
Lecture 3:
Controllability results for other

time-dependent PDEs

Abstract

This Lecture is devoted to present some controllability results for several time-dependent,
mainly nonlinear, parabolic systems of PDEs. First, we will revisit the heat equation and
some extensions. Then, we will consider several nonlinear systems from fluid mechanics:
Burgers, Navier-Stokes, Boussinesq, micropolar, etc. Finally, some controllability results
will be presented for systems governed by stochastic PDEs. Along this Lecture, several open
questions will be stated.

1 Introduction. Recalling general ideas

Let us first give some general ideas, many of them already visited in the previous Lecture.
Suppose that we are considering an abstract state equation of the form

(1)

{
yt −A(y) = Bv, t ∈ (0, T ),
y(0) = y0,

which governs the behavior of a physical system. It is assumed that

• y : [0, T ] 7→ H is the state, i. e. the variable that serves to identify the physical properties
of the system,

• v : [0, T ] 7→ U is the control, i.e. the variable we can choose (for simplicity, we assume that
U and H are Hilbert spaces),

• A : D(A) ⊂ H 7→ H is a (generally nonlinear) operator with A(0) = 0, B ∈ L(U ;H) and
y0 ∈ H.

Suppose that (22) is well-posed in the sense that, for each y0 ∈ H and each v ∈ L2(0, T ;U),
it possesses exactly one solution. Then the null controllability problem for (22) can be stated as
follows:



For each y0 ∈ H, find v ∈ L2(0, T ;U) such that the corresponding solution of (22)
satisfies y(T ) = 0.

More generally, the exact controllability to the trajectories problem for (22) is the following:

For each free trajectory y : [0, T ] 7→ H and each y0 ∈ H, find v ∈ L2(0, T ;U) such
that the corresponding solution of (22) satisfies y(T ) = y(T ).

Here, by a free or uncontrolled trajectory we mean any (sufficiently regular) function y :
[0, T ] 7→ H satisfying y(t) ∈ D(A) for all t and

yt −A(y) = 0, t ∈ (0, T ).

Notice that exact controllability to the trajectories is a very useful property from the view-
point of applications: if we can find a control such that y(T ) = y(T ), then after time T we can
switch off the control and let the system follow the “ideal” trajectory y.

For each system of the form (22), these problems lead to several interesting questions. Among
them, let us mention the following:

• First, are there controls v such that y(T ) = 0 and/or y(T ) = y(T )?

• Then, if this is the case, which is the cost we have to pay to drive y to zero and/or y(T )?
In other words, which is the minimal norm of a control v ∈ L2(0, T ;U) satisfying these
properties?

• How can these controls be computed?

As indicated in Lecture 2, the controllability of differential systems is a very relevant area of
research and has been the subject of a lot of work the last years. In particular, in the context
of partial differential equations, the null controllability problem was first analyzed in [46, 47,
40, 41, 35, 38]. For semilinear systems of this kind, the first contributions have been given
in [37, 49, 16, 29].

In this Lecture, I will consider several linear and nonlinear parabolic PDEs. First, we will
recall the results satisfied by the classical heat equation in a bounded N -dimensional domain,
complemented with appropriate initial and boundary-value conditions. Secondly, we will deal
with similar stochastic PDEs. We will then consider the viscous Burgers equation. We will
see that, for this PDE, the null controllability problem (with distributed and locally supported
control) is well understood.1 We will also consider the Navier-Stokes and Boussinesq equations
and some other systems from mechanics. Several open problems will also be indicated.

1 More precisely, if we denote by T ∗(r) the minimal time needed to drive any initial state with L2 norm ≤ r
to zero, we will show that T ∗(r) > 0, with explicit sharp estimates from above and from below.
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2 The classical heat equation. Observability and Carleman es-
timates

Let us consider the following control system for the heat equation:

(2)


yt −∆y = v1ω, (x, t) ∈ Ω× (0, T ),
y(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
y(x, 0) = y0(x), x ∈ Ω.

Here, we conserve the notation of Lecture 2. In particular, Ω ⊂ RN is a nonempty regular
and bounded domain, ω ⊂⊂ Ω is a (small) nonempty open subset (1ω is the characteristic
function of ω) and y0 ∈ L2(Ω).

It is well known that, for every y0 ∈ L2(Ω) and every v ∈ L2(ω × (0, T )), there exists a
unique solution y to (2), with y ∈ L2(0, T ;H1

0 (Ω)) ∩ C0([0, T ];L2(Ω)).
In view of the results in Lecture 2, (2) is approximate, E-approximate and null controllable.
Also, if we introduce for each ϕ0 ∈ L2(Ω) the adjoint system

(3)


−ϕt −∆ϕ = 0, (x, t) ∈ Ω× (0, T ),
ϕ(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
ϕ(x, T ) = ϕ0(x), x ∈ Ω,

we know that the null controllability of (2) is equivalent to the observability of (3), that is, to
the following estimate:

(4) ‖ϕ(·, 0)‖2L2 ≤ C
∫∫

ω×(0,T )
|ϕ|2 dx dt ∀ϕ0 ∈ L2(Ω)

(where C only depends on Ω, ω and T ).
We have already seen that he estimate (4) is implied by the so called global Carleman

inequalities. These have been introduced in the context of the controllability of PDEs by Fursikov
and Imanuvilov; see [35, 29] When they are applied to the solutions of the adjoint system (3),
they take the form

(5)

∫∫
Ω×(0,T )

ρ−2 |ϕ|2 dx dt ≤ K
∫∫

ω×(0,T )
ρ−2 |ϕ|2 dx dt ∀ϕ0 ∈ L2(Ω),

where ρ = ρ(x, t) is an appropriate weight depending on Ω, ω and T and the constant K only
depends on Ω and ω.2 Combining (5) and the dissipativity of the backwards heat equation (3),
it is not difficult to deduce (4) for some C only depending on Ω, ω and T .

Since (2) is linear, null controllability is equivalent in this case to exact controllability to the
trajectories. This means that, for any uncontrolled solution y and any y0 ∈ L2(Ω), there exists
v ∈ L2(ω × (0, T )) such that the associated state y satisfies

y(x, T ) = y(x, T ) in Ω.

2 In order to prove (5), we have to use a weight ρ that blows up as t → 0 and also as t → T , for instance
exponentially.
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Remark 2.1 Notice that the null controllability of (2) holds for any ω and T . This is a conse-
quence of the fact that, in a parabolic equation, the transmission of information is instantaneous.
Recall that this was not the case for the wave equation. Again, this is not the case for the trans-
port equation. Thus, let us consider the control system

(6)


yt + yx = v1ω, (x, t) ∈ (0, L)× (0, T ),
y(0, t) = 0, t ∈ (0, T ),
y(x, 0) = y0(x), x ∈ (0, L),

with ω = (a, b) ⊂⊂ (0, L). Then, if 0 < T < a, null controllability does not hold, since the
solution always satisfies

y(x, T ) = y0(x− T ) ∀x ∈ (T, a),

independently of the choice of v; see [12] for more details and similar results concerning other
control systems for the wave, Schrödinger and Korteweg-De Vries equations.

There are many generalizations and variants of the previous argument that provide the null
controllability of other similar linear (parabolic) state equations:

• Time-space dependent (and sufficiently regular) coefficients can appear in the equation,
other boundary conditions can be used, boundary control (instead of distributed control)
can be imposed, etc.; see [29]; see also [19] for a review of related results.

• The null controllability of Stokes-like systems of the form

(7) yt −∆y + (a · ∇)y + (y · ∇)b+∇p = v1ω, ∇ · y = 0,

where a and b are regular enough, can also be analyzed with these techniques. See for in-
stance [22]; see also [15] for other controllability properties. We will come back in Section 5
to systems of this kind.

• Other linear parabolic (non-scalar) systems can also be considered, etc.

However, there are several interesting problems related to the controllability of linear parabolic
systems that still remain open. Let us mention two of them.

First, let us consider the controlled system

(8)


yt −∇ · (a(x)∇y) = v1ω, (x, t) ∈ Ω× (0, T ),
y(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
y(x, 0) = y0(x), x ∈ Ω,

where y0 and v are as before and the coefficient a is assumed to satisfy

(9) a ∈ L∞(Ω), 0 < a0 ≤ a(x) ≤ a1 < +∞ a.e.
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It is natural to consider the null controllability problem for (8). Of course, this is equivalent
to the observability of the associated adjoint system

(10)


−ϕt −∇ · (a(x)∇ϕ) = 0, (x, t) ∈ Ω× (0, T ),
ϕ(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
yϕ(x, T ) = ϕ1(x), x ∈ Ω,

that is to say, to the fact that an inequality like (4) holds for the solutions to (10).
To our knowledge, it is at present unknown whether (8) is null controllable. In fact, it is also

unknown whether approximate controllability holds.
Recently, some partial results have been obtained in this context.
Thus, when N = 1, the null controllability of (8) has been established in [1] for general a sat-

isfying (9). The techniques in the proof rely on the theory of quasi-conformal complex mappings
and can be applied only to the one-dimensional case, with a independent of t. Furthermore,
they only serve to apply directly the Lebeau-Robbiano method (recall the proof of theorem 2.2
in Lecture 2), that is, they do not lead to a Carleman estimate of the form (5).

When N ≥ 2, it is known that (8) is null controllable under the following assumption

(11) ∃ smooth open set Ω0 ⊂⊂ Ω such that a is C1 in Ω0 and Ω \ Ω0.

This has been proved in [39]. A slight improvement has been performed in [9], where Ω0 is
allowed to touch the boundary of Ω. Again, the proofs use that a is independent of t in an
essential way and do not clarify whether (5) holds.

In fact, it is an open question whether a Carleman estimate like (5) holds for the solutions
to (10) even if N = 1 or (11) holds.

In order to have (5), we need more regularity for a; see [8] for a proof when N = 1, a satisfies
(9) and

(12) a ∈ BV (Ω);

see also [14] for a proof when N ≥ 2, a is piecewise C1 and satisfies (9) and some additional
conditions.

At present, the following questions are open:

• Is (8) is null controllable when N ≥ 2 and a satisfies (9) and (12)? Is (5) satisfied in this
case?

• Is (5) satisfied when N = 1 and a only satisfies (9)?

QUESTION 1: Assume that N = 1 and a is piecewise constant and satisfies (9). Is (8) approx-
imaely controllable?

A similar question can be asked when N ≥ 2. Which is the rigorous question and which is
the answer?
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Our second open problem concerns the system

(13)


yt −D∆y = My +Bv1ω, (x, t) ∈ Ω× (0, T ),
y(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
y(x, 0) = y0(x), x ∈ Ω,

where y = (y1, . . . , yn) is the state, v = (v1, . . . , vm) is the control and D, M and B are constant
matrices, with D,M ∈ L(Rn;Rn) and B ∈ L(Rm;Rn). It is assumed that D is definite positive,
that is,

(14) Dξ · ξ ≥ d0|ξ|2 ∀ξ ∈ Rn, d0 > 0.

When D is diagonal (or similar to a diagonal matrix), the null controllability problem for
(13) is well understood. In view of the results in [2], (13) is null controllable if and only if

(15) rank [(−λiD +M);B] = n ∀i ≥ 1,

where the λi are the eigenvalues of the Dirichlet-Laplace operator and, for any matrix H ∈
L(Rn;Rn), [H;B] stands for the n× nm matrix

[H;B] := [B|HB| · · · |Hn−1B].

Therefore, it is natural to search for (algebraic) conditions on D, M and B that ensure the
null controllability of (13) in the general case. But, to our knowledge, this is unknown.

The results in [2] have been extended recently to the case of any D having no eigenvalue of
geometric multiplicity > 4; see [18].

QUESTION 2: Under which conditions the system

(16)


yt −D∆y = M(x, t)y +Bv1ω, (x, t) ∈ Ω× (0, T ),
y(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
y(x, 0) = y0(x), x ∈ Ω,

where D is a diagonal matrix satisfying (14), M ∈ L∞(Q;L(Rn;Rn)) and B ∈ L(Rm;Rn), is
null controllable?

Remark 2.2 As we have said, global Carleman estimates are the main tool we can use to
establish the observability property (4). These open questions can be viewed, at least in part,
as consequences of the limitations of Carleman estimates: first, they need regular coefficients;
then, they are in fact a tool proper of scalar equations.
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3 Some remarks on the controllability of stochastic PDEs

In this Section, we deal briefly with a system governed by a linear stochastic partial differential
equation:

(17)


yt −∆y = v1ω +B(t) ẇt in Q,
y = 0 on Σ,
y(x, 0) = y0(x) in Ω.

Here, v is again the control and ẇt is a Gaussian random field (white noise in time). For
instance, it can be regarded as the distributional time derivative of a Wiener process wt . The
equations are required to be satisfied P − a.e., i.e. P -almost surely, in a given probability space
{Λ,F , P}.

In the sequel, we are going to see that, for general y0, y1 and B = B(t), one can obtain
final states y(·, T ) arbitrarily close to y1 in quadratic mean by choosing v appropriately (an
approximate controllability result). We will also see that, if B is not random and in some sense
small, then one can also choose v such that y(·, T ) = 0 (a null controllability result).

3.1 Some basic results from probability calculus

In order to present the results without too much ambiguity, we will first recall some basic
definitions and results.

Thus, assume that a complete probability space {Λ,F , P} is given. If X is a Banach space
and f ∈ L1(Λ,F ;X), we will denote by Ef the expectation of f :

Ef =

∫
Λ
f(λ) dP (λ).

Assume that a separable Hilbert space K and a Wiener process wt on {Λ,F , P} with values
in K are given. This means that

wt =
∞∑
k=1

βkt ek ∀t ≥ 0,

where {ek} is an orthonormal basis in K and the βkt are mutually independent real Wiener
processes satisfying

(18) E|βkt |2 = µ2
kt,

∞∑
k=1

µ2
k < +∞.

Roughly speaking, a normalized real Wiener process βt is a measurable function (λ, t) 7→
βt(λ) which is defined P − a.s. in Λ for all t ∈ R+ and satisfies the following:

(a) β0 = 0,
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(b) For each t, βt is normally distributed, with mean 0 and variance t,

(c) E(βt βs) =
√
t
√
s for all t, s ≥ 0.

For other equivalent definitions and basic properties of real Wiener processes, see [4]. Recall
that, in particular, the real processes βkt and the K-valued process wt have Hölder-continuous
sample paths t 7→ βkt (λ) and t 7→ wt(λ).

In the sequel, we put
Ft := σ(ws, 0 ≤ s ≤ t )

(Ft is the σ-algebra spanned by ws for 0 ≤ s ≤ t and completed with the negligeable sets in F).
Obviously, {Ft} is an increasing family of sub σ-algebras of F and, among other things, one has:

(19) Ft = σ

(⋃
s<t

Fs

)
∀t > 0.

Let H be a Hilbert space. For any f ∈ L1(Λ,F ;H), we denote by E[f |Ft] the conditional
expectation of f with respect to Ft , i.e. the unique element in L1(Λ,Ft;H) such that∫

A
E[f |Ft] dP =

∫
A
f dP ∀A ∈ Ft

The existence and uniqueness of E[f |Ft] is implied by the celebrated Radon-Nykodim theorem.
For the main properties of the conditional expectation, see for instance [44]. In particular, recall
that, if f ∈ L2(Λ,F ;H), then E[f |Ft] ∈ L2(Λ,Ft;H) and is in fact the orthogonal projection of
f in L2(Λ,Ft;H).

Let X be a Banach space. We denote by I2(0, T ;X) the space formed by all stochastic
processes Φ ∈ L2(Λ× (0, T ), dP ⊗ dt;X) which are Ft-adapted a.e. in (0, T ), i.e. such that

λ 7→ Φ(λ, t) is Ft-measurable for almost all t ∈ (0, T )

(in the case X = L(K;H), measurability will be understood in the strong sense, i.e. the
measurability of λ 7→ Φ(λ, t)w for each w ∈ K). Then, I2(0, T ;X) is a closed subspace of
L2(Λ× (0, T ), dP ⊗ dt;X).

Assume that a stochastic process B is given, with

(20) B ∈ I2(0, T ;L(K;H))

(H is a Hilbert space). Then the stochastic integral of B with respect to wt is defined by the
formula ∫ t

0
B(s) dws =

∞∑
k=1

∫ t

0
B(s)ek dβ

k
s ∀t ∈ [0, T ].

Here, the convergence of the series is understood in the sense of L2(Λ,Ft;H). The stochastic
integrals in the right hand side are defined by the equalities

(

∫ t

0
B(s)ek dβ

k
s , h) =

∫ t

0
(B(s)ek, h) dβks ∀h ∈ H,
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where the latter are usual Ito stochastic integrals with respect to the real-valued processes βkt ;
see [4].

Recall that, for any b ∈ I2(0, T ;R), any real-valued Wiener process βt and any fixed t ∈ [0, T ],
we can introduce a random variable It(f) : Λ 7→ R known as the Ito stochastic integral in [0, t]:

It(f) =

∫ t

0
f(s) dβs .

The stochastic process (λ, t) 7→ It(f)(λ) again belongs to I2(0, T ;R) and, among other proper-
ties, satisfies the following:

E

∫ t

0
f(s) dβs = 0

and

E

∣∣∣∣∫ t

0
f(s) dβs

∣∣∣∣2 =

∫ t

0
E|f(s)|2 ds

for all t ∈ [0, T ].

3.2 The controllability results

In the remainder of this Section, H and V will denote the Hilbert spaces L2(Ω) and H1
0 (Ω),

respectively.
Assume we are given an arbitrary but fixed initial state

(21) y0 ∈ H,

a Wiener process wt with values in the separable Hilbert space K and a stochastic process
B ∈ I2(0, T ;L(K;H)). Let A = −∆ be the usual Laplace-Dirichlet operator in Ω, with domain

D(A) = { z ∈ H1
0 (Ω) : −∆z ∈ L2(Ω) }.

For each control v ∈ I2(0, T ;H), there exists exactly one solution y to the state system

(22)


y ∈ I2(0, T ;V ) ∩ L2(Λ;C0([0, T ];H)),

y(·, t) = y0 +

∫ t

0
{−Ay(·, s) + 1ωv(·, s)} ds+

∫ t

0
B(s) dws ∀t ∈ [0, T ].

In (22), the equalities have to be understood P − a.s. in V ′.
Notice that we choose Ft-adapted controls to govern the state system. This is a natural

assumption from the stochastic viewpoint since, once wt is given, only Ft-adapted processes can
be regarded as statistically observable.

Let S(t) be the semigroup generated in H by A. Then, in accordance with the results
in [13, 43], one has:

(23)

 y(·, t) = S(t)y0 +

∫ t

0
S(t− s)(1ωv(·, s)) ds+

∫ t

0
S(t− s)B(s) dws

∀t ∈ [0, T ]
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Our first result deals with approximate controllability:

Theorem 3.1 The linear manifold YT = { y(·, T ) : v ∈ I2(0, T ;H) } is dense in L2(Λ,FT ;H).
In other words: for any y1 ∈ L2(Λ,FT ;H) and any ε > 0, there exists a control v ∈ I2(0, T ;H)
such that the associated solution to (22) satisfies:

E‖y(·, T )− y1‖2L2 ≤ ε.

Accordingly, it is said that (22) is approximately controllable in quadratic mean.

Proof: We will argue as in the deterministic case. More precisely, in view of (23), it will suffice
to check that, if f ∈ L2(Λ,FT ;H) and

(24) E(

∫ T

0
S(T − s)(1ωv(·, s)) ds, f)L2 = 0 ∀v ∈ I2(0, T ;H),

then necessarily f = 0.
Let f be a function in L2(Λ,FT ;H) satisfying (24) and assume that φ ∈ I2(0, T ;H) is defined

pathwise by 
−φt +Aφ = 0 in Q,
φ = 0 on Σ,
φ(x, T ) = f(x) in Ω,

i.e. φ(·, t) = S(T − t)f for all t. It will be sufficient to prove that

(25) E[φ(·, t)|Ft] = 0 ∀t ∈ (0, T ).

Indeed, this and the continuity property (19) of the family {Ft} clearly imply that f = E[φ(·, T )|FT ] =
0.

QUESTION 3: Why does (25) imply that f = 0?

We know that

E

∫ T

0
(v(·, s), 1ωφ(·, s))L2 ds = 0 ∀v ∈ I2(0, T ;H).

Consequently, 1ωE[φ(·, t)|Ft] is a stochastic process in I2(0, T ;H) such that

E

∫ T

0
(v(·, s), 1ωE[φ(·, s)|Fs]) ds =

∫ T

0
E(v(·, s), 1ωφ(·, s)) ds = 0

for all v ∈ I2(0, T ;H) and, furthermore,

(26) 1ωE[φ(·, t)|Ft] = 0.
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For each t ∈ (0, T ), E[φ(·, t)|Ft] = S(T − t)E[f |Ft] is real analytic in the variable x ∈ Ω.
Hence, one must necessarily have E[φ(·, t)|Ft] = 0 for all t ∈ (0, T ) and the result is proved. 2

A consequence of this theorem is that, for any y1 ∈ L2(Λ,FT ;H), ε > 0 and δ > 0, a control
v can be found such that

P{ ‖y(·, T )− y1‖L2 < ε } ≥ 1− δ.

However, the existence of a control v ∈ I2(0, T ;H) such that P{ ‖y(·, T )− y1‖L2 < ε } = 1 is an
interesting open question.

The approximate controllability in quadratic mean remains true for systems governed by
more general linear equations. More precisely, the following result is proved in [25]:

Theorem 3.2 Assume that, in (22), A is an operator of the form

(27) Ay = −
N∑

i,j=1

∂

∂xi

(
aij

∂y

∂xj

)
+

N∑
j=1

bj
∂y

∂xj
+ cy,

where the coefficients satisfy

aij ∈ C1(Ω), bj , c ∈ L∞(Ω)

and the usual ellipticity condition

N∑
i,j=1

aij(x)ξjξi ≥ α|ξ|2 ∀λ ∈ RN , ∀x ∈ Ω, α > 0.

Then the corresponding YT = { y(·, T ) : v ∈ I2(0, T ;H) } is dense in L2(Λ,FT ;H).

We will now recall a null controllability result for (22) from [25]. Again, this is the analog
of a deterministic result.

Theorem 3.3 Let us set γ(t) := t(T−t). Assume that B is not random, B ∈ C1([0, T ];L(K;H))
and, also, that the support of B(t)w does not intersect ω for any t and w ∈ K. Then there exists
a positive function ρ = ρ(x) such that, if

(28)

∫∫
Q
t
(
γ(t)−1‖B‖2L(K;H) + γ(t)3‖Bt‖2L(K;H)

)
e2ρ(x)/γ(t) dx dt < +∞,

for each y0 ∈ H there exists v ∈ I2(0, T ;H) satisfying y(x, T ) ≡ 0, i.e. (22) is null controllable.

As in the deterministic case, the proof relies on an observability estimate for the solution of
the adjoint system.
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The situation is more complicate in the case of a multiplicative noise, that is, for systems of
the form

(29)


y ∈ I2(0, T ;V ) ∩ L2(Ω;C0([0, T ], H)),

y(·, t) = y0 +

∫ t

0
{−Ay(·, s) + 1ωv(·, s)} ds+

∫ t

0
By(·, s) dws ∀t ∈ [0, T ].

Here, B is given by (By)(x) = b(x)y(x) for some b ∈ W 1,∞(Ω) and (for simplicity) wt is a real
Wiener process.

From the theory of stochastic partial differential equations, it follows in particular that, for
each v ∈ I2(0, T ;H), there exists exactly one solution y to (29), see [43].

The approximate controllability in quadratic mean of (29) is equivalent to the unique con-
tinuation property for the backward (adjoint) stochastic system

(30)


p ∈ I2(0, T ;V ) ∩ L2(Ω;C0([0, T ];H)), q ∈ I2(0, T ;H),

p(·, t) = f +

∫ T

t
{A∗p(·, s) +Bq(·, s)} ds−

∫ T

t
q(·, s) dws ∀t ∈ [0, T ],

In [6], a global Carleman estimate has been established for this system when A = −∆ and
b ∈ C2(Ω). Of course, this implies unique continuation for (30) and, consequently, approximate
controllability in quadratic mean for (29) in this particular case.

On the other hand, an appropriate unique continuation property for (30) has been proved
in [17] in the general case. As a consequence, one has approximate controllability in quadratic
mean for (29). In fact, when b is a constant, and Γ is of class C∞, we can also prove approximate
controllability in all spaces Lr(Λ,FT ;Lq(O)) with 1 ≤ r, q < +∞.

The previous analysis can also be made for stochastic Stokes systems; see [24].
For more results concerning the approximate and null controllability of stochastic PDEs, see

the recent review [48].

4 Positive and negative results for the one-dimensional Burgers
equation

In this Section, we will be concerned with the null controllability of the following system for the
viscous Burgers equation:

(31)


yt − yxx + yyx = v1ω, (x, t) ∈ (0, 1)× (0, T ),

y(0, t) = y(1, t) = 0, t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, 1).

Recall that some controllability properties of (31) have been studied in [29] (see Chapter 1,
theorems 6.3 and 6.4). There, it is shown that, in general, a stationary solution of (31) with
large L2-norm cannot be reached (not even approximately) at any time T . In other words, with
the help of one control, the solutions of the Burgers equation cannot go anywhere at any time.
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For each y0 ∈ L2(0, 1), let us introduce

T (y0) = inf{T > 0 : (31) is null controllable at time T }.

Then, for each r > 0, let us define the quantity

T ∗(r) = sup{T (y0) : ‖y0‖L2 ≤ r }.

Our main purpose is to show that T ∗(r) > 0, with explicit sharp estimates from above and from
below. In particular, this will imply that (global) null controllability at any positive time does
not hold for (31).

More precisely, let us set φ(r) = (log 1
r )−1. We have the following result from [21]:

Theorem 4.1 One has

(32) C0φ(r) ≤ T ∗(r) ≤ C1φ(r) as r → 0,

for some positive constants C0 and C1 not depending of r.

Remark 4.1 The same estimates hold when the control v acts on system (31) through the
boundary only at x = 1 (or only at x = 0). Indeed, it is easy to transform the boundary
controlled system

(33)


yt − yxx + yyx = 0, (x, t) ∈ (0, 1)× (0, T ),

y(0, t) = 0, y(1, t) = w(t), t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, 1)

into a system of the kind (31). The boundary controllability of the Burgers equation with two
controls (at x = 0 and x = 1) has been analyzed in [32]. There, it is shown that even in this
more favorable situation null controllability does not hold for small time. It is also proved in
that paper that exact controllability does not hold for large time.3 2

Remark 4.2 It is proved in [10] that the Burgers equation is globally null controllable when
we act on the system through two boundary controls and an additional right hand side only
depending on t. In other words, for any y0 ∈ L2(0, 1), there exist w1 , w2 and h in L2(0, T ) such
that the soution to

(34)


yt − yxx + yyx = h(t), (x, t) ∈ (0, 1)× (0, T ),

y(0, t) = w1(t), y(1, t) = w2(t), t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, 1)

satisfies
y(x, T ) = 0 in (0, 1).

However, it is unknown whether this global property is conserved when one of the boundary
controls w1 or w2 is eliminated. 2

3 Let us remark that the results in [32] do not allow to estimate T (r); in fact, the proofs are based in
contradiction arguments.
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The proof of the estimate from above in (32) can be obtained by solving the null controllabil-
ity problem for (31) via a (more or less) standard fixed point argument, using global Carleman
inequalities to estimate the control and energy inequalities to estimate the state and being very
careful with the role of T in these inequalities.

The proof of the estimate from below is inspired by the arguments in [3] and is implied by
the following property: there exist positive constants C0 and C ′0 such that, for any sufficiently
small r > 0, we can find initial data y0 and associated states y satisfying ‖y0‖L2 ≤ r and

|y(x, t)| ≥ C ′0r for some x ∈ (0, 1) and any t : 0 < t < C0φ(r).

For more details, see [21].

5 The Navier-Stokes and Boussinesq systems

There is a lot of more realistic nonlinear equations and systems from mechanics that can also
be considered in this context. First, we have the well known Navier-Stokes equations:

(35)


yt + (y · ∇)y −∆y +∇p = v1ω, ∇ · y = 0, (x, t) ∈ Q,
y = 0, (x, t) ∈ Σ,

y(x, 0) = y0(x), x ∈ Ω.

Here and below, Q and Σ respectively stand for the sets Q = Ω× (0, T ) and Σ = ∂Ω× (0, T ),
where Ω ⊂ RN is a nonempty regular and bounded domain, N = 2 or N = 3 and (again)
ω ⊂⊂ Ω is a nonempty open set.

In (35), (y, p) is the state (the velocity field and the pressure distribution) and v is the
control (a field of external forces applied to the fluid particles located at ω). To our knowledge,
the best results concerning the controllability of this system have been given in [22] and [23].4

Essentially, these results establish the local exact controllability of the solutions of (35) to
bounded uncontrolled trajectories.

In order to be more specific, let us recall the definition of some usual spaces in the context
of Navier-Stokes equations:

V =
{
y ∈ H1

0 (Ω)N : ∇ · y = 0 in Ω
}

and
H = {y ∈ L2(Ω)N : ∇ · y = 0 in Ω, y · n = 0 on ∂Ω}.

Of course, it will be said that (35) is exactly controllable to the trajectories if, for any trajectory
(y, p), i. e. any solution of the uncontrolled Navier-Stokes system

(36)

{
yt + (y · ∇)y −∆y +∇p = 0, ∇ · y = 0, (x, t) ∈ Q,
y = 0, (x, t) ∈ Σ

4 The main ideas come from [30, 36]; some additional results will appear soon in [20].
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and any y0 ∈ H, there exist controls v ∈ L2(ω × (0, T ))N and associated solutions (y, p) such
that

(37) y(x, T ) = y(x, T ) in Ω.

At present, we do not know any global result concerning exact controllability to the trajec-
tories for (35). However, the following local result holds:

Theorem 5.1 Let (y, p) be a strong solution of (36), with

(38) y ∈ L∞(Q)N , y(· , 0) ∈ V.

Then, there exists δ > 0 such that, for any y0 ∈ H ∩ L2N−2(Ω)N satisfying ‖y0 − y0‖L2N−2 ≤ δ,
we can find a control v ∈ L2(ω× (0, T ))N and an associated solution (y, p) to (35) such that (37)
holds.

In other words, the local exact controllability to the trajectories holds for (35) in the space
X = L2N−2(Ω)N ∩ H; see [22] for a slightly stronger result. Similar questions were addressed
(and solved) in [28] and [27]. The fact that we consider here Dirichlet boundary conditions and
locally supported distributed control increases a lot the mathematical difficulty of the control
problem.

Remark 5.1 It is clear that we cannot expect exact controllability for the Navier-Stokes equa-
tions with an arbitrary target function, because of the dissipative and non reversible properties
of the system. On the other hand, approximate controllability is still an open question for this
system. Some results in this direction have been obtained in [11] for different boundary condi-
tions (Navier slip boundary conditions) and in [15] with a different nonlinearity. However, the
notion of approximate controllability does not appear to be optimal from a practical viewpoint.
Indeed, even if we could reach an arbitrary neighborhood of a given target y1 at time T by the
action of a control, the question of what to do afterwards to stay in the same neighbourhood
would remain open. 2

The proof of theorem 5.1 can be obtained as an application of Liusternik’s inverse mapping
theorem in an appropriate framework.

A key point in the proof is a related null controllability result for the linearized Navier-Stokes
system at (y, p), that is to say:

(39)


yt + (y · ∇)y + (y · ∇)y −∆y +∇p = v1ω, (x, t) ∈ Q,
∇ · y = 0, (x, t) ∈ Q,
y = 0, (x, t) ∈ Σ,

y(x, 0) = y0(x), x ∈ Ω.
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This control result is a consequence of a global Carleman inequality of the kind (5) that can be
established for the solutions to the adjoint of (39), which is the following:

(40)


−ϕt − (∇ϕ+∇ϕt) y −∆ϕ+∇π = g, (x, t) ∈ Q,
∇ · ϕ = 0, (x, t) ∈ Q,
ϕ = 0, (x, t) ∈ Σ,

ϕ(T ) = ϕ0, x ∈ Ω.

The details can be found in [22].
Similar results have been given in [31] for the Boussinesq equations

(41)



yt + (y · ∇)y −∆y +∇p = v1ω + θ eN , ∇ · y = 0 (x, t) ∈ Q,

θt + y · ∇θ −∆θ = h1ω, (x, t) ∈ Q,

y = 0, θ = 0, (x, t) ∈ Σ,

y(x, 0) = y0(x), θ(x, 0) = θ0(x), x ∈ Ω.

Here, the state is the triplet (y, p, θ) (θ is interpreted as a temperature distribution) and the
control is (v, h) (as before, v is a field of external forces; h is an external heat source).

QUESTION 4: Can we deduce from theorem 5.1 a null controllability result for (35) for large
T? What about (41)?

QUESTION 5: Does local null controllability imply local exact controllability to the trajectories
in the context of (35)? What about (41)?

An interesting question concerning both (35) and (41) is whether we can still get local exact
controllability to the trajectories with a reduced number of scalar controls. This is partially
answered in [23], where the following results are proved:

Theorem 5.2 Assume that the following property is satisfied:

(42) ∃x0 ∈ ∂Ω, ∃ε > 0 such that ω ∩ ∂Ω ⊃ B(x0; ε) ∩ ∂Ω.

Here, B(x0; ε) is the ball centered at x0 of radius ε. Then, for any T > 0, (35) is locally exactly
controllable at time T to the trajectories satisfying (38) with controls v ∈ L2(ω× (0, T ))N having
one component identically zero.

Theorem 5.3 Assume that ω satisfies (42) with nk(x
0) 6= 0 for some k < N . Then, for any

T > 0, (41) is locally exactly controllable at time T to the trajectories (y, p, θ) satisfying (38)
and

(43) θ ∈ L∞(Q), θ(· , 0) ∈ H1
0 (Ω).
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with controls v ∈ L2(ω × (0, T ))N and h ∈ L2(ω × (0, T )) such that vk ≡ vN ≡ 0. In particular,
if N = 2, we have local exact controllability to these trajectories with controls v ≡ 0 and h ∈
L2(ω × (0, T )).

The proofs of theorems 5.2 and 5.3 are similar to the proof of theorem 5.1. We have again to
rewrite the controllability property as a nonlinear equation in a Hilbert space. Then, we have
to check that the hypotheses of Liusternik’s theorem are fulfilled.

Again, a crucial point is to prove the null controllability of certain linearized systems, this
time with reduced controls. For instance, when dealing with (35), the task is reduced to prove
that, for some ρ, ρ0 and K > 0, the solutions to (39) satisfy the following Carleman-like
estimates:

(44)

∫∫
Ω×(0,T )

ρ−2|ϕ|2 dx dt ≤ K
∫∫

ω×(0,T )
ρ−2

0 (|ϕ1|2 + |ϕ2|2) dx dt ∀ϕ1 ∈ L2(Ω).

This inequality can be proved using the assumption (42) and the incompressibility identity
∇ · ϕ = 0; see [23].

6 Some other nonlinear systems from mechanics

The previous arguments can be applied to other similar partial differential systems arising in
mechanics. For instance, this is made in [?] in the context of micro-polar fluids.

To fix ideas, let us assume that N = 3. The behavior of a micro-polar three-dimensional
fluid is governed by a system which has the form

(45)



yt −∆y + (y · ∇)y +∇p = ∇× w + v1ω, ∇ · y = 0, (x, t) ∈ Q,

wt + (y · ∇)w −∆w −∇(∇ · w) = ∇× y + u1ω, (x, t) ∈ Q,

y = 0, w = 0 (x, t) ∈ Σ,

y(x, 0) = y0(x), w(x, 0) = w0(x) x ∈ Ω.

Here, the state is (y, p, w) and the control is (v, u). As usual, y and p stand for the velocity
field and pressure and w is the microscopic velocity of rotation of the fluid particles.

The following result holds:

Theorem 6.1 Let (y, p, w) be such that

(46) y, w ∈ L∞(Q) ∩ L2(0, T ;H2(Ω)), yt, wt ∈ L2(Q)

and

(47)


yt −∆y + (y · ∇)y +∇p = ∇× w, ∇ · y = 0, (x, t) ∈ Q,

wt + (y · ∇)w −∆w −∇(∇ · w) = ∇× y, (x, t) ∈ Q,

y = 0, w = 0 (x, t) ∈ Σ.
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Then, for each T > 0, (45) is locally exactly controllable to (y, p, w) at time T . In other words,
there exists δ > 0 such that, for any initial data (y0, w0) ∈ (H2(Ω) ∩ V )×H1

0 (Ω) satisfying

(48) ‖(y0, w0)− (y(· , 0), w(· , 0))‖H2×H1
0
≤ δ,

there exist L2 controls u and v and associated solutions (y, p, w) satisfying

(49) y(x, T ) = y(x, T ), w(x, T ) = w(x, T ) in Ω.

Notice that this case involves a nontrivial difficulty. Indeed, w is a non-scalar variable and the
equations satisfied by its components wi are coupled through the second-order terms ∂i(∇ ·w).
This is a serious inconvenient. An appropriate strategy has to be applied in order to deduce the
required Carleman estimates.

Let us also mention [5, 33, 34], where the controllability of the MHD and other related
equations has been analyzed.

For all these systems, the proof of the controllability can be achieved arguing as in the first
part of the proof of theorem 5.1. This is the general structure of the argument:

• First, rewrite the original controllability problem as a nonlinear equation in a space of
admissible “state-control” pairs.

• Then, prove an appropriate global Carleman inequality and a regularity result and deduce
that the linearized equation possesses at least one solution. This provides a controllability
result for a related linear problem.

• Check that the hypotheses of a suitable implicit function theorem are satisfied and deduce
a local result.

Remark 6.1 Recall that an alternative strategy was introduced in [49] in the context of the
semilinear wave equation: first, consider a linearized similar problem and rewrite the original
controllability problem in terms of a fixed point equation; then, prove a global Carleman in-
equality and deduce an observability estimate for the adjoint system and a controllability result
for the linearized problem; finally, prove appropriate estimates for the control and the state (this
usually needs some kind of smallness of the data), prove an appropriate compactness property
of the state and deduce that there exists at least one fixed point. This method has been used
in [16] and [26] in the context of semilinear heat equations and in [20] to prove a result similar
to theorem 5.1. 2

Remark 6.2 Observe that all these results are positive, in the sense that they provide local
controllability properties. At present, no negative result is known to hold for these nonlinear
systems (except for the already considered one-dimensional Burgers equation). 2
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To end this Section, let us mention two systems from fluid mechanics, apparently not much
more complex than (35), for which local controllability is an open question.

The first system is the following:

(50)


yt + (y · ∇)y −∇ · (ν(|Dy|)Dy) +∇p = v1ω , (x, t) ∈ Q,
∇ · y = 0, (x, t) ∈ Q,
y = 0, (x, t) ∈ Σ,

y(x, 0) = y0(x), x ∈ Ω.

Here, Dy = 1
2(∇y + ∇yt) and ν : R+ 7→ R+ is a regular function (for example, we can take

ν(s) ≡ a+ bsr−1 for some a, b, r > 0). This models the behavior of a quasi-Newtonian fluid; for
a mathematical analysis, see [7, 42].

In view of the new nonlinear diffusion term ∇ · (ν(|Dy|)Dy), its control properties are much
more difficult to analyze than for (35). In particular, it is unknown whether the local approximate
and the local null controllability properties hold for (50).

For the second system, we suppose that N = 2. It reads:

(51)


θt + (y · ∇)θ −∆θ = v1ω , (x, t) ∈ Q,
y = ∇×

(
(−∆)−aθ

)
, (x, t) ∈ Q,

θ = 0, (x, t) ∈ Σ,

θ(x, 0) = θ0(x), x ∈ Ω,

where a ∈ [1/2, 1]. We are now modelling the behavior of a quasi-geostrophic fluid. The state
variables θ and y may be viewed as a generalized vorticity and velocity field, respectively (notice
that, for a = 1, we find again the Navier-Stokes system; see for instance [45]).

It is possible to prove a local null controllability result for (51). However, to our knowledge,
the local approximate controllability and the local exact controllability to the trajectories are
open problems.
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