t 7→ M̂λ(t) are given by

L̂λ(t) = (1− |t|)θ1(t, iλ)− (2π)−1λ sgn(t)
∂θ1

∂t
(t, iλ), (2.16)

and
M̂λ(t) = (1− |t|)θ3(t, iλ)− (2π)−1λ sgn(t)

∂θ3

∂t
(t, iλ). (2.17)

2.2.2 Integral representations
In this section we establish several representations for combinations of Gaus-

sian functions that will be used in the proofs of Theorems 2.1 and 2.2.

Lemma 2.4. Let z and w be distinct complex numbers. Then we have

Gλ(z)−Gλ(w)

z − w
= 2πλ

3
2

∫ 0

−∞

∫ 0

−∞
e−2πλtuGλ(z − t)Gλ(w − u) du dt

− 2πλ
3
2

∫ ∞
0

∫ ∞
0

e−2πλtuGλ(z − t)Gλ(w − u) du dt.
(2.18)

Proof. It suffices to prove the identity (2.18) for λ = 1, then the general case
will follow from an elementary change of variables. Therefore we simplify our
notation and write G(z) = G1(z). We note that G(z) satisfies the identity

G(z)−1 =

∫ ∞
−∞

e2πztG(t) dt (2.19)

for all complex numbers z, and the identity

G(z)G(w)e2πzw = G(z − w) (2.20)

for all pairs of complex numbers z and w. From (2.19) we get

G(z)−G(w)

z − w
= G(z)G(w)

{
G(w)−1 −G(z)−1

z − w

}
= G(z)G(w)(z − w)−1

∫ ∞
−∞

{
e2πwt − e2πzt

}
G(t) dt.

(2.21)
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Then using Fubini’s theorem we find that

(z − w)−1

∫ ∞
−∞

{
e2πwt − e2πzt

}
G(t) dt

= 2π

∫ 0

−∞

{∫ 0

t

e2π(z−w)u du
}
e2πwtG(t) dt

− 2π

∫ ∞
0

{∫ t

0

e2π(z−w)u du
}
e2πwtG(t) dt

= 2π

∫ 0

−∞

{∫ u

−∞
e2πwtG(t) dt

}
e2π(z−w)u du

− 2π

∫ ∞
0

{∫ ∞
u

e2πwtG(t) dt
}
e2π(z−w)u du

= 2π

∫ 0

−∞

{∫ 0

−∞
e2πw(t+u)G(t+ u) dt

}
e2π(z−w)u du

− 2π

∫ ∞
0

{∫ ∞
0

e2πw(t+u)G(t+ u) dt
}
e2π(z−w)u du

= 2π

∫ 0

−∞

∫ 0

−∞
e2π(wt+zu)G(t+ u) dt du

− 2π

∫ ∞
0

∫ ∞
0

e2π(wt+zu)G(t+ u) dt du.

(2.22)

Next we apply (2.20) twice and get

G(z)G(w)e2π(wt+zu)G(t+ u) = G(z)G(w)G(u)G(t)e−2πtu+2πwt+2πzu

= G(z − u)G(w − t)e−2πtu.
(2.23)

Then we combine (2.21), (2.22) and (2.23) to obtain the special case

G(z)−G(w)

z − w
= 2π

∫ 0

−∞

∫ 0

−∞
e−2πtuG(z − t)G(w − u) du dt

− 2π

∫ ∞
0

∫ ∞
0

e−2πtuG(z − t)G(w − u) du dt.
(2.24)

The more general identity (2.18) follows by replacing z with λ
1
2 z, by replacing

w with λ
1
2w, and by making a corresponding change of variables in each integral

on the right of (2.24).

Lemma 2.5. Let z and w be distinct complex numbers. Then we have

Gλ(z)

(z − w)2
− Gλ(w)

(z − w)2
− G′λ(w)

z − w

= (2π)2λ
5
2

∫ 0

−∞

∫ 0

−∞
te−2πλtuGλ(z − t)

{
Gλ(w)−Gλ(w − u)

}
du dt

− (2π)2λ
5
2

∫ ∞
0

∫ ∞
0

te−2πλtuGλ(z − t)
{
Gλ(w)−Gλ(w − u)

}
du dt.

(2.25)
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Proof. We differentiate both sides of (2.18) with respect to w and obtain the
identity

Gλ(z)

(z − w)2
− Gλ(w)

(z − w)2
− G′λ(w)

z − w

= 2πλ
3
2

∫ 0

−∞

∫ 0

−∞
e−2πλtuGλ(z − t)G′λ(w − u) du dt

− 2πλ
3
2

∫ ∞
0

∫ ∞
0

e−2πλtuGλ(z − t)G′λ(w − u) du dt.

(2.26)

Using integration by parts we get∫ 0

−∞
e−2πλtuG′λ(w − u) du

= 2πλ

∫ 0

−∞
te−2πλtu

{
Gλ(w)−Gλ(w − u)

}
du,

(2.27)

and ∫ ∞
0

e−2πλtuG′λ(w − u) du

= 2πλ

∫ ∞
0

te−2πλtu
{
Gλ(w)−Gλ(w − u)

}
du.

(2.28)

The lemma now follows now by combining (2.26), (2.27) and (2.28).

In order to apply the identities (2.11), (2.12) and (2.13), we require simple
estimates for certain partial sums.

Lemma 2.6. For all real u and positive integers N , we have
N∑

n=−N−1

(−1)nGλ(n+ 1
2 − u)�λ min{1, |u|}, (2.29)

N∑
n=−N−1

{
Gλ(n+ 1

2 )−Gλ(n+ 1
2 − u)

}
�λ min{1, |u|}, (2.30)

N∑
n=−N

{
Gλ(n)−Gλ(n− u)

}
�λ min{1, |u|}, (2.31)

where the constant implied by �λ depends on λ, but not on u or N . Moreover,
if Sλ,N (u) denotes the sum on the left of (2.29), then for 0 < t we have∣∣∣∣∫ ∞

0

e−2πλtuSλ,N (u) du
∣∣∣∣ ≤ λ− 1

2 , (2.32)

and for t < 0 we have ∣∣∣∣∫ 0

−∞
e−2πλtuSλ,N (u) du

∣∣∣∣ ≤ λ− 1
2 . (2.33)

30



Proof. For each positive integer N ,

u 7→ Sλ,N (u) =

N∑
n=−N−1

(−1)nGλ(n+ 1
2 − u)

is an odd function of u. Hence its derivative is an even function of u. Therefore
we get

∣∣Sλ,N (u)
∣∣ =

∣∣∣∣∫ u

0

S′λ,N (v) dv
∣∣∣∣

≤
∫ |u|

0

{ ∞∑
n=−∞

∣∣G′λ(n+ 1
2 − v)

∣∣} dv

≤ Cλ|u|,

where

Cλ = sup
v∈R

{ ∞∑
n=−∞

∣∣G′λ(n+ 1
2 − v)

∣∣}
is obviously finite. We also have

∣∣Sλ,N (u)
∣∣ ≤ sup

v∈R

{ ∞∑
n=−∞

∣∣Gλ(n+ 1
2 − v)

∣∣} <∞,

and the bound (2.29) follows. The proofs of (2.30) and (2.31) are very similar.

Let 0 < t and 0 < u. For positive integers N we define

Rλ,N (u) =

∫ u

0

Sλ,N (v) dv.

Then it follows, using integration by parts, that∫ ∞
0

e−2πλtuSλ,N (u) du = 2πλt

∫ ∞
0

e−2πλtuRλ,N (u) du. (2.34)

For α < β, let
χα,β(x) = 1

2 sgn(β − x) + 1
2 sgn(x− α)

denote the normalized characteristic function of the real interval with endpoints
α and β. Using the inequality∣∣∣∣ N∑

n=−N−1

(−1)nχn+ 1
2−u,n+ 1

2
(x)

∣∣∣∣ ≤ 1,
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we find that

∣∣Rλ,N (u)
∣∣ =

∣∣∣∣ N∑
n=−N−1

(−1)n
∫ u

0

Gλ(n+ 1
2 − v) dv

∣∣∣∣
=

∣∣∣∣∫ ∞
−∞

{ N∑
n=−N−1

(−1)nχn+ 1
2−u,n+ 1

2
(w)
}
Gλ(w) dw

∣∣∣∣
≤
∫ ∞
−∞

Gλ(w) dw

= λ−
1
2 .

Then using (2.34) we get∣∣∣∣∫ ∞
0

e−2πλtuSλ,N (u) du
∣∣∣∣ ≤ 2πλt

∫ ∞
0

e−2πλtu
∣∣Rλ,N (u)

∣∣ du
≤ 2πλ

1
2 t

∫ ∞
0

e−2πλtu du

= λ−
1
2 .

This verifies (2.32), and (2.33) follows from (2.32) because u 7→ Sλ,N (u) is an
odd function.

Because z 7→ Lλ(z) interpolates both the value of Gλ(z) and the value of its
derivative G′λ(z) at each point of the coset Z + 1

2 , the entire function

z 7→ Gλ(z)− Lλ(z)

has a zero of multiplicity at least 2 at each point of Z + 1
2 . It follows that

z 7→
(

π

cosπz

)2{
Gλ(z)− Lλ(z)

}
is an entire function. In a similar manner, we find that

z 7→
(

π

sinπz

)2{
Mλ(z)−Gλ(z)

}
is an entire function.

Lemma 2.7. For all complex z we have(
π

cosπz

)2{
Gλ(z)− Lλ(z)

}
= 2π2λ2

∫ ∞
−∞

tGλ(z − t)
sinhπλt

∫ 1
2

− 1
2

e−2πλtu
{
θ3

(
u, iλ−1

)
− θ3

(
1
2 , iλ

−1
)}

du dt,
(2.35)
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and(
π

sinπz

)2{
Mλ(z)−Gλ(z)

}
= 2π2λ2

∫ ∞
−∞

tGλ(z − t)
sinhπλt

∫ 1
2

− 1
2

e−2πλtu
{
θ2

(
1
2 , iλ

−1
)
− θ2

(
u, iλ−1

)}
du dt.

(2.36)

Proof. In order to establish (2.35) we use the partial fraction expansion

lim
N→∞

N∑
n=−N−1

1(
z − n− 1

2

)2 =

(
π

cosπz

)2

, (2.37)

which converges uniformly on compact subsets of C \
{
Z + 1

2

}
. Then it follows

from (2.3) and (2.37) that(
π

cosπz

)2{
Gλ(z)− Lλ(z)

}
= lim
N→∞

N∑
n=−N−1

{
Gλ(z)

(z − n− 1
2 )2
−

Gλ(n+ 1
2 )

(z − n− 1
2 )2
−
G′λ(n+ 1

2 )

z − n− 1
2

}
.

(2.38)

Note that the limit on the right of (2.38) converges uniformly on compact subsets
of C. For positive integers N and all real u let

Tλ,N (u) =

N∑
n=−N−1

{
Gλ(n+ 1

2 )−Gλ(n+ 1
2 − u)

}
.

From (2.12) we conclude that

lim
N→∞

Tλ,N (u) = λ−
1
2

{
θ2

(
0, iλ−1

)
− θ2

(
u, iλ−1

)}
. (2.39)

We apply the identity (2.25) with w = n + 1
2 and sum over the integers n

satisfying −N − 1 ≤ n ≤ N . We get

N∑
n=−N−1

{
Gλ(z)

(z − n− 1
2 )2
−

Gλ(n+ 1
2 )

(z − n− 1
2 )2
−
G′λ(n+ 1

2 )

z − n− 1
2

}

= (2π)2λ
5
2

∫ 0

−∞

∫ 0

−∞
te−2πλtuGλ(z − t)Tλ,N (u) du dt

− (2π)2λ
5
2

∫ ∞
0

∫ ∞
0

te−2πλtuGλ(z − t)Tλ,N (u) du dt.

(2.40)

We now let N → ∞ on both sides of (2.40). The limit on the left-hand side
is determined by (2.38). On the right-hand side we use (2.30), the dominated
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convergence theorem and (2.39). In this way we obtain the identity(
π

cosπz

)2{
Gλ(z)− Lλ(z)

}
= (2πλ)2

∫ 0

−∞

∫ 0

−∞
te−2πλtuGλ(z − t)

{
θ2

(
0, iλ−1

)
− θ2

(
u, iλ−1

)}
du dt

− (2πλ)2

∫ ∞
0

∫ ∞
0

te−2πλtuGλ(z − t)
{
θ2

(
0, iλ−1

)
− θ2

(
u, iλ−1

)}
du dt.

(2.41)

If 0 < t, using that v 7→ θ2(v, τ) has period 1 and (2.10), we get∫ ∞
0

e−2πλtu
{
θ2

(
0, iλ−1

)
− θ2

(
u, iλ−1

)}
du

=

∞∑
m=0

∫ 1

0

e−2πλt(u+m)
{
θ2

(
0, iλ−1

)
− θ2

(
u+m, iλ−1

)}
du

=
{

1− e−2πλt
}−1

∫ 1

0

e−2πλtu
{
θ2

(
0, iλ−1

)
− θ2

(
u, iλ−1

)}
du

=
{

2 sinhπλt
}−1

∫ 1
2

− 1
2

e−2πλtu
{
θ3

(
1
2 , iλ

−1
)
− θ3

(
u, iλ−1

)}
du.

(2.42)

If t < 0, in a similar manner, we find that∫ 0

−∞
e−2πλtu

{
θ2

(
0, iλ−1

)
− θ2

(
u, iλ−1

)}
du

= −
{

2 sinhπλt
}−1

∫ 1
2

− 1
2

e−2πλtu
{
θ3

(
1
2 , iλ

−1
)
− θ3

(
u, iλ−1

)}
du.

(2.43)

The identity (2.35) follows now by combining (2.41), (2.42) and (2.43).

The proof of (2.36) proceeds along the same lines using (2.13) and (2.31).
We leave the details to the reader.

Corollary 2.8. For all real values of x we have

0 <

(
π

cosπx

)2{
Gλ(x)− Lλ(x)

}
, (2.44)

and

0 <

(
π

sinπx

)2{
Mλ(x)−Gλ(x)

}
. (2.45)

In particular, the inequality (2.5) holds for all real x.

Proof. For real u the periodic function u 7→ θ3

(
u, iλ−1

)
takes its maximum

value at u = 0 and its minimum values at u = 1
2 . Therefore the function

t 7→
∫ 1

2

− 1
2

e−2πλtu
{
θ3

(
u, iλ−1

)
− θ3

(
1
2 , iλ

−1
)}

du,
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which appears in the integrand on the right of (2.35), is positive for all real
values of t. This plainly verifies the inequality (2.44).

In a similar manner using (2.10), the periodic function u 7→ θ2

(
u, iλ−1

)
takes its maximum value at u = 1

2 and its minimum value at u = 0. Hence the
function

t 7→
∫ 1

2

− 1
2

e−2πλtu
{
θ2

(
1
2 , iλ

−1
)
− θ2

(
u, iλ−1

)}
du,

which appears in the integrand on the right of (2.36), is positive for all real
values of t. This establishes the inequality (2.45).

2.2.3 Proofs of Theorems 2.1 and 2.2
Let F (z) be an entire function of exponential type at most 2π such that

F (x) ≤ Gλ(x) (2.46)

for all real x. Clearly we may assume that x 7→ F (x) is integrable on R, for if
not then (2.14) is trivial. By Theorem 1.11 we know that F ′(x) is also integrable
and thus F has bounded variation. By the Poisson summation formula, (2.12)
and (2.46), we find that∫ ∞

−∞
F (x) dx = lim

N→∞

N∑
n=−N

F (n+ v)

≤ lim
N→∞

N∑
n=−N

Gλ(n+ v)

= λ−
1
2 θ2

(
1
2 − v, iλ

−1
)

(2.47)

for all real v. We have already noted that v 7→ θ2

(
1
2−v, iλ

−1
)
takes its minimum

value at v = 1
2 . Hence (2.47) implies that∫ ∞

−∞
F (x) dx ≤ λ− 1

2 θ2

(
0, iλ−1

)
,

and this proves (2.14).

In Corollary 2.8 we proved that F (z) = Lλ(z) satisfies the inequality (2.46)
for all real x. In this special case there is equality in the inequality (2.47) when
v = 1

2 . Thus we have ∫ ∞
−∞

Lλ(x) dx = λ−
1
2 θ2

(
0, iλ−1

)
. (2.48)

Now assume that F (z) is an entire function of exponential type at most
2π that satisfies (2.46) for all real x, and assume that there is equality in the
inequality (2.47) when v = 1

2 . Then we must have

F (n+ 1
2 ) = Gλ(n+ 1

2 )
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for all integers n. Then from (2.46) we also get

F ′(n+ 1
2 ) = G′λ(n+ 1

2 )

for all integers n. Of course this shows that the entire function

z 7→ F (z)− Lλ(z) (2.49)

is integrable on R, has exponential type at most 2π, vanishes at each point of
Z+ 1

2 , and its derivative also vanishes at each point of Z+ 1
2 . By an application

of Theorem 1.12 (with an appropriate shift of 1
2 ) we conclude that the entire

function (2.49) is identically zero. This proves Theorem 2.1, and Theorem 2.2
can be proved by the same sort of argument.

2.3 Distribution framework for even functions

2.3.1 The Paley-Wiener theorem for distributions
Let D(R) ⊆ S(R) ⊆ E(R) be the usual spaces of C∞ functions on R as

defined in the work of L. Schwartz [36], and let E ′(R) ⊆ S ′(R) ⊆ D′(R) be
the corresponding dual spaces of distributions. Our notation and terminology
for distributions follows that of [18], and precise definitions for these spaces are
given in [18, Section 2.3]. We write ϕ(x) for a generic element in the space
S(R) of Schwartz functions. If T in S ′(R) is a tempered distribution we write
T (ϕ) for the value of T at ϕ. Then the Fourier transform of T is the tempered
distribution T̂ defined by

T̂ (ϕ) = T (ϕ̂),

where
ϕ̂(y) =

∫ ∞
−∞

ϕ(x)e(−yx) dx

is the Fourier transform of the function ϕ. Functions g : R→ R in any Lp class
or with polynomial growth can be regarded as elements of S ′(R) and we will
usually make the identification

g(ϕ) =

∫ ∞
−∞

g(x)ϕ(x) dx

for all ϕ in S(R).

We recall the following form of the Paley-Wiener theorem for distributions,
which is obtained by combining Theorem 1.7.5 and Theorem 1.7.7 in [21].

Theorem 2.9 (Paley-Wiener for distributions). Let δ > 0, and let U be a tem-
pered distribution in S ′(R) with Fourier transform Û supported in the compact
interval [−δ, δ]. Then Û belongs to E ′(R), and

z 7→ F (z) = Ûξ
(
e(ξz)

)
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defines an entire function of the complex variable z = x+ iy such that∣∣F (z)
∣∣�B

(
1 + |z|

)B
exp{2πδ|y|} (2.50)

for some number B ≥ 0 and all z in C. Moreover, the entire function F (z)
satisfies the identity

U(ϕ) =

∫ ∞
−∞

F (x)ϕ(x) dx

for all ϕ in S(R).

Conversely, suppose that F (z) is an entire function of the complex variable
z that satisfies the inequality (2.50) for some numbers B ≥ 0 and δ > 0. Then
there exists a tempered distribution V in S ′(R) such that V̂ belongs to E ′(R), V̂
is supported on the compact interval [−δ, δ],

F (z) = V̂ξ
(
e(ξz)

)
,

and
V (ϕ) =

∫ ∞
−∞

F (x)ϕ(x) dx

for all ϕ in S(R).

Here we write Ûξ to indicate that the distribution Û is acting on the function
ξ 7→

(
e(ξz)

)
.

2.3.2 Integrating the free parameter
Our goal now is to be able to integrate the parameter λ with respect to a

suitable non-negative Borel measure ν on [0,∞) and obtain the solution of the
extremal problem for a different function. One might first guess that the class
of suitable measures ν on [0,∞) would consist of those measures for which the
function

g(x) =

∫ ∞
0

Gλ(x)dν(λ)

is well defined, and that this would be the function to be approximated. Such
a method was carried out in [8], [9] and [19] with the Gaussian replaced by ex-
ponential functions. It turns out that this condition is unnecessarily restrictive,
and in order to find the very minimal conditions to be imposed on the measure
ν one must look at things on the Fourier transform side.

We will illustrate what this condition should be in the minorant case. Define
the difference function

Dλ(x) = Gλ(x)− Lλ(x) ≥ 0.

The minimal integral corresponds to∫ ∞
−∞
{Gλ(x)− Lλ(x)}dx = D̂λ(0).
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If we succeed in our attempt to integrate the parameter λ, we will end up solving
an extremal problem for which the value of the minimal integral is given by (and
thus we want to impose this finiteness condition)∫ ∞

0

∫ ∞
−∞
{Gλ(x)− Lλ(x)} dx dν(λ) =

∫ ∞
0

D̂λ(0)dν(λ) <∞. (2.51)

We will show that this is also a sufficient condition, provided we can define
appropriately the real function to be minorized.

Suppose ν is a non-negative Borel measure on [0,∞) satisfying (2.51). Since

|D̂λ(t)| ≤ D̂λ(0)

for all t ∈ R, we observe that the function

t 7→
∫ ∞

0

D̂λ(t) dν(λ)

is well defined. In particular, from the classical Paley-Wiener theorem, the
Fourier transform t 7→ L̂λ(t) is supported on [−1, 1], and therefore∫ ∞

0

D̂λ(t)dν(λ) =

∫ ∞
0

Ĝλ(t) dν(λ)

for |t| ≥ 1. We are now in position to state the main results of this section. In
the following theorems we write

[α, β]c = (−∞, α) ∪ (β,∞)

for the complement in R of a closed interval [α, β]. Recall also that the Fourier
transform of the Gaussian is given by

Ĝλ(t) = λ−
1
2 e−πλ

−1t2 .

Theorem 2.10 (Distribution Theorem - Minorant). Let ν be a non-negative
Borel measure on [0,∞) satisfying∫ ∞

0

∫ ∞
−∞
{Gλ(x)− Lλ(x)} dx dν(λ) <∞.

Let g : R → R be a function of polynomial growth (thus an element of S ′(R))
that is continuous on R/{0}, differentiable on R/{0}, and such that

ĝ(ϕ) =

∫ ∞
−∞

{∫ ∞
0

Ĝλ(t) dν(λ)

}
ϕ(t)dt

for all Schwartz functions ϕ supported on [−1, 1]c. Then there exists a unique
extremal minorant l(z) of exponential type 2π for g(x). The function l(x) in-
terpolates the values of g(x) at Z + 1

2 and satisfies∫ ∞
−∞
{g(x)− l(x)}dx =

∫ ∞
0

∫ ∞
−∞
{Gλ(x)− Lλ(x)} dx dν(λ).
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Theorem 2.11 (Distribution Theorem - Majorant). Let ν be a non-negative
Borel measure on [0,∞) satisfying∫ ∞

0

∫ ∞
−∞
{Mλ(x)−Gλ(x)} dx dν(λ) <∞.

Let g : R → R be a function of polynomial growth (thus an element of S ′(R))
that is continuous on R, differentiable on R/{0}, and such that

ĝ(ϕ) =

∫ ∞
−∞

{∫ ∞
0

Ĝλ(t) dν(λ)

}
ϕ(t)dt

for all Schwartz functions ϕ supported on [−1, 1]c. Then there exists a unique
extremal majorant m(z) of exponential type 2π for g(x). The function m(x)
interpolates the values of g(x) at Z and satisfies∫ ∞

−∞
{m(x)− g(x)} dx =

∫ ∞
0

∫ ∞
−∞
{Mλ(x)−Gλ(x)} dx dν(λ).

Similar results can be stated for the problem of majorizing or minorizing by
functions of exponential type 2πδ. It is a matter of changing the interpolation
points to δZ or δ(Z + 1

2 ), and changing the support intervals to [−δ, δ]c. For
simplicity, we will proceed in our exposition only with type 2π.

The condition

ĝ(ϕ) =

∫ ∞
−∞

{∫ ∞
0

Ĝλ(t) dν(λ)

}
ϕ(t)dt

for all Schwartz functions ϕ supported on [−δ, δ]c, that appears on the state-
ments of the theorems, asserts that the Fourier transform ĝ, which is a tempered
distribution, is actually given by a function

t 7→
∫ ∞

0

Ĝλ(t) dν(λ)

outside the interval [−δ, δ]. This is a typical behavior of functions with poly-
nomial growth, that might have the Fourier transform given by a singular part
supported on the origin plus an additional component given by a function out-
side the origin (e.g. the Fourier transform of − log |x| is given by (2|t|)−1 away
from the origin). It is clear in this context that the only information relevant for
the Beurling-Selberg extremal problem is knowledge of the Fourier transform of
the original function outside a compact interval.

Finally, we shall see that this method is quite powerful, producing most of
the previously known examples in the literature, and a wide class of new ones.
In particular, we will be able solve the extremal problem for functions such as

log |x|, |x|σ, − log

(
x2 + α2

x2 + β2

)
and 1− x arctan

(
1

x

)
.

where σ > −1 and 0 ≤ α < β. The last two of these functions will play an
important role in the applications to the theory of the Riemann zeta-function
developed in the next chapter.
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2.3.3 Proofs of Theorems 2.10 and 2.11
Here we give a detailed proof of Theorem 2.10. The proof of Theorem 2.11

follows the same general method. First we construct the extreme minorant.
Recall that

Dλ(x) = Gλ(x)− Lλ(x) ≥ 0.

Then for each x ∈ R we define the non-negative valued function

d(x) =

∫ ∞
0

Dλ(x)dν(λ). (2.52)

It may happen that the value of d(x) is +∞ at some points x. However, the
function x 7→ d(x) is integrable on R, because∫ ∞

−∞
d(x) dx =

∫ ∞
0

∫ ∞
−∞

Dλ(x) dx dν(λ) =

∫ ∞
0

D̂λ(0)dν(λ) <∞,

by the hypotheses of our theorem. Hence the Fourier transform d̂(t) is a con-
tinuous function given by

d̂(t) =

∫ ∞
−∞

d(x) e(−tx)dx =

∫ ∞
−∞

∫ ∞
0

Dλ(x) e(−tx)dν(λ) dx

=

∫ ∞
0

∫ ∞
−∞

Dλ(x) e(−tx) dx dν(λ) =

∫ ∞
0

D̂λ(t) dν(λ),

(2.53)

and for |t| ≥ 1 we have

d̂(t) =

∫ ∞
0

Ĝλ(t) dν(λ). (2.54)

Let U ∈ S ′(R) be the tempered distribution defined by

U(ϕ) =

∫ ∞
−∞
{g(x)− d(x)}ϕ(x)dx. (2.55)

We shall prove that the Fourier transform Û is supported on [−1, 1]. In fact,
for any ϕ ∈ S(R) with support in [−1, 1]c we have

Û(ϕ) = ĝ(ϕ)− d̂(ϕ)

=

∫ ∞
−∞

{∫ ∞
0

Ĝλ(t) dν(λ)

}
ϕ(t)dt−

∫ ∞
−∞

d̂(t)ϕ(t) dt = 0 ,

by (2.54) and the hypotheses of the theorem. By the Paley-Wiener theorem for
distributions we find that Û ∈ E ′(R), and therefore

z 7→ l(z) = Ûξ (e(ξz))

defines an entire function of exponential type 2π such that

U(ϕ) =

∫ ∞
−∞

l(x)ϕ(x)dx (2.56)
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for all ϕ ∈ S(R). From (2.55) and (2.56) we conclude that

d(x) = g(x)− l(x) ≥ 0 (2.57)

for almost all x ∈ R. In particular, we get∫ ∞
−∞
{g(x)− l(x)}dx =

∫ ∞
−∞

d(x) dx =

∫ ∞
0

D̂λ(0) dν(λ)

=

∫ ∞
0

∫ ∞
−∞
{Gλ(x)− Lλ(x)} dx dν(λ) <∞.

Next we consider the interpolation points. The Poisson summation formula
can be applied pointwise to Dλ, since it holds for the Gaussian Gλ and for the
minorant Lλ, which is a continuous integrable function of bounded variation.
This gives us

lim
N→∞

N∑
n=−N

Dλ(x+ n) = lim
N→∞

N∑
k=−N

D̂λ(k) e(xk). (2.58)

Since the minorant Lλ interpolates the Gaussian Gλ at Z+ 1
2 , we have Dλ

(
n+

1
2

)
= 0 for all n ∈ Z. Therefore we apply (2.58) at x = 1

2 , and use the classical
Paley-Wiener theorem. In this way we arrive at the identity

D̂λ(0) = −
∞∑

k=−∞
k 6=0

(−1)k Ĝλ(k). (2.59)

Now we define the function

d1(x) = g(x)− l(x).

We note that d1(x) is a non-negative, continuous function on R/{0} that is
equal almost everywhere to d(x) defined in (2.52), and thus in L1(R). Define a
periodic function p : R/Z→ R+ ∪ {∞} by

p(x) =
∑
n∈Z

d1(n+ x).

An application of Fubini’s theorem provides∫
R/Z

p(x) dx =

∫ ∞
−∞

d1(x) dx <∞ ,

and therefore p(x) ∈ L1(R/Z). Moreover, the Fourier coefficients of p(x) satisfy

p̂(k) = d̂1(k) = d̂(k)
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for all k ∈ Z. Convolution with the smoothing Féjer kernel

FN (x) =
1

N + 1

(
sinπ(N + 1)x

sinπx

)2

produces the pointwise identity

p ∗ FN (x) =

N∑
k=−N

(
1− |k|

N

)
p̂(k) e(xk)

= d̂(0) +

N∑
k=−N
k 6=0

(
1− |k|

N

)
d̂(k) e(xk)

= d̂(0) +

N∑
k=−N
k 6=0

(
1− |k|

N

) ∫ ∞
0

Ĝλ(k) dν(λ) e(xk)

= d̂(0) +

∫ ∞
0

{
N∑

k=−N
k 6=0

(
1− |k|

N

)
Ĝλ(k) e(xk)

}
dν(λ) ,

where we have used (2.54). In particular, at x = 1
2 we obtain

d̂(0) = p ∗ FN
(

1
2

)
+

∫ ∞
0

{
N∑

k=−N
k 6=0

(−1)k+1

(
1− |k|

N

)
Ĝλ(k)

}
dν(λ). (2.60)

Note that the integrand in (2.60) in non-negative since Ĝλ is radially decreas-
ing and we can group the terms in consecutive pairs. Moreover, it converges
absolutely to (2.59) as N → ∞. Therefore, an application of Fatou’s lemma
together with (2.53) gives us

d̂(0) ≥ lim inf
N→∞

p ∗ FN
(

1
2

)
+ lim inf

N→∞

∫ ∞
0

{
N∑

k=−N
k 6=0

(−1)k+1

(
1− |k|

N

)
Ĝλ(k)

}
dν(λ)

≥ lim inf
N→∞

p ∗ FN
(

1
2

)
+

∫ ∞
0

lim inf
N→∞

{
N∑

k=−N
k 6=0

(−1)k+1

(
1− |k|

N

)
Ĝλ(k)

}
dν(λ)

= lim inf
N→∞

p ∗ FN
(

1
2

)
+

∫ ∞
0

D̂λ(0) dν(λ)
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= lim inf
N→∞

p ∗ FN
(

1
2

)
+ d̂(0) ,

and since p ∗ FN (x) is non-negative we conclude that

lim inf
N→∞

p ∗ FN
(

1
2

)
= 0.

We now use the definition of p(x), Fubini’s theorem and Fatou’s lemma again
to arrive at

0 = lim inf
N→∞

p ∗ FN
(

1
2

)
= lim inf

N→∞

∫ 1

0

p(y)FN
(

1
2 − y

)
dy

= lim inf
N→∞

∫ 1

0

{∑
n∈Z

d1(n+ y)
}
FN
(

1
2 − y

)
dy

= lim inf
N→∞

∑
n∈Z

{∫ 1

0

d1(n+ y)FN
(

1
2 − y

)
dy
}

≥
∑
n∈Z

lim inf
N→∞

∫ 1

0

d1(n+ y)FN
(

1
2 − y

)
dy

=
∑
n∈Z

d1

(
n+ 1

2

)
,

(2.61)

where the last equality follows from the fact that d1(x) is continuous at the
points n + 1

2 , n ∈ Z. From (2.61) and the non-negativity of d1(x) we arrive at
the implication

d1

(
n+ 1

2

)
= 0⇒ g

(
n+ 1

2

)
= l
(
n+ 1

2

)
(2.62)

for all n ∈ Z. From (2.57) and the fact that g(x) is differentiable on R/{0} (by
hypothesis) we also have

g′
(
n+ 1

2

)
= l′

(
n+ 1

2

)
for all n ∈ Z.

Finally, we show that the integral is minimal and we establish uniqueness.
Assume that l̃(z) is a real entire function of exponential type 2π such that

l̃(x) ≤ g(x) (2.63)

for all x ∈ R, and suppose that {g(x) − l̃(x)} is integrable. In this case the
function

j(z) = l(z)− l̃(z)

has exponential type 2π and is integrable on R. Thus it has bounded variation
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and we can apply Poisson summation, together with (2.62) and (2.63), to get

ĵ(0) = lim
N→∞

N∑
n=−N

j
(
n+ 1

2

)
= lim
N→∞

N∑
n=−N

(
g
(
n+ 1

2

)
− l̃
(
n+ 1

2

))
≥ 0 .

(2.64)

This plainly verifies that∫ ∞
−∞
{g(x)− l̃(x)} dx ≥

∫ ∞
−∞
{g(x)− l(x)} dx ,

and establishes the minimality of the integral. If equality occurs in (2.64) we
must have

l̃
(
n+ 1

2

)
= g
(
n+ 1

2

)
= l
(
n+ 1

2

)
(2.65)

for all n ∈ Z. From (2.63) we also have

l̃ ′
(
n+ 1

2

)
= g′

(
n+ 1

2

)
= l′

(
n+ 1

2

)
(2.66)

for all n ∈ Z. The interpolation conditions (2.65) and (2.66) imply that

j
(
n+ 1

2

)
= j′

(
n+ 1

2

)
= 0

for all n ∈ Z. By an application of Theorem 1.12 (with an appropriate shift of
1
2 ), we conclude that the entire function j(z) is identically zero. This proves the
uniqueness of the extremal minorant l(z), and completes the proof.

In the proof of uniqueness in the majorant case, we will obtain

j′(n) = 0

for all n 6= 0, since the original function g(x) is not assumed to be differentiable
at the origin. An application of Theorem 1.12 shows that j′(0) = 0 (since j
must be integrable), and this leads to uniqueness.

2.3.4 Asymptotic analysis of the admissible measures
Recall that we are working with the family of Gaussian functions

Gλ(x) = e−πλx
2

,

where λ > 0 is a parameter. The Fourier transform t 7→ Ĝλ(t) is given by

Ĝλ(t) = λ−
1
2 e−πλ

−1t2 .
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In Theorems 2.1 and 2.2 we constructed, for each λ > 0, the extremal minorant
Lλ(z) and the extremal majorant Mλ(z) for Gλ(x). The values of the minimal
integrals are given by∫ ∞

−∞
{Gλ(x)− Lλ(x)} dx

= λ−
1
2

(
1− θ2

(
0, iλ−1

))
=

∞∑
n=−∞
n 6=0

(−1)n+1Ĝλ(n) ,
(2.67)

and ∫ ∞
−∞
{Mλ(x)−Gλ(x)} dx

= λ−
1
2

(
θ3

(
0, iλ−1

)
− 1
)

=

∞∑
n=−∞
n6=0

Ĝλ(n).
(2.68)

From the two expressions above and the transformation formulas (2.12) and
(2.13) we obtain the estimates∫ ∞

−∞
{Gλ(x)− Lλ(x)} dx =

{
O
(
λ−

1
2 e−πλ

−1)
as λ→ 0,

O
(
λ−

1
2

)
as λ→∞,

(2.69)

and ∫ ∞
−∞
{Mλ(x)−Gλ(x)} dx =

{
O
(
λ−

1
2 e−πλ

−1)
as λ→ 0,

O(1) as λ→∞.
(2.70)

In order to apply Theorems 2.10 and 2.11 we require that the integrals with
respect to ν of the functions of λ appearing in (2.67) and (2.68) are finite. The
estimates (2.69) and (2.70) show that this is a wide class of measures because
of the very fast decay when λ→ 0. One should compare this class of measures
with the ones used in [8], [9] and [19], to fully notice the improvement and power
of the Gaussian subordination method.

2.3.5 Examples
Positive definite functions

As a first application we present the following result.

Corollary 2.12. Let ν be a finite non-negative Borel measure on [0,∞) and
consider the function g : R→ R given by

g(x) =

∫ ∞
0

e−πλx
2

dν(λ) . (2.71)
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(i) There exists a unique extremal minorant l(z) of exponential type 2π for
g(x). The function l(x) interpolates the values of g(x) at Z+ 1

2 and satisfies∫ ∞
−∞
{g(x)− l(x)} dx =

∫ ∞
0

{ ∞∑
n=−∞
n 6=0

(−1)n+1Ĝλ(n)

}
dν(λ).

(ii) There exists a unique extremal majorant m(z) of exponential type 2π for
g(x). The function m(x) interpolates the values of g(x) at Z and satisfies∫ ∞

−∞
{m(x)− g(x)} dx =

∫ ∞
0

{ ∞∑
n=−∞
n 6=0

Ĝλ(n)

}
dν(λ).

Due to a classical result of Schoenberg [35, Theorems 2 and 3], a function
g : R→ R admits the representation (2.71) if and only if its radial extension to
RN is positive definite, for all N ∈ N, or equivalently if the function g

(
|x|1/2

)
is completely monotone. Recall that a function f(t) is completely monotone for
t ≥ 0 if

(−1)nf (n)(t) ≥ 0 for 0 < t <∞, and n = 1, 2, 3, . . . ,

and
f(0) = f(0+).

The last condition expresses the continuity of f(t) at the origin. Using this
characterization we arrive at the following interesting examples contemplated
by our Corollary 2.12.

Example 1. g(x) = e−α|x|
2r

, α > 0, and 0 < r ≤ 1.

Example 2. g(x) =
(
x2 + α2

)−β
, α > 0 and β > 0.

The first example shows that we can recover all the theory for the expo-
nential function g(x) = e−λ|x| developed in [8], [9] and [19], from the family
of Gaussian functions and the distribution theorems. The second example in-
cludes the Poisson kernel g(x) = 2λ/(λ2 + 4π2x2), λ > 0. Another application
of Corollary 2.12 yields the following example.

Example 3. g(x) = − log

(
x2 + α2

x2 + β2

)
, for 0 ≤ α < β.

Indeed, for 0 ≤ α < β consider the non-negative measure

dν(λ) =

{
e−πλα

2 − e−πλβ2
}

λ
dλ ,

and observe that

− log

(
x2 + α2

x2 + β2

)
=

∫ ∞
0

e−πλx
2

{
e−πλα

2 − e−πλβ2
}

λ
dλ . (2.72)
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When 0 < α < β this is a finite measure and we fall under the scope of Corollary
2.12. When α = 0, we still have g(x) integrable and thus its Fourier transform
(in the classical sense) is given by

ĝ(t) =

∫ ∞
0

Ĝλ(t)

{
1− e−πλβ2

}
λ

dλ .

Thus we still fall under the hypothesis of Theorem 2.10 to obtain an extremal
minorant in this case (note that an extremal majorant does not exist due to the
singularity at the origin). In particular, the values of the minimal integrals in
the one-sided approximations are given by∫ ∞

−∞

{
− log

(
x2 + α2

x2 + β2

)
− lα,β(x)

}
dx = 2 log

(
1 + e−2πα

1 + e−2πβ

)
,

if 0 ≤ α, and∫ ∞
−∞

{
mα,β(x) + log

(
x2 + α2

x2 + β2

)}
dx = 2 log

(
1− e−2πβ

1− e−2πα

)
,

if 0 < α.

Example 4. g(x) = 1− x arctan
(

1
x

)
.

One can consider the non-negative and finite measure given by

dν(λ) =

∫ 3/2

1/2

{
e−πλ(σ−1/2)2 − e−πλ

2λ

}
dσ dλ.

Using the fact that

g(x) = 1− x arctan

(
1

x

)
=

1

2

∫ 3/2

1/2

log

(
x2 + 1

x2 +
(
σ − 1

2

)2
)
dσ,

together with (2.72), we arrive at

g(x) = 1− x arctan

(
1

x

)
=

∫ ∞
0

e−πλx
2

dν(λ).

This was observed in [4] and shall be used when we consider bounds for S1(t) (the
antiderivative of the argument function S(t)) under the Riemann hypothesis, in
the next chapter.

Power functions

In this subsection we write s = σ + it for a complex variable, and we define
the meromorphic function s 7→ γ(s) by

γ(s) = π−s/2Γ
(s

2

)
.
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The function γ(s) is analytic on C except for simple poles at the points s =
0,−2,−4, . . . . It also occurs in the functional equation

γ(s)ζ(s) = γ(1− s)ζ(1− s), (2.73)

where ζ(s) is the Riemann zeta-function.

Lemma 2.13. Let 0 < δ and let ϕ(t) be a Schwartz function supported on
[−δ, δ]c. Then

s 7→
∫ ∞
−∞
|t|−s−1ϕ(t) dt (2.74)

defines an entire function of s, and the identity

γ(s+ 1)

∫ ∞
−∞
|t|−s−1ϕ(t) dt = γ(−s)

∫ ∞
−∞
|x|s ϕ̂(x) dx (2.75)

holds in the half-plane {s ∈ C : −1 < σ}. In particular, the function on the
right of (2.75) is analytic at the points s = 0, 2, 4, . . . .

Proof. Because ϕ(t) is supported in [−δ, δ]c, the function t 7→ |t|−s−1ϕ(t) is
integrable on R for all complex values s. Hence by Morera’s theorem the integral
on the right of (2.74) defines an entire function. The identity (2.75) holds in
the infinite strip {s ∈ C : −1 < σ < 0} by [39, Lemma 1, p. 117], and therefore
it holds in the half-plane {s ∈ C : −1 < σ} by analytic continuation. The left-
hand side of (2.75) is clearly analytic at each point of {s ∈ C : −1 < σ}, hence
the right-hand side of (2.75) is also analytic at each point of this half-plane.

Lemma 2.13 asserts that, for−1 < σ and σ 6= 0, 2, 4, ..., the Fourier transform
of the function x 7→ γ(−σ)|x|σ is given by the function

t 7→ γ(σ + 1)|t|−σ−1

outside the interval [−δ, δ]. We intend to apply the distribution theorems, and
towards this end, we consider the non-negative Borel measure νσ on [0,∞) given
by

dνσ(λ) = λ−
σ
2−1 dλ ,

and observe that we have∫ ∞
0

Ĝλ(t) dνσ(λ) = γ(σ + 1)|t|−σ−1. (2.76)

For −1 < σ, the measure νσ is admissible for the minorant problem according to
the asymptotics (2.69). For the majorant problem we shall require that 0 < σ,
according to the asymptotics (2.70).

Theorems 2.10 and 2.11 now apply. The values of the integrals in the follow-
ing corollary can be obtained using Theorems 2.1 and 2.2, and then applying
termwise integration to the series (2.7) and (2.8).
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Corollary 2.14. Let −1 < σ with σ 6= 0, 2, 4, ... and let

gσ(x) = γ(−σ)|x|σ.

(i) There exists a unique extremal minorant lσ(z) of exponential type 2π for
gσ(x). The function lσ(x) interpolates the values of gσ(x) at Z + 1

2 and
satisfies∫ ∞

−∞
{gσ(x)− lσ(x)}dx =

(
2− 21−σ)γ(1 + σ) ζ(1 + σ). (2.77)

(ii) If 0 < σ, there exists a unique extremal majorant mσ(z) of exponential
type 2π for gσ(x). The function mσ(x) interpolates the values of gσ(x) at
Z and satisfies∫ ∞

−∞
{mσ(x)− gσ(x)} dx = 2 γ(1 + σ) ζ(1 + σ). (2.78)

Corollary 2.14 provides a complete description of the extreme minorants and
extreme majorants associated to x 7→ |x|σ. For σ ≤ −1 these functions are not
integrable at the origin, and therefore no extremals exist, and for σ = 2k, k ∈
Z+, these functions are entire, have only polynomial growth, and therefore the
extremal problem is trivial. Previous results had been obtained in [8] and [9] for
the functions x 7→ |x|σ, −1 < σ < 1, and in [28] for the functions x 7→ |x|2k+1,
with k ∈ Z+.

Logarithm

We complete our list of applications (in the even case) with one additional
example that follows from the distribution theorems.

Corollary 2.15. Let α ≥ 0 and consider

x 7→ τα(x) = − log(x2 + α2).

(i) There exists a unique extremal minorant lα of exponential type 2π for τα.
The function lα interpolates the values of τα at Z + 1

2 , and satisfies∫ ∞
−∞
{τα(x)− lα(x)} dx = 2 log

(
1 + e−2πα

)
.

(ii) If 0 < α, there exists a unique extremal majorant mα of exponential type
2π for τα. The function mα interpolates the values of τα at Z, and satisfies∫ ∞

−∞
{mα(x)− τα(x)} dx = −2 log

(
1− e−2πα

)
.
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Proof. For 0 ≤ α we have the identity

− log(x2 + α2) =

∫ ∞
0

{
e−πλ(x2+α2) − e−πλ

}
λ

dλ . (2.79)

Let ϕ be a Schwartz function supported in [−δ, δ]c. An application of Fubini’s
theorem leads to the identity∫ ∞

−∞
− log(x2+α2) ϕ̂(x) dx

=

∫ ∞
−∞

{∫ ∞
0

{
e−πλ(x2+α2) − e−πλ

}
λ

dλ

}
ϕ̂(x)dx

=

∫ ∞
0

∫ ∞
−∞

{
e−πλ(x2+α2) − e−πλ

}
λ

ϕ̂(x) dx dλ

=

∫ ∞
0

{∫ ∞
−∞

Ĝλ(t)ϕ(t) dt
}
e−πλα

2

λ
dλ

=

∫ ∞
−∞

{∫ ∞
0

Ĝλ(t)
e−πλα

2

λ
dλ

}
ϕ(t)dt.

(2.80)

Equation (2.80) provides the Fourier transform of − log(x2 +α2) outside a com-
pact interval [−δ, δ]. We can therefore apply the distribution theorems (Theo-
rems 2.10 and 2.11) with measure ν on [0,∞) given by

dν(λ) =
e−πλα

2

λ
dλ.

According to the asymptotics (2.69) and (2.70), if α > 0 we can treat the two
one-sided approximation problems, and if α = 0 we can only treat the minorant
problem (which is in agreement with the fact that − log |x| is unbounded from
above). The special case of − log |x| (when α = 0) was first obtained in [8] and
[9].

2.4 The extremal problem for the truncated and
odd Gaussians

We know move in the direction of developing the analogous extremal theory for
the case of truncated and odd functions. This was carried out in the papers
[5] and [6]. We present here briefly the developments of [5], that deal with the
corresponding Gaussian subordination framework for the case of truncated and
odd functions.

We keep the notation for the Gaussian

x 7→ Gλ(x) = e−πλx
2
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and the theta functions defined in (2.6), (2.7) and (2.8). We consider here
the Beurling-Selberg extremal problem for the truncated Gaussian x 7→ G+

λ (x)
defined by

G+
λ (x) =

 Gλ(x) for x > 0,
1/2 for x = 0,
0 for x < 0,

and the odd Gaussian x 7→ Goλ(x) defined by

Goλ(x) =

 Gλ(x) for x > 0,
0 for x = 0,

−Gλ(x) for x < 0.

Recall that the Fourier transform of the Gaussian Gλ(x) = e−πλx
2

is given
by

Ĝλ(t) =

∫ ∞
−∞

e−2πitxGλ(x)dx = λ−1/2e−πλ
−1t2 ,

and, via contour integration, the Fourier transform of the truncated Gaussian
G+
λ (x) is shown to be

Ĝ+
λ (t) =

1

2
λ−1/2e−πλ

−1t2 +
t

iλ

∫ 1

0

e−πλ
−1t2(1−y2) dy. (2.81)

Define the following two entire functions of exponential type

L+
λ (z) =

sin2 πz

π2

∞∑
n=1

{
Gλ(n)

(z − n)2
+
G′λ(n)

z − n
− G′λ(n)

z

}
,

M+
λ (z) =

sin2 πz

π2

∞∑
n=1

{
Gλ(n)

(z − n)2
+
G′λ(n)

z − n
− G′λ(n)

z

}
+

sin2 πz

π2z2
.

Note that L+
λ and M+

λ are entire functions of exponential type 2π that interpo-
late the values of G+

λ and its derivative at Z\{0}. The following two theorems
provide the solution of the extremal problem for the truncated Gaussian.

Theorem 2.16 (Extremal minorant for the truncated Gaussian). The inequal-
ity

L+
λ (x) ≤ G+

λ (x)

holds for all real x. Let z 7→ L(z) be an entire function of exponential type at
most 2π which satisfies the inequality L(x) ≤ G+

λ (x) for all real x. Then∫ ∞
−∞

{
G+
λ (x)− L(x)

}
dx ≥ −θ3(0, iλ)

2
+

1

2
+

1

2
√
λ
, (2.82)

with equality if and only if L = L+
λ .
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Theorem 2.17 (Extremal majorant for the truncated Gaussian). The inequal-
ity

G+
λ (x) ≤M+

λ (x)

holds for all real x. Let z 7→ M(z) be an entire function of exponential type at
most 2π which satisfies the inequality G+

λ (x) ≤M(x) for all real x. Then∫ ∞
−∞

{
M(x)−G+

λ (x)
}
dx ≥ θ3(0, iλ)

2
+

1

2
− 1

2
√
λ
, (2.83)

with equality if and only if M = M+
λ .

The strategy for the proofs of the two theorems above is a decomposition
of these functions into integral representations analogous to those developed in
Section 2.2.2 for the Gaussian. The integrands will involve certain truncated
theta functions that turn out to be solutions of the heat equation, and the maxi-
mum principle for the heat operator is used to obtain the necessary inequalities.
The uniqueness part will follow from the interpolation properties at Z as done
in the proofs of Theorems 2.1 and 2.2. A simple dilation argument provides the
optimal approximations of exponential type 2πδ for any δ > 0. Since the proofs
of these results are rather lengthy and technical, we decided not to include them
here, and instead refer the interested reader to the original source [5].

Once we have established the solution of the extremal problem for the trun-
cated Gaussian as described in Theorems 2.16 and 2.17, we can easily derive
the solution of this problem for the odd Gaussian x 7→ Goλ(x). Observe that

Goλ(x) = G+
λ (x)−G+

λ (−x)

and define the entire functions

Loλ(z) = L+
λ (z)−M+

λ (−z),
Mo
λ(z) = M+

λ (z)− L+
λ (−z).

(2.84)

Theorems 2.16 and 2.17 imply that

Loλ(x) ≤ Goλ(x) ≤Mo
λ(x).

These functions preserve the interpolation properties at Z and are the extremal
minorant and majorant for the odd Gaussian, respectively. This follows by argu-
ments analogous to the proofs of Theorems 2.1 and 2.2, and plainly guarantees
the odd counterparts of all the results we present here for truncated functions.

2.5 Framework for truncated and odd functions

2.5.1 Integrating the free parameter
Having solved the Beurling-Selberg extremal problem for a family of func-

tions with a free parameter λ > 0, we are now interested in integrating this
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parameter against a set of admissible non-negative Borel measures ν on [0,∞)
to generate a new class of truncated (and odd) functions for which the extremal
problem has a solution.

We now determine the set of admissible measures ν. For the minorant prob-
lem, the minimal condition we must impose on the measure ν is that the function
on the right-hand side of (2.82) should be ν-integrable. The well-known asymp-
totics for the theta functions (given by the transformation formulas) lead us to
consider non-negative Borel measures ν on [0,∞) satisfying∫ ∞

0

1

1 +
√
λ
dν(λ) <∞. (2.85)

On the other hand, for the majorant problem, the minimal condition we must
impose on the measure ν is that the function on the right-hand side of (2.83)
should be ν-integrable. This is equivalent to the measure being finite, i.e.∫ ∞

0

dν(λ) <∞ . (2.86)

Define the truncation x0
+ by

x0
+ = 1

2 (1 + sgn(x))

and consider the truncated function g : R→ R given by

g(x) = x0
+

∫ ∞
0

e−πλx
2

dν(λ) .

We are now able to state the two main results of this section.

Theorem 2.18 (Extremal minorant - general truncated case). Let ν satisfy
(2.85). Then there exists a unique extremal minorant z 7→ l(z) of exponen-
tial type 2π for x 7→ g(x). The function l interpolates the values of g and its
derivative at Z\{0} and satisfies∫ ∞

−∞
{g(x)− l(x)} dx =

∫ ∞
0

{
−θ3(0, iλ)

2
+

1

2
+

1

2
√
λ

}
dν(λ).

Theorem 2.19 (Extremal majorant - general truncated case). Let ν satisfy
(2.86). Then there exists a unique extremal majorant z 7→ m(z) of exponential
type 2π for x 7→ g(x). The function m interpolates the values of g and its
derivative at Z\{0} and satisfies∫ ∞

−∞
{m(x)− g(x)}dx =

∫ ∞
0

{
θ3(0, iλ)

2
+

1

2
− 1

2
√
λ

}
dν(λ).

Observe that the class of measures allowed by (2.85) and (2.86) is more
restrictive than the class we worked in the even Gaussian problem, thus making
the method less powerful in this truncated/odd case (one might also see this from
the fact that we did not have to appeal to the Fourier space for the definition of
g(x)). When adapting Theorems 2.18 and 2.19 to the context of odd functions,
we must ask for the more restrictive condition (2.86), due to the construction
(2.84).
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2.5.2 Proofs of Theorems 2.18 and 2.19
We start with the minorant case, where we have seen by Theorem 2.16 that

L+
λ (z) =

sin2 πz

π2

∞∑
n=1

{
Gλ(n)

(z − n)2
+
G′λ(n)

z − n

}
− sin2 πz

π2z

∞∑
n=1

G′λ(n)

satisfies
L+
λ (x) ≤ G+

λ (x) (2.87)

for all x ∈ R, with
L+
λ (n) = G+

λ (n) (2.88)

if n ∈ Z/{0}, and
L+
λ (0) = lim

x→0−
G+
λ (x) = 0. (2.89)

We consider a non-negative Borel measure ν satisfying (2.85) and we need to
show that

l(z) =

∫ ∞
0

L+
λ (z)dν(λ)

is a well defined entire function of exponential type at most 2π. If this is
the case, by integrating expressions (2.87), (2.88) and (2.89) against ν, these
properties will be carried on to l(x) and g(x) =

∫∞
0
G+
λ (x) dν(λ) making l(x)

the unique extremal minorant of exponential type at most 2π for g(x) via the
same arguments used in the proof of Theorem 2.1.

For this purpose we need to collect some estimates. For n ∈ N using (2.85)
we have∫ ∞

0

Gλ(n) dν(λ) =

∫ 1

0

Gλ(n)dν(λ) +

∫ ∞
1

√
λGλ(n)

dν(λ)√
λ
≤ C1 +

C2

n
, (2.90)

and∫ ∞
0

∣∣G′λ(n)
∣∣ dν(λ) = 2π

∫ 1

0

λnGλ(n)dν(λ) + 2π

∫ ∞
1

λ3/2 nGλ(n)
dν(λ)√

λ

≤ C3

n
+
C4

n2
,

(2.91)

where C1, C2, C3 and C4 are positive constants depending exclusively on ν.

To analyze the remaining term observe that

λ1/2
∞∑
n=1

∣∣G′λ(n)
∣∣ =

∞∑
n=1

2π

n2
λ3/2 n3Gλ(n) ≤ C5

∞∑
n=1

2π

n2
,

which proves that
∑∞
n=1

∣∣G′λ(n)
∣∣ is O(λ−1/2

)
as λ → ∞. On the other hand,

using the arithmetic-geometric mean inequality and the fact that
∞∑
n=0

e−tn
2(

1− 2tn2
)
≥ 1

2
,
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obtained by differentiating both sides of the transformation formula (2.13), we
arrive at

∞∑
n=1

∣∣G′λ(n)
∣∣ =

∞∑
n=1

2πλnGλ(n) ≤
∞∑
n=1

π
{
λ3/2 n2 + λ1/2

}
Gλ(n)

≤ λ1/2

4
+
(

1
2 + π

)
λ1/2

∞∑
n=1

Gλ(n)

=
λ1/2

4
+
(

1
2 + π

)
λ1/2

(
θ3(0, iλ)− 1

2

)
.

We know θ3(0, iλ) → λ−1/2 as λ → 0, by the transformation formula (2.13).
Therefore we may conclude that

∑∞
n=1

∣∣G′λ(n)
∣∣ is O(1) as λ→ 0.

This shows that
∑∞
n=1

∣∣G′λ(n)
∣∣ is ν-integrable, and together with (2.90) and

(2.91) we can can move the integration inside the summation series since it
converges absolutely to obtain

l(z) =

∫ ∞
0

L+
λ (z) dν(λ)

=
sin2 πz

π2

∞∑
n=1

{∫∞
0
Gλ(n) dν(λ)

(z − n)2
+

∫∞
0
G′λ(n) dν(λ)

z − n

}

− sin2 πz

π2z

∫ ∞
0

∞∑
n=1

G′λ(n) dν(λ).

An application of Morera’s theorem shows that this is an entire function and
the exponential type 2π is given by the main term sin2 πz. The proof of the
majorizing case is analogous.

2.5.3 Examples
We highlight some interesting choices of non-negative Borel measures ν that

can be applied in Theorems 2.18 and 2.19 . We will mainly present the truncated
functions here. Similar examples can be given for the odd functions. The first
of these examples considers ν = δ (the Dirac delta). In this case we obtain the
following.

Example 1. g(x) = x0
+.

This reproves the classical extremal functions to the signum function contained
in [43, Theorems 4 and 8]. In our setting the values of the minimal integrals
can be found via the asymptotics of θ3(0, iλ).

More generally, as in the case of even functions, one can consider any finite
non-negative Borel measure ν on [0,∞). With the complete monotone charac-
terization of the positive definite functions (see Section 2.3.5) we arrive at the
following truncated and odd counterparts.
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Example 2. g(x) = x0
+ e
−α|x|2r , α > 0 and 0 ≤ r ≤ 1.

Example 3. g(x) = x0
+ (x2 + α2)−β , α > 0 and β > 0.

The family in Example 2 includes the truncated exponential g(x) = x0
+e
−λ|x|

treated in [19], while the family in Example 3 includes the truncated Poisson
kernel g(x) = x0

+[2λ/(λ2 + 4π2x2)]. Despite not knowing the exact expression
of the measures ν that produce these families, one can arrive at the value of the
minimal integral with the knowledge of the Fourier transforms of these functions
via Poisson summation.

Observe that the non-negative measure

dν(λ) =

{
e−πλα

2 − e−πλβ2
}

λ
dλ ,

for 0 ≤ α < β is a finite measure if 0 < α. If α = 0, then ν still satisfies (2.85),
and we can solve the minorant problem. This generates the following family.

Example 4. g(x) = −x0
+ log(x2 + α2)/(x2 + β2) , 0 ≤ α < β.

Finally, recall the definition of the meromorphic function s 7→ γ(s) by

γ(s) = π−s/2 Γ
(s

2

)
,

which is analytic on C except for simple poles at the points s = 0,−2 − 4, ...
The family of measures

dνσ(λ) = λ−
σ
2−1 dλ

satisfies (2.85) when −1 < σ < 0 and thus we can solve the minorant problem
for the truncated power functions they produce.

Example 5. g(x) = γ(−σ)x0
+ |x|σ, −1 < σ < 0.

We close this section with a particular example of an odd function that will
be relevant when we study the argument of the Riemann zeta-function in the
next chapter.

Example 6. g(x) = arctan

(
1

x

)
− x

1 + x2
.

In fact, it was observed in [4] that the measure

dν(λ) =

{∫ ∞
0

t

2
√
πλ3

e−
t2

4λ

(
1

t
sin
(√
πt
)
−
√
π cos

(√
πt
))

dt
}
dλ (2.92)

is non-negative, finite and verifies

g(x) = arctan

(
1

x

)
− x

1 + x2
= sgn(x)

∫ ∞
0

e−πλx
2

dν(λ). (2.93)
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Let us verify these facts. First we prove identity (2.93), for all x > 0. By
making the change of variables y =

√
πt and using Fubini’s theorem, we see

that the right-hand side of (2.93) is equal to

∫ ∞
0


∫ ∞

0

e−πλx
2− y2

4πλ

2πλ3/2
y dλ


(

sin y

y
− cos y

)
dy. (2.94)

Call W (x, y) the quantity inside the brackets in (2.94). To prove (2.93), it
suffices to show that W (x, y) = e−xy. For this, consider the change of variables
k =

√
2πxλ√
y which implies that

W (x, y) =

√
2xy√
π

e−xy
∫ ∞

0

e−
xy
2

(
k− 1

k

)2

k2
dk.

Now from the symmetry k → 1
k , we can rewrite the last expression as

W (x, y) =
1

2

√
2xy√
π

e−xy
∫ ∞

0

e−
xy
2

(
k− 1

k

)2
(

1 +
1

k2

)
dk.

Finally, from the change of variables w = k − 1
k , we arrive at

W (x, y) =
1

2

√
2xy√
π

e−xy
∫ ∞
−∞

e−
xy
2 w2

dw = e−xy.

This proves (2.93).

We now prove that the measure ν given by (2.92) is non-negative. We do so
by establishing that the density function

D(λ) =

∫ ∞
0

t

2
√
πλ3

e−
t2

4λ

(
1

t
sin(
√
πt)−

√
π cos(

√
πt)

)
dt

is non-negative for all λ > 0. Again, we make the variable change y =
√
πt and

obtain that

D(λ) =
1

2πλ3/2

∫ ∞
0

e−
y2

4πλ (sin y − y cos y)dy.

Setting πλ = a2, it suffices to prove that∫ ∞
0

e−
y2

4a2 (sin y − y cos y)dy ≥ 0

for all a > 0. Using integration by parts and the Fourier transform of the odd
Gaussian, we obtain that∫ ∞

0

e−
y2

4a2 (sin y − y cos y) dy =

{
(1 + 2a2)

∫ ∞
0

e−
y2

4a2 sin y dy
}
− 2a2

=

{
(1 + 2a2) 2a e−a

2

∫ a

0

ew
2

dw
}
− 2a2.
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We are left to prove that

h(a) =

∫ a

0

ew
2

dw − a ea
2

1 + 2a2
≥ 0

for all a ≥ 0. This follows from observing that h(0) = 0 and

h′(a) = ea
2

(
4a2

(1 + 2a2)2

)
≥ 0

for all a ≥ 0. This concludes the proof of the non-negativity of the measure.

Finally, we verify that ν is indeed a finite measure on (0,∞). In fact, note
that (2.93) and the monotone convergence theorem imply∫ ∞

0

dν(λ) = lim
x→0+

∫ ∞
0

e−πλx
2

dν(λ) = lim
x→0+

{
arctan

(
1

x

)
− x

x2 + 1

}
=
π

2
,

and this concludes the verification of the original claims.
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Chapter 3

Applications to the theory of
the Riemann zeta-function

3.1 Bounds under the Riemann hypothesis
After a brief introduction to the Beurling-Selberg extremal problem and

some of its recent advances in the previous chapter, our objective in this chapter
is to provide some applications of these extremal tools. Here we will focus our
attention on the interesting connection between some special functions and the
theory of the Riemann zeta-function. These special functions are the following:

f(x) = log

(
x2 + 1

x2

)
, (3.1)

g(x) = arctan

(
1

x

)
− x

1 + x2
, (3.2)

and
h(x) = 1− x arctan

(
1

x

)
. (3.3)

Throughout this chapter we fix this notation for f(x), g(x) and h(x), and recall
that we obtained in the previous chapter the solution of the Beurling-Selberg
extremal problem for these three functions.

Bernhard Riemann published his paper “Über die Anzahl der Primzahlen
unter einer gegebenen Grösse" in the Monatsberichte der Berliner Akademie in
November, 1859. There we find the statement that the function

ζ(s) =

∞∑
n=1

1

ns
,

initially defined for Re(s) > 1, and then suitably extended meromorphically to
the complex plane, “probably" has its complex zeros all aligned over the line
<(s) = 1/2.
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His hypothesis has not been proved until this day (despite the fact that
modern computers can verify that the first 1012 zeros are on the critical line),
but considerable effort has been put in order to understand the different objects
in the theory of the Riemann zeta-function assuming its validity.

For instance, J. E. Littlewood in 1924 [26] showed that under the Riemann
hypothesis (RH) we have the following estimate:

log
∣∣ζ( 1

2 + it
)∣∣ ≤ (C + o(1)

) log t

log log t
,

for sufficiently large t. This estimate was never improved in its order of mag-
nitude, and the advances have rather focused on diminishing the value of the
admissible constant C. In [34] Ramachandra and Sankaranarayanan obtained
C = 0.466, while in [38] Soundararajan improved this bound, obtaining C =
0.373. Recently, Chandee and Soundararajan in [10, Theorem 1] obtained an-
other improvement, currently the best bound, as shown below.

Theorem 3.1 (Upper bound for ζ(s) in the critical line). Assume RH. For
large real numbers t, we have

log
∣∣ζ( 1

2 + it
)∣∣ ≤ log 2

2

log t

log log t
+O

(
log t log log log t

(log log t)2

)
.

A generalization of this result to the critical strip 0 < <(s) < 1 was later
obtained by Carneiro and Chandee in [3, Theorem 1].

Another object of interest is the argument function defined by (here t > 0)

S(t) = 1
π arg ζ

(
1
2 + it

)
,

where the argument is defined by a continuous variation along the line segments
joining the points 2, 2 + it and 1

2 + it, taking arg ζ(2) = 0, if t is not an ordinate
of a zero of ζ(s). If t is an ordinate of a zero we set

S(t) = 1
2 lim
ε→0

{
S(t+ ε) + S(t− ε)

}
.

This function appears for instance when counting the number of zeros N(t) of
ζ(s) with imaginary ordinate in the interval [0, t]

N(t) =
t

2π
log

t

2π
− t

2π
+

7

8
+ S(t) +O

(
1

t

)
.

In the work [26] Littlewood also showed that under RH we have

|S(t)| ≤
(
C + o(1)

) log t

log log t
,

and, as in the case of the size of ζ
(

1
2 + it

)
, this estimate has not been improved

in its order of magnitude over the years. Efforts to bring down the value of the
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admissible constant C were carried out by Ramachandra and Sankaranarayanan
[34] who proved that C = 1.119 is admissible, and later by Fujii [13] who
obtained the result for C = 0.67.

The application of certain extremal functions of exponential type, that ma-
jorize and/or minorize the characteristic functions of intervals, to problems re-
lated to the theory of the Riemann zeta-function dates back to the works of
Montgomery [31] and Gallagher [14], on the pair correlation of zeros of ζ(s).
In [16] Goldston and Gonek were the first to realize a distinct connection be-
tween the Riemann hypothesis and these extremal functions, via the so called
Guinand-Weil explicit formula (the method we shall be presenting here). Us-
ing this connection they obtained the following bound [16, Theorem 2] for the
argument function

|S(t)| ≤
(

1

2
+ o(1)

)
log t

log log t
.

We shall present here a sharper version of this bound, recently obtained by
Carneiro, Chandee and Milinovich in [4, Theorem 2].

Theorem 3.2 (Bound for S(t)). Assume RH. For t sufficiently large we have

|S(t)| ≤ 1

4

log t

log log t
+O

(
log t log log log t

(log log t)2

)
.

Finally, another important function in the theory of the Riemann zeta-
function is the antiderivative of S(t) defined by

S1(t) =

∫ t

0

S(u) du.

There has been earlier work on establishing explicit bounds for S1(t). Littlewood
[26] was the first to prove that S1(t)� log t/(log log t)2 under the assumption of
the Riemann hypothesis. More recently, Karatsuba and Korolëv [23] obtained
that ∣∣S1(t)

∣∣ ≤ (40+o(1))
log t

(log log t)2
,

and Fujii [13] obtained that

− (0.51+o(1))
log t

(log log t)2
≤ S1(t) ≤ (0.32+o(1))

log t

(log log t)2
.

We present here the following improvement obtained in [4, Theorem 1].

Theorem 3.3 (Bounds for S1(t)). Assume RH. For t sufficiently large we have

−
( π

24
+o(1)

) log t

(log log t)2
≤ S1(t) ≤

( π
48

+o(1)
) log t

(log log t)2
,

where the terms o(1) in the above inequalities are O(log log log t/ log log t).
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The objective of this chapter is to prove the three theorems above. The
general strategy for their proofs is essentially the same. It consists of three main
steps: (i) expressing the considered object as a certain sum over the zeros of
ζ(s); (ii) making use of suitable extremal majorants/minorants of exponential
type; (iii) applying an appropriate explicit formula to evaluate the sums by
taking advantage of the compactly supported Fourier transforms. We shall see
in the next section how the functions f(x), g(x) and h(x) are naturally related
to Theorems 3.1, 3.2 and 3.3, respectively.

3.2 Representation lemmas and the explicit for-
mula

In this section we let

ξ(s) =
1

2
s(1− s)π−s/2Γ

(s
2

)
ζ(s)

be Riemann’s ξ-function. This function is an entire function of order 1 and
satisfies the functional equation

ξ(s) = ξ(1− s).

Hadamard’s factorization formula (cf. [12, Chapter 12]) gives us

ξ(s) = eA+Bs
∏
ρ

(
1− s

ρ

)
es/ρ,

where ρ = 1
2 + iγ runs over the non-trivial zeros of ζ(s). We have B =

−
∑
ρRe(1/ρ), with this sum being absolutely convergent. Under RH, γ is

real. For 1
2 ≤ α ≤

3
2 define

fα(x) = log

(
x2 + 1

x2 +
(
α− 1

2

)2
)
. (3.4)

Note that our f(x) initially defined in (3.1) is the same f1/2(x) defined above.

Lemma 3.4 (Representation for log |ζ(α + it)|). Assume RH and let fα(x) be
defined by (3.4), where 1

2 ≤ α ≤
3
2 . For large t we have

log |ζ(α+ it)| =
(

3

4
− α

2

)
log t− 1

2

∑
γ

fα(t− γ) +O(1), (3.5)

uniformly on α, where the sum runs over the non-trivial zeros ρ = 1
2 + iγ of

ζ(s).
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Proof. We apply Hadamard’s factorization formula at the points s = α+ it and
s = 3

2 + it and divide. The absolute convergence of the product allows us to
divide term by term to find∣∣∣∣∣ ξ(α+ it)

ξ
(

3
2 + it

) ∣∣∣∣∣ =
∏

ρ=1/2+iγ

(
(α− 1

2 )2 + (t− γ)2

1 + (t− γ)2

)1/2

,

and therefore

log |ξ(α+ it)| = log
∣∣ξ( 3

2 + it
)∣∣+

1

2

∑
γ

log

(
(α− 1

2 )2 + (t− γ)2

1 + (t− γ)2

)
. (3.6)

Recall Stirling’s formula for the Gamma function [12, Chapter 10]

log Γ(z) = 1
2 log 2π − z +

(
z − 1

2

)
log z +O

(
|z|−1

)
,

for large |z|. Using Stirling’s formula and the fact that
∣∣ζ( 3

2 + it
)∣∣ � 1 in (3.6),

we obtain (3.5).

Similar representations hold for the argument function S(t) and for the func-
tion S1(t), as reported in [4].

Lemma 3.5 (Representation for S(t)). Assume RH and let g(x) be defined by
(3.2). Then, for large t not coinciding with an ordinate of a zero of ζ(s), we
have

S(t) =
1

π

∑
γ

g(t− γ) +O(1), (3.7)

where the sum runs over the non-trivial zeros ρ = 1
2 + iγ of ζ(s).

Proof. For t not coinciding with an ordinate of a zero of ζ(s), we have

S(t) = − 1

π

∫ ∞
1
2

=ζ
′

ζ
(σ + it) dσ =

1

π

∫ 1
2

3
2

=ζ
′

ζ
(σ + it) dσ +O(1).

We now replace the integrand on the right-hand side of the above expression
by a sum over the non-trivial zeros of ζ(s). Let s = σ + it. If s is not a zero
of ζ(s), then the partial fraction decomposition for ζ ′(s)/ζ(s) (cf. [12, Chapter
12]) and Stirling’s formula

Γ′(z)

Γ(z)
= log z +O

(
|z|−1

)
, (3.8)

valid for large |z| with <(z) > 0, imply that

ζ ′

ζ
(s) =

∑
ρ

(
1

s− ρ
+

1

ρ

)
− 1

2

Γ′

Γ

(s
2

+ 1
)

+O(1)

=
∑
ρ

(
1

s− ρ
+

1

ρ

)
− 1

2
log t+O(1)

(3.9)
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uniformly for 1
2 ≤ σ ≤ 3

2 and t ≥ 2, where the sum runs over the non-trivial
zeros ρ of ζ(s). From (3.9) and the Riemann hypothesis, it follows that

S(t) =
1

π

∫ 1
2

3
2

=ζ
′

ζ
(σ + it)dσ +O(1)

=
1

π

∫ 1
2

3
2

=
(
ζ ′

ζ
(σ + it)− ζ ′

ζ
( 3

2 + it)

)
dσ +O(1)

=
1

π

∫ 3
2

1
2

∑
γ

{
(t− γ)

(σ − 1
2 )2 + (t− γ)2

− (t− γ)

1 + (t− γ)2

}
dσ +O(1)

=
1

π

∑
γ

∫ 3
2

1
2

{
(t− γ)

(σ − 1
2 )2 + (t− γ)2

− (t− γ)

1 + (t− γ)2

}
dσ +O(1)

=
1

π

∑
γ

{
arctan

(
1

(t− γ)

)
− (t− γ)

1 + (t− γ)2

}
+O(1)

=
1

π

∑
γ

g(t− γ) +O(1),

where the interchange of the integral and the sum is justified by dominated
convergence since g(x) = O(x−3). This proves the lemma.

Lemma 3.6 (Representation for S1(t)). Assume RH and let h(x) be defined by
(3.3). For large t we have

S1(t) =
1

4π
log t− 1

π

∑
γ

h(t−γ) +O(1),

where the sum runs over the non-trivial zeros ρ = 1
2 + iγ of ζ(s).

Proof. From [42, Theorem 9.9] we have

S1(t) =
1

π

∫ 3/2

1/2

log
∣∣ζ(α+ it)

∣∣ dα+O(1).

We replace the integrand by the absolutely convergent sum over the zeros of
ζ(s) given by Lemma 3.4 and integrate term-by-term to obtain

S1(t) =
1

4π
log t− 1

π

∑
ρ

h(t− γ) +O(1),

where the interchange between integration and sum is justified since all terms
are non-negative. Notice that we have used the fact that

h(x) = 1− x arctan

(
1

x

)
=

1

2

∫ 3/2

1/2

log

(
x2 + 1

x2 +
(
α− 1

2

)2
)
dα. (3.10)

This completes the proof of the lemma.
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We note the similarity of the representations obtained on Lemmas 3.4, 3.5
and 3.6. We were able to write each of our objects (initially a function of t) as
a simple function of t plus a sum over the zeros of ζ(s) plus a small error term.
Naturally the hard part to be analyzed is the sum over the zeros of ζ(s), but
fortunately for this matter we can invoke the following version of the Guinand-
Weil explicit formula [22, Theorem 5.12] which connects sums over the zeros of
ζ(s) to sums of the Fourier transforms evaluated at the prime powers.

Lemma 3.7 (Guinand-Weil explicit formula). Let Φ(s) be analytic in the strip
|=(s)| ≤ 1/2 + ε for some ε > 0, and assume that |Φ(s)| � (1 + |s|)−(1+δ)

for some δ > 0 when |<(s)| → ∞. Let Φ(x) be real-valued for real x, and set
Φ̂(ξ) =

∫∞
−∞ Φ(x) e−2πixξ dx. Then∑
ρ

Φ(γ) = Φ

(
1

2i

)
+ Φ

(
− 1

2i

)
− 1

2π
Φ̂(0) log π +

1

2π

∫ ∞
−∞

Φ(u)Re
Γ′

Γ

(
1

4
+
iu

2

)
du

− 1

2π

∞∑
n=2

Λ(n)√
n

(
Φ̂

(
log n

2π

)
+ Φ̂

(
− log n

2π

))
.

where Γ′/Γ is the logarithmic derivative of the Gamma function, and Λ(n) is
the von Mangoldt function defined as

Λ(n) =

{
log p if n = pm, p prime, m ≥ 1,

0 otherwise.

Observe however that we cannot apply the explicit formula to evaluate the
sum of our particular functions f , g and h over the zeros of ζ, since f has singu-
larities on the strip |=(s)| ≤ 1/2, g is not continuous and h is not differentiable
at the origin. To overcome this difficulty we adopt the following strategy:

(i) We want to replace each of our functions f , g and h by an appropriate ma-
jorant or minorant (to create an inequality), that satisfies the hypothesis
of the explicit formula (a real entire function, integrable on R).

Now that we believe we will be able to use the explicit formula, we might want
to choose which of its expressions we would like to “keep" or “simplify". For this
we will focus on two of its terms.

(ii) We will ask that the term Φ̂(0) for these majorants be as close as possible
to the original f̂(0), which is the same as saying that

∫
R{Φ−f}dx should

be minimal.

(iii) Finally, in order to simplify the sum of the Fourier transforms of over
prime powers, we will consider the instances in which this sum is finite,
i.e. Φ̂ has compact support.

With this framework we are essentially asking for the solution of the Beurling-
Selberg problem for each of the functions f , g and h.
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3.3 Extremal functions revisited
In this section we revisit the extremal function theory to state and prove

the main facts concerning the majorants/minorants of the functions f(x), g(x)
and h(x) in the precise format we need. Let us start with the minorants for
the function f(x), contemplated in the Gaussian subordination framework for
even functions in Chapter 2. Observe that there can be no discussion about real
entire majorants for this function because of its singularity at the origin.

Lemma 3.8 (Extremal minorants for f). Let 1 ≤ ∆ and f be defined by (3.1).
Then there is a unique real entire function m−∆ : C→ C satisfying the following
properties:

(i) For all real x we have

−C
1 + x2

≤ m−∆(x) ≤ f(x)

for some positive constant C. For any complex number x+ iy we have

∣∣m−∆(x+ iy)
∣∣� ∆2

1 + ∆|x+ iy|
e2π∆|y|.

(ii) The Fourier transform of m−∆, namely

m̂−∆(ξ) =

∫ ∞
−∞

m−∆(x) e−2πixξ dx,

is a continuous real-valued function supported on the interval [−∆,∆] and
satisfies ∣∣m̂−∆(ξ)

∣∣� 1

for each ξ ∈ [−∆,∆].

(iii) The L1-distance to f is given by∫ ∞
−∞

{
f(x)−m−∆(x)

}
dx =

2

∆

{
log 2− log

(
1 + e−2π∆

)}
.

Proof. (i) Observe that the desired function m−∆(x) we seek is the extremal
minorant of exponential type 2π∆ of f(x). To adjust to our work in Chapter 2
(done for exponential type 2π) we simply consider the function

F∆(x) := f
( x

∆

)
= log

(
x2 + ∆2

x2

)
.
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We do know (by Section 2.3.5 - Example 3) that such F∆ admits an minorant
of type 2π, that we shall call L∆(z), given by

L∆(z) =
(cosπz

π

)2 ∞∑
n=−∞

{
F∆

(
n− 1

2

)(
z − n+ 1

2

)2 +
F ′∆
(
n− 1

2

)(
z − n+ 1

2

)} ,
=

∞∑
n=−∞

(
sinπ

(
z − n+ 1

2

)
π
(
z − n+ 1

2

) )2{
f

(
n− 1

2

∆

)
+

(
z − n+ 1

2

)
∆

f ′
(
n− 1

2

∆

)}
.

(3.11)

For any complex number ξ we have(
sin(πξ)

πξ

)2

� e2π|=(ξ)|

1 + |ξ|2
,

and we also have f(x) ≤ 1/x2 and |f ′(x)| ≤ 2/(|x|(x2 + 1)) for real x. From
(3.11) we conclude that∣∣L∆(x+ iy)

∣∣ ≤ ∆2

1 + |x+ iy|
e2π|y|. (3.12)

Since f(x) ≥ 0 and f ′(−x) = −f ′(x), by pairing the terms n ≥ 1 with the terms
1− n ≤ 0 in the sum (3.11) we find, for x ∈ R, that

L∆(x) ≥
∞∑
n=1

(
sinπ

(
x− n+ 1

2

)
π
(
x2 −

(
n− 1

2

))2
)2

2
(
n− 1

2

)
∆

f ′
(
n− 1

2

∆

)
, (3.13)

and from this we can deduce that there is a constant C such that

− C ∆2

∆2 + x2
≤ L∆(x) ≤ F∆(x). (3.14)

We now consider m−∆(z) = L∆(∆z). Part (i) of the lemma plainly follows from
(3.12) and (3.14).

(ii) We know that m−∆ is an (even) entire function of exponential type 2π∆
that is uniformly integrable on R (with integral independent of the parameter
∆ ≥ 1, by part (i)). From the Paley-Wiener theorem we have that m̂−∆ is a
continuous real-valued function supported on the interval [−∆,∆] and satisfies∣∣m̂−∆(ξ)

∣∣� 1

for each ξ ∈ [−∆,∆].

(iii) Recall from Section 2.3.5 - Example 3 that∫ ∞
−∞
{F∆(x)− L∆(x)} dx = 2

{
log 2− log

(
1 + e−2π∆

)}
.

A simple change of variables x 7→ ∆x gives the desired result.
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The proofs of next two lemmas are similar to the previous one and are
omitted here. The interested reader can check the details in [4, Lemmas 6 and
8].

Lemma 3.9 (Extremal functions for g). Let 1 ≤ ∆ and g be defined by (3.2).
Then there are unique real entire functions m+

∆ : C → C and m−∆ : C → C
satisfying the following properties:

(i) For all real x we have

−C
1 + x2

≤ m−∆(x) ≤ g(x) ≤ m+
∆(x) ≤ C

1 + x2
,

for some positive constant C. For any complex number x+ iy we have∣∣m±∆(x+ iy)
∣∣� ∆2

1 + ∆|x+ iy|
e2π∆|y|.

(ii) The Fourier transforms of m±∆ are continuous functions supported on the
interval [−∆,∆] and satisfy ∣∣m̂±∆(ξ)

∣∣� 1

for each ξ ∈ [−∆,∆].

(iii) The L1-distances to g are given by∫ ∞
−∞

{
m+

∆(x)− g(x)
}
dx =

∫ ∞
−∞

{
g(x)−m−∆(x)

}
dx =

π

2∆
.

Lemma 3.10 (Extremal functions for h). Let 1 ≤ ∆ and h be defined by (3.3).
Then there are unique real entire functions m+

∆ : C → C and m−∆ : C → C
satisfying the following properties:

(i) For all real x we have

−C
1 + x2

≤ m−∆(x) ≤ h(x) ≤ m+
∆(x) ≤ C

1 + x2
,

for some positive constant C. For any complex number x+ iy we have∣∣m±∆(x+ iy)
∣∣� ∆2

1 + ∆|x+ iy|
e2π∆|y|.

(ii) The Fourier transforms of m±∆ are continuous real-valued functions sup-
ported on the interval [−∆,∆] and satisfy∣∣m̂±∆(ξ)

∣∣� 1

for each ξ ∈ [−∆,∆].

68



(iii) The L1-distances to h are given by∫ ∞
−∞

{
h(x)−m−∆(x)

}
dx

=

∫ 3/2

1/2

1

∆

{
log
(
1 + e−(2σ−1)π∆

)
− log

(
1 + e−2π∆

)}
dσ,

and∫ ∞
−∞

{
m+

∆(x)− h(x)
}
dx

=

∫ 3/2

1/2

1

∆

{
log
(
1− e−2π∆

)
− log

(
1− e−(2σ−1)π∆

)}
dσ.

3.4 Proofs of the main theorems
We now make use of the extremal functions described on the last section,

together with the representation formulas to provide the proofs of the main
theorems.

3.4.1 Proof of Theorem 3.1
With f defined by (3.1) andm−∆ defined as in Lemma 3.8, we can use Lemma

3.4 to obtain

log
∣∣ζ( 1

2 + it
)∣∣ =

1

2
log t− 1

2

∑
γ

f(t− γ) +O(1)

≤ 1

2
log t− 1

2

∑
γ

m−∆(t− γ) +O(1).

(3.15)

We now apply the explicit formula (Lemma 3.7) with Φ(z) = m−∆(t− z). In this
context we have Φ̂(ξ) = m̂−∆(−ξ)e−2πiξt and therefore∑

ρ

m−∆(t− γ) =
{
m−∆

(
t− 1

2i

)
+m−∆

(
t+ 1

2i

)}
− 1

2π
m̂−∆(0) log π

+
1

2π

∫ ∞
−∞
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Γ′
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(
1

4
+
iu

2

)
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− 1
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∞∑
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Λ(n)√
n

{
n−it m̂−∆

(
− log n

2π

)
+ nit m̂−∆

(
log n

2π

)}
.

(3.16)

Let us split this sum into four terms and quote each of these separately.
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First term. From Lemma 3.8 (i) we see that

∣∣m−∆(t− 1
2i

)
+m−∆

(
t+ 1

2i

)∣∣� ∆2

1 + ∆t
eπ∆. (3.17)

Second term. From Lemma 3.8 (ii) we have∣∣m̂−∆(0)
∣∣� 1. (3.18)

Third term. Using Stirling’s formula (3.8), Lemma 3.8 (i) and (iii), and the fact
that

∫∞
−∞ f(x) dx = 2π we have

1

2π

∫ ∞
−∞

m−∆(t− u) <
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+
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= log t− log t

π∆
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2

1 + e−2π∆

)
+O(1).

(3.19)

Fourth term. Finally, we use the fact that the Fourier transform of m−∆ is
compactly supported on the interval [−∆,∆], as given in Lemma 3.8 (ii), to
bound the sum over the prime powers∣∣∣∣∣ 1

2π

∞∑
n=2

Λ(n)√
n

{
n−itm̂−∆

(
− log n
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≤ 1
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�
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� eπ∆,

(3.20)

where the last expression was evaluated via summation by parts.

Conclusion. Combining expressions (3.15)-(3.20) we arrive at

log
∣∣ζ( 1

2 + it
)∣∣ ≤ log t

2π∆
log

(
2

1 + e−2π∆

)
+O

(
∆2eπ∆

(1 + ∆t)
+ eπ∆ + 1

)
. (3.21)

Until now we did all of our estimates without prescribing any particular value
for ∆. It turns out that the choice

π∆ = log log t− 3 log log log t

in (3.21) concludes the proof of Theorem 3.1.
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3.4.2 Proof of Theorem 3.2
This follows by a very similar argument. With g defined as in (3.2), and m±∆

defined as in Lemma 3.9, we can use Lemma 3.5 to obtain

1

π

∑
γ

m−∆(t− γ) +O(1)

≤ S(t) =
1

π

∑
γ

g(t− γ) +O(1) ≤ 1

π

∑
γ

m+
∆(t− γ) +O(1).

We then use the explicit formula with m±∆ and bound the first, second and
fourth terms as done in the proof of Theorem 3.1, now using Lemma 3.9. For
the third term we use Stirling’s formula (3.8), Lemma 3.9 (i) and (iii), and the
fact that

∫∞
−∞ g(x) dx = 0 to get

1
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We thus arrive at

|S(t)| ≤ log t

4π∆
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(
∆2eπ∆

(1 + ∆t)
+ eπ∆ + 1

)
.

and again it is just a matter of choosing π∆ = log log t−3 log log log t to conclude
the proof of Theorem 3.2.

3.4.3 Proof of Theorem 3.3
Let h be defined as in (3.3), andm±∆ defined as in Lemma 3.10. From Lemma

3.6 we have

1

4π
log t− 1

π

∑
γ

m+
∆(t−γ) +O(1)

≤ S1(t) =
1

4π
log t− 1

π
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h(t−γ) +O(1)

≤ 1

4π
log t− 1

π

∑
γ

m−∆(t−γ) +O(1).

Once more we apply the explicit formula with m±∆ and bound the first, second
and fourth terms as done in the proof of Theorem 3.1, now using Lemma 3.10.

71



For the third term we use Stirling’s formula (3.8), Lemma 3.10 (i) and (iii), and
the fact that ∫ ∞

−∞
h(x) dx =

π

2

to get

1

2π

∫ ∞
−∞

m−∆(t− u)<
[

Γ′

Γ

(
1

4
+
iu

2

)]
du

=
1

2π

∫ ∞
−∞

m−∆(u)
(

log t+O
(

log(2+|u|)
))

du

=
1

4
log t− log t

2π∆

∫ 3/2

1/2

(
log
(
1 + e−(2σ−1)π∆

)
− log

(
1 + e−2π∆

))
dσ +O(1)

≥ 1

4
log t− log t

2π∆

∫ ∞
1/2

log
(
1 + e−(2σ−1)π∆

)
dσ +O(1)

=
1

4
log t− log t

2π2∆2

∫ ∞
0

log
(
1 + e−2α

)
dα+O(1).

Now observe that (cf. [17, §4.291])∫ ∞
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Therefore, by combining these estimates, we arrive at
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Choosing π∆ = log log t− 3 log log log t in the inequality above gives us
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,

which is the upper bound for S1(t) stated in Theorem 3.3. To prove the lower
bound we proceed similarly by observing that
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We now invoke the identity (cf. [17, §4.291])∫ ∞
0

log
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to arrive at
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Finally, choosing π∆ = log log t− 3 log log log t in the inequality above gives us
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and this completes the proof of Theorem 3.3.
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