Introdução à teoria de regularidade elíptica Aula 2: Teoria de DeGiorgi

Eduardo V. Teixeira
Universidade Federal do Ceará
UNICAMP, fevereiro de 2009

General problem in the Calculus of Variation

Hilbert's $19^{\text {th }}$ Problem
"Are the solutions of Lagrangians always analytic?"

General problem in the Calculus of Variation

Hilbert's $19^{\text {th }}$ Problem
"Are the solutions of Lagrangians always analytic?"

$$
\mathrm{E}(\mathrm{u})=\int_{\Omega} \mathrm{F}(\mathrm{Du}) \mathrm{dX} \longrightarrow \min
$$

General problem in the Calculus of Variation

Hilbert's $19^{\text {th }}$ Problem
"Are the solutions of Lagrangians always analytic?"

$$
E(u)=\int_{\Omega} F(D u) d X \longrightarrow \min .
$$

- Convexity of F is a Necessary and Sufficient condition for Weak Lower Semicontinuity of E.

A PDE Approach for Hilbert's $19^{\text {th }}$ Problem

Let u minimizes $\mathrm{E}(\mathrm{v}):=\int_{\Omega} \mathrm{F}(\mathrm{Dv}) \mathrm{dX}$.

A PDE Approach for Hilbert's $19^{\text {th }}$ Problem

$$
\begin{aligned}
& \text { Let u minimizes } \mathrm{E}(\mathrm{v}):=\int_{\Omega} \mathrm{F}(\mathrm{Dv}) \mathrm{dX} . \\
& \qquad 0=\left.\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{E}(\mathrm{u}+\mathrm{t} \varphi)\right|_{\mathrm{t}=0}
\end{aligned}
$$

A PDE Approach for Hilbert's $19^{\text {th }}$ Problem

Let u minimizes $\mathrm{E}(\mathrm{v}):=\int_{\Omega} \mathrm{F}(\mathrm{Dv}) \mathrm{dX}$.

$$
0=\left.\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{E}(\mathrm{u}+\mathrm{t} \varphi)\right|_{\mathrm{t}=0}=\int_{\Omega} \mathrm{D} \varphi \cdot \mathrm{~F}_{\mathrm{j}}(\mathrm{Du}) \mathrm{dX} .
$$

A PDE Approach for Hilbert's $19^{\text {th }}$ Problem

$$
\text { Let } \begin{aligned}
u \text { minimizes } E(v): & =\int_{\Omega} F(D v) d X . \text { Then, } \\
& \operatorname{div}\left(F_{j}(D u)\right)=0 .
\end{aligned}
$$

A PDE Approach for Hilbert's $19^{\text {th }}$ Problem

Let u minimizes $E(v):=\int_{\Omega} F(D v) d X$. Then,

$$
\operatorname{div}\left(F_{j}(D u)\right)=0
$$

Passing the Derivatives Through,

$$
\sum_{i, j} F_{i j}(D u) D_{i j} u=0 .
$$

A PDE Approach for Hilbert's $19^{\text {th }}$ Problem

Let u minimizes $E(v):=\int_{\Omega} F(D v) d X$. Then,

$$
\operatorname{div}\left(F_{j}(D u)\right)=0
$$

Passing the Derivatives Through,

$$
\sum_{i, j} F_{i j}(D u) D_{i j} u=0 .
$$

- If $\mathrm{F}_{\mathrm{ij}}(\mathrm{Du})$ is Hölder Continuous, Schauder's Estimates give u is C^{∞} and Analyticity follows by standard arguments.

A PDE Approach for Hilbert's $19^{\text {th }}$ Problem

Let u minimizes $E(v):=\int_{\Omega} F(D v) d X$. Then,

$$
\operatorname{div}\left(F_{j}(D u)\right)=0
$$

Passing the Derivatives Through,

$$
\sum_{i, j} F_{i j}(D u) D_{i j} u=0 .
$$

- If Du is Hölder Continuous, Schauder's Estimates give u is C^{∞} and Analyticity follows by standard arguments.

A PDE Approach for Hilbert's $19^{\text {th }}$ Problem

- Recall

$$
\operatorname{div}\left(F_{j}(D u)\right)=0
$$

We need to show a solution to the above equation is $\mathrm{C}^{1, \alpha}$.

- Fix a direction μ.
- Thus, u_{μ} satisfies an Equation

$$
\operatorname{div}\left(a_{\mathrm{ij}}(X) D \xi\right)=0
$$

where a_{ij} is just bounded measurable and elliptic.

A PDE Approach for Hilbert's $19^{\text {th }}$ Problem

- Recall

$$
\operatorname{div}\left(F_{j}(D u)\right)=0
$$

We need to show a solution to the above equation is $\mathrm{C}^{1, \alpha}$.

- Fix a direction μ.
- Thus, u_{μ} satisfies an Equation

$$
\operatorname{div}\left(a_{\mathrm{ij}}(X) D \xi\right)=0
$$

where a_{ij} is just bounded measurable and elliptic.

A PDE Approach for Hilbert's $19^{\text {th }}$ Problem

- Recall

$$
\operatorname{div}\left(F_{j}(D u)\right)=0
$$

We need to show a solution to the above equation is $\mathrm{C}^{1, \alpha}$.

- Fix a direction μ. Deriving the above Equation in the μ
direction gives
- Thus, u_{μ} satisfies an Equation

$$
\operatorname{div}\left(a_{i j}(X) D \xi\right)=0
$$

where a_{ij} is just bounded measurable and elliptic.

A PDE Approach for Hilbert's $19^{\text {th }}$ Problem

- Recall

$$
\operatorname{div}\left(F_{j}(D u)\right)=0
$$

We need to show a solution to the above equation is $\mathrm{C}^{1, \alpha}$.

- Fix a direction μ. Deriving the above Equation in the μ direction gives
- Thus, u_{μ} satisfies an Equation

$$
\operatorname{div}\left(\mathbf{a}_{\mathrm{ij}}(X) D \xi\right)=0
$$

where a_{ij} is just bounded measurable and elliptic.

A PDE Approach for Hilbert's $19^{\text {th }}$ Problem

- Recall

$$
\operatorname{div}\left(F_{j}(D u)\right)=0
$$

We need to show a solution to the above equation is $\mathrm{C}^{1, \alpha}$.

- Fix a direction μ. Deriving the above Equation in the μ direction gives

$$
\operatorname{div}\left(\mathrm{F}_{\mathrm{ij}}(\mathrm{Du}) \mathrm{Du}_{\mu}\right)=0
$$

- Thus, u_{μ} satisfies an Equation

$$
\operatorname{div}\left(\mathbf{a}_{\mathrm{ij}}(X) \mathrm{D} \xi\right)=0
$$

A PDE Approach for Hilbert's $19^{\text {th }}$ Problem

- Recall

$$
\operatorname{div}\left(F_{j}(D u)\right)=0
$$

We need to show a solution to the above equation is $\mathrm{C}^{1, \alpha}$.

- Fix a direction μ. Deriving the above Equation in the μ direction gives

$$
\operatorname{div}\left(F_{\mathrm{ij}}(\mathrm{Du}) \mathrm{Du}_{\mu}\right)=0
$$

- Thus, u_{μ} satisfies an Equation

$$
\operatorname{div}\left(\mathbf{a}_{\mathrm{ij}}(X) D \xi\right)=0
$$

where a_{ij} is just bounded measurable and elliptic.

A PDE Approach for Hilbert's $19^{\text {th }}$ Problem

Goal
Establish Hölder Continuity for solutions to

$$
\operatorname{div}\left(\mathrm{a}_{\mathrm{ij}}(\mathrm{X}) \mathrm{Du}\right)=0
$$

when a_{ij} is only known to the bounded measurable and elliptic.

The Theorem

Theorem (De Giorgi-Nash-Moser)
Let a_{ij} be a uniform elliptic matrix and u an H^{1} (distributional) solution to

$$
\operatorname{div}\left(\mathrm{a}_{\mathrm{ij}}(\mathrm{X}) \mathrm{Du}\right)=0 \text { in } \mathrm{B}_{1} .
$$

Then u is Hölder continuous in $\mathrm{B}_{1 / 2}$. Furthermore,

$$
\|u\|_{\mathrm{C}^{\alpha}\left(\mathrm{B}_{1 / 2}\right)} \leq \mathrm{C}\|\mathrm{u}\|_{\mathrm{L}^{2}\left(\mathrm{~B}_{1}\right)},
$$

where C depends only on dimension and ellipticity.

Outline

\checkmark The Proof is Divided in two parts:

Outline

\checkmark The Proof is Divided in two parts:

1. An L^{∞} estimate in terms of the L^{2} norm.
2. An Oscillation Lemma

Outline

\checkmark The Proof is Divided in two parts:

1. An L^{∞} estimate in terms of the L^{2} norm.
2. An Oscillation Lemma

Outline

\checkmark The Proof is Divided in two parts:

1. An L^{∞} estimate in terms of the L^{2} norm.
2. An Oscillation Lemma: De Giorgi's famous Oscillation Lemma.

$\mathrm{L}^{2} \Rightarrow \mathrm{~L}^{\infty}$ Estimate

Lemma ($\mathrm{L}^{2} \Rightarrow \mathrm{~L}^{\infty}$)
Let u satisfy

$$
\operatorname{div}\left(a_{i j}(X) D u\right) \geq 0
$$

There exists a $\delta>0$, depending only on ellipticity, such that

$\mathrm{L}^{2} \Rightarrow \mathrm{~L}^{\infty}$ Estimate

Lemma ($\mathrm{L}^{2} \Rightarrow \mathrm{~L}^{\infty}$)
Let u satisfy

$$
\operatorname{div}\left(a_{i j}(X) D u\right) \geq 0
$$

There exists a $\delta>0$, depending only on ellipticity, such that

$\mathrm{L}^{2} \Rightarrow \mathrm{~L}^{\infty}$ Estimate

Lemma ($\mathrm{L}^{2} \Rightarrow \mathrm{~L}^{\infty}$)
Let u satisfy

$$
\operatorname{div}\left(\mathrm{a}_{\mathrm{ij}}(\mathrm{X}) \mathrm{Du}\right) \geq 0 .
$$

There exists a $\delta>0$, depending only on ellipticity, such that

$$
\left\|\mathrm{u}^{+}\right\|_{\mathrm{L}^{2}\left(\mathrm{~B}_{1}\right)} \leq \delta \quad \text { implies } \quad\left\|\mathrm{u}^{+}\right\|_{\mathrm{L}^{\infty}\left(\mathrm{B}_{1 / 2}\right)} \leq 1 .
$$

Two Competing Inequalities

1. Sobolev Inequality:

for $p=\frac{2 n}{n-2}>2$.
2. Energy Estimate:

Two Competing Inequalities

1. Sobolev Inequality:

$$
\int_{\mathrm{B}_{1}}|\mathrm{f}|^{\mathrm{p}} \mathrm{dX} \leq \mathrm{C}\left(\int_{\mathrm{B}_{1}}|\nabla \mathrm{f}|^{2} \mathrm{dX}\right)^{\mathrm{p} / 2},
$$

for $\mathrm{p}=\frac{2 \mathrm{n}}{\mathrm{n}-2}>2$.
2. Energy Estimate:

Two Competing Inequalities

1. Sobolev Inequality:

$$
\int_{\mathrm{B}_{1}}|\mathrm{f}|^{\mathrm{p}} \mathrm{dX} \leq \mathrm{C}\left(\int_{\mathrm{B}_{1}}|\nabla \mathrm{f}|^{2} \mathrm{dX}\right)^{\mathrm{p} / 2},
$$

for $\mathrm{p}=\frac{2 \mathrm{n}}{\mathrm{n}-2}>2$.
2. Energy Estimate: If $v \geq 0$ satisfy $\operatorname{div}\left(a_{j j}(X) D v\right) \geq 0$ in B_{1}, Then,

Two Competing Inequalities

1. Sobolev Inequality:

$$
\int_{\mathrm{B}_{1}}|\mathrm{f}|^{\mathrm{p}} \mathrm{dX} \leq \mathrm{C}\left(\int_{\mathrm{B}_{1}}|\nabla \mathrm{f}|^{2} \mathrm{dX}\right)^{\mathrm{p} / 2},
$$

for $\mathrm{p}=\frac{2 \mathrm{n}}{\mathrm{n}-2}>2$.
2. Energy Estimate: If $\mathrm{v} \geq 0$ satisfy $\operatorname{div}\left(\mathrm{aij}_{\mathrm{ij}}(\mathrm{X}) \mathrm{Dv}\right) \geq 0$ in B_{1}, Then,

$$
\int_{\mathrm{B}_{1}}|\mathrm{D}(\psi \mathrm{v})|^{2} \mathrm{dX} \leq \mathrm{C} \sup |\nabla \psi|^{2} \int_{\mathrm{B}_{1}}(\mathrm{v})^{2} \mathrm{dX}, \quad \forall \psi \in \mathrm{C}_{0}^{\infty}\left(\mathrm{B}_{1}\right)
$$

Two Competing Inequalities

1. Sobolev Inequality:

$$
\int_{\mathrm{B}_{1}}|\mathrm{f}|^{\mathrm{p}} \mathrm{dX} \leq \mathrm{C}\left(\int_{\mathrm{B}_{1}}|\nabla \mathrm{f}|^{2} \mathrm{dX}\right)^{\mathrm{p} / 2},
$$

for $\mathrm{p}=\frac{2 \mathrm{n}}{\mathrm{n}-2}>2$.
2. Energy Estimate: If $\mathrm{v} \geq 0$ satisfy $\operatorname{div}\left(\mathrm{a}_{\mathrm{ij}}(\mathrm{X}) \mathrm{Dv}\right) \geq 0$ in B_{1}, Then,

$$
\int_{\mathrm{B}_{1}}|\mathrm{D}(\psi \mathrm{v})|^{2} \mathrm{dX} \leq \mathrm{C} \sup |\nabla \psi|^{2} \int_{\mathrm{B}_{1}}(\mathrm{v})^{2} \mathrm{dX}, \quad \forall \psi \in \mathrm{C}_{0}^{\infty}\left(\mathrm{B}_{1}\right)
$$

* Sobolev and Energy Inequalities compete in a different homogeneity \star

Family of Cut-offs

- Define

$$
\psi_{\mathrm{k}}(\mathrm{X}):= \begin{cases}1 & \text { in } \mathrm{B}_{\frac{1}{2}+2^{-k}} \\ 0 & \text { in } \mathrm{B}_{1} \backslash \mathrm{~B}_{\frac{1}{2}+2^{-(k-1)}}\end{cases}
$$

- $\left|\mathbf{D} \psi_{\mathrm{k}}\right| \sim 2^{\mathrm{k}}$.
- $\psi_{\mathrm{k}-1} \equiv 1 \mathrm{in} \operatorname{supp} \psi_{\mathrm{k}}$.

Family of Cut-offs

- Define

$$
\psi_{\mathrm{k}}(\mathrm{X}):= \begin{cases}1 & \text { in } \mathrm{B}_{\frac{1}{2}+2^{-k}} \\ 0 & \text { in } \mathrm{B}_{1} \backslash \mathrm{~B}_{\frac{1}{2}+2^{-(k-1)}}\end{cases}
$$

- $\left|\mathbf{D} \psi_{\mathrm{k}}\right| \sim 2^{\mathrm{k}}$.
- $\psi_{\mathrm{k}-1} \equiv 1$ in supp ψ_{k}.

Family of Cut-offs

- Define

$$
\psi_{\mathrm{k}}(\mathrm{X}):= \begin{cases}1 & \text { in } \mathrm{B}_{\frac{1}{2}+2^{-k}} \\ 0 & \text { in } \mathrm{B}_{1} \backslash \mathrm{~B}_{\frac{1}{2}+2^{-(k-1)}}\end{cases}
$$

- $\left|\mathbf{D} \psi_{\mathrm{k}}\right| \sim 2^{\mathrm{k}}$.
- $\psi_{\mathrm{k}-1} \equiv 1$ in $\operatorname{supp} \psi_{\mathrm{k}}$.

Family of Cut-offs

- Define

$$
\psi_{\mathrm{k}}(\mathrm{X}):=\left\{\begin{array}{lll}
1 & \text { in } & \mathrm{B}_{\frac{1}{2}+2^{-k}}=: \mathrm{B}_{\mathrm{k}} \\
0 & \text { in } & \mathrm{B}_{1} \backslash \mathrm{~B}_{\frac{1}{2}+2^{-(k-1)}}
\end{array}\right.
$$

- $\left|\mathbf{D} \psi_{\mathrm{k}}\right| \sim 2^{\mathrm{k}}$.
- $\psi_{\mathrm{k}-1} \equiv 1 \mathrm{in} \operatorname{supp} \psi_{\mathrm{k}}$.

Family of Cut-offs

- Define

$$
\psi_{\mathrm{k}}(\mathrm{X}):=\left\{\begin{array}{lll}
1 & \text { in } & \mathrm{B}_{\frac{1}{2}+2-\mathrm{k}}=: \mathrm{B}_{\mathrm{k}} \\
0 & \text { in } & \mathrm{B}_{1} \backslash \mathrm{~B}_{\frac{1}{2}+2-(k-1)} .
\end{array}\right.
$$

- $\left|\mathrm{D} \psi_{\mathrm{k}}\right| \sim 2^{\mathrm{k}}$.
- $\psi_{\mathrm{k}-1} \equiv 1$ in $\operatorname{supp} \psi_{\mathrm{k}}$.

Non-Linear Recursive Relation

- Define $\mathrm{u}_{\mathrm{k}}:=\left(\mathrm{u}-\left[1-2^{-\mathrm{k}}\right]\right)^{+}, \& \mathrm{~A}_{\mathrm{k}}:=\left\|\mathrm{u}_{\mathrm{k}} \psi_{\mathrm{k}}\right\|_{\mathrm{L}^{2}}$.

Non-Linear Recursive Relation

- Define $\mathrm{u}_{\mathrm{k}}:=\left(\mathrm{u}-\left[1-2^{-\mathrm{k}}\right]\right)^{+}, \& \mathrm{~A}_{\mathrm{k}}:=\left\|\mathrm{u}_{\mathrm{k}} \psi_{\mathrm{k}}\right\|_{\mathrm{L}^{2}}$.

Non-Linear Recursive Relation

- Define $\mathrm{u}_{\mathrm{k}}:=\left(\mathrm{u}-\left[1-2^{-\mathrm{k}}\right]\right)^{+}, \& \mathrm{~A}_{\mathrm{k}}:=\left\|\mathrm{u}_{\mathrm{k}} \psi_{\mathrm{k}}\right\|_{\mathrm{L}^{2}}$.

Non-Linear Recursive Relation

- Define $\mathrm{u}_{\mathrm{k}}:=\left(\mathrm{u}-\left[1-2^{-\mathrm{k}}\right]\right)^{+}, \& \mathrm{~A}_{\mathrm{k}}:=\left\|\mathrm{u}_{\mathrm{k}} \psi_{\mathrm{k}}\right\|_{\mathrm{L}^{2}}$.
- We want to show

$$
\psi_{\mathrm{k}} \mathrm{u}_{\mathrm{k}} \xrightarrow{\mathrm{k} \rightarrow \infty} 0, \text { provided }\left\|\mathrm{u}^{+}\right\|_{\mathrm{L}^{2}} \ll 1
$$

- Combing Sobolev Inequality and Energy Estimate, we reach the following Non-Linear Recursive Relation:

$$
\begin{aligned}
& A_{k} \leq C\left[2^{2 k} A_{k-1}\right]^{\mu+1} \\
& \text { ll enough, indeed } A_{k} \xrightarrow{k \rightarrow \infty} 0 .
\end{aligned}
$$

Non-Linear Recursive Relation

- Define $\mathrm{u}_{\mathrm{k}}:=\left(\mathrm{u}-\left[1-2^{-\mathrm{k}}\right]\right)^{+}, \& \mathrm{~A}_{\mathrm{k}}:=\left\|\mathrm{u}_{\mathrm{k}} \psi_{\mathrm{k}}\right\|_{\mathrm{L}^{2}}$.
- We want to show

$$
\psi_{\mathrm{k}} u_{k} \xrightarrow{k \rightarrow \infty} 0, \text { provided }\left\|\mathbf{u}^{+}\right\|_{\mathrm{L}^{2}} \ll 1
$$

- Combing Sobolev Inequality and Energy Estimate, we reach the following Non-Linear Recursive Relation:

$$
\mathrm{A}_{\mathrm{k}} \leq \mathrm{C}\left[2^{2 \mathrm{k}} \mathrm{~A}_{\mathrm{k}-1}\right]^{\mu+1}
$$

- Thus, if A_{0} is small enough, indeed A_{k}

Non-Linear Recursive Relation

- Define $\mathrm{u}_{\mathrm{k}}:=\left(\mathrm{u}-\left[1-2^{-\mathrm{k}}\right]\right)^{+}, \& \mathrm{~A}_{\mathrm{k}}:=\left\|\mathrm{u}_{\mathrm{k}} \psi_{\mathrm{k}}\right\|_{\mathrm{L}^{2}}$.
- We want to show

$$
\psi_{\mathrm{k}} \mathrm{u}_{\mathrm{k}} \xrightarrow{\mathrm{k} \rightarrow \infty} 0, \text { provided }\left\|\mathrm{u}^{+}\right\|_{\mathrm{L}^{2}} \ll 1
$$

- Combing Sobolev Inequality and Energy Estimate, welkorg OrO g

Oscillation Lemma

Lemma (De Giorgi's oscillation lemma)

Let u be a solution to $\operatorname{div}\left(\mathrm{a}_{\mathrm{ij}}(\mathrm{X}) \mathrm{Du}\right)=0$ in B_{1}.
oscu $=2$, then

for some $\lambda<1$ that depends only on ellipticity.

Oscillation Lemma

Lemma (De Giorgi's oscillation lemma)
 Let u be a solution to $\operatorname{div}\left(\mathrm{a}_{\mathrm{ij}}(\mathrm{X}) \mathrm{Du}\right)=0$ in B_{1}. Assume $\operatorname{osc} u=2$, then
 B_{1}

for some $\lambda<1$ that depends only on ellipticity.

Oscillation Lemma

Lemma (De Giorgi's oscillation lemma)
Let u be a solution to $\operatorname{div}\left(\mathrm{a}_{\mathrm{ij}}(\mathrm{X}) \mathrm{Du}\right)=0$ in B_{1}. Assume $\operatorname{osc} u=2$, then B_{1}

$$
\underset{\mathrm{B}_{1 / 2}}{\operatorname{osc} \mathrm{u}} \leq 2 \lambda,
$$

for some $\lambda<1$ that depends only on ellipticity.

Geometrical Idea of the Proof

1. We can assume $-1 \leq u \leq 1$.
2. If u is a solution, then u^{+}is a subsolution .

Geometrical Idea of the Proof

1. We can assume $-1 \leq u \leq 1$.
2. If u is a solution, then u^{+}is a subsolution .

Geometrical Idea of the Proof

1. We can assume $-1 \leq u \leq 1$.
2. If u is a solution, then u^{+}is a subsolution (suitable for the $L^{2} \Rightarrow L^{\infty}$ Lemma).

Geometrical Idea of the Proof

1. We can assume $-1 \leq u \leq 1$.
2. If u is a solution, then u^{+}is a subsolution (suitable for the $\mathrm{L}^{2} \Rightarrow \mathrm{~L}^{\infty}$ Lemma).
3. If \mathbf{u}^{+}is zero "most of the time", previous Lemma guarantees

$$
\mathrm{u}^{+} \leq 1 / 2 \text { in } \mathrm{B}_{1 / 2}
$$

and the Oscillation Lemma is Proven!.

Geometrical Idea of the Proof

1. We can assume $-1 \leq u \leq 1$.
2. If u is a solution, then u^{+}is a subsolution (suitable for the $\mathrm{L}^{2} \Rightarrow \mathrm{~L}^{\infty}$ Lemma).
3. If $\left\|\mathrm{u}^{+}\right\|_{\mathrm{L}^{2}\left(\mathrm{~B}_{3 / 4}\right)} \leq \delta / 2$, previous Lemma guarantees

$$
\mathrm{u}^{+} \leq 1 / 2 \text { in } \mathrm{B}_{1 / 2}
$$

and the Oscillation Lemma is Proven!.

How do you produce the above situation?

1. Assume $\mathrm{u}^{+} \equiv 0$ at least half of the time in $\mathrm{B}_{3 / 4}$.
2. Cut the graph of u^{+}at level $1 / 2$, i.e. define

$$
\mathrm{v}_{1}:=\min \left\{\mathrm{u}^{+}, 1 / 2\right\} .
$$

3. Because $\left\|\mathbf{u}^{+}\right\|_{L^{2}}$ is under control, it needs some room to go from 0 to 1/2.
4. Thus, Vol. $\left(\left\{v_{1}=1 / 2\right\}\right)$ is a fixed proportion larger than Vol. $\left(\left\{\mathbf{u}^{+}=0\right\}\right)$ in $\mathrm{B}_{3 / 4}$.
5. Consider the above part of the truncation and re-scale it to the normalized picture.
6. Repeat the procedure until you reach the previous situation.

How do you produce the above situation?

1. Assume $\mathrm{u}^{+} \equiv 0$ at least half of the time in $\mathrm{B}_{3 / 4}$.
2. Cut the graph of u^{+}at level $1 / 2$, i.e. define

$$
v_{1}:=\min \left\{u^{+}, 1 / 2\right\} .
$$

3. Because $\left\|\mathrm{u}^{+}\right\|_{\mathrm{L}^{2}}$ is under control, it needs some room to go from 0 to $1 / 2$.
4. Thus, Vol. $\left(\left\{\mathbf{v}_{1}=1 / 2\right\}\right)$ is a fixed proportion larger than
5. Consider the above part of the truncation and re-scale it to the normalized picture.
6. Repeat the procedure until you reach the previous situation.

How do you produce the above situation?

1. Assume $\mathrm{u}^{+} \equiv 0$ at least half of the time in $\mathrm{B}_{3 / 4}$.
2. Cut the graph of u^{+}at level $1 / 2$, i.e. define

$$
v_{1}:=\min \left\{u^{+}, 1 / 2\right\} .
$$

3. Because $\left\|\mathbf{u}^{+}\right\|_{L^{2}}$ is under control, it needs some room to go from 0 to $1 / 2$.
4. Thus, $\operatorname{Vol} .\left(\left\{\mathrm{V}_{1}=1 / 2\right\}\right)$ is a fixed proportion larger than
5. Consider the above part of the truncation and re-scale it to the normalized picture.
6. Repeat the procedure unitil you reach the previous situation.

How do you produce the above situation?

1. Assume $\mathrm{u}^{+} \equiv 0$ at least half of the time in $\mathrm{B}_{3 / 4}$.
2. Cut the graph of u^{+}at level $1 / 2$, i.e. define

$$
v_{1}:=\min \left\{u^{+}, 1 / 2\right\} .
$$

3. Because $\left\|\mathbf{u}^{+}\right\|_{L^{2}}$ is under control, it needs some room to go from 0 to $1 / 2$.
4. Thus, Vol. $\left(\left\{\mathrm{v}_{1}=1 / 2\right\}\right)$ is a fixed proportion larger than Vol. $\left(\left\{\mathbf{u}^{+}=0\right\}\right)$ in $B_{3 / 4}$.
5. Consider the above part of the truncation and re-scale it to the normalized picture.
6. Repeat the procedure until you reach the previous situation.

How do you produce the above situation?

1. Assume $\mathrm{u}^{+} \equiv 0$ at least half of the time in $\mathrm{B}_{3 / 4}$.
2. Cut the graph of u^{+}at level $1 / 2$, i.e. define

$$
v_{1}:=\min \left\{u^{+}, 1 / 2\right\} .
$$

3. Because $\left\|\mathbf{u}^{+}\right\|_{L^{2}}$ is under control, it needs some room to go from 0 to $1 / 2$.
4. Thus, Vol. $\left(\left\{\mathrm{v}_{1}=1 / 2\right\}\right)$ is a fixed proportion larger than Vol. $\left(\left\{\mathbf{u}^{+}=0\right\}\right)$ in $\mathrm{B}_{3 / 4}$.
5. Consider the above part of the truncation and re-scale it to the normalized picture.
6. Repeat the procedure until you reach the previous situation.

How do you produce the above situation?

1. Assume $\mathrm{u}^{+} \equiv 0$ at least half of the time in $\mathrm{B}_{3 / 4}$.
2. Cut the graph of u^{+}at level $1 / 2$, i.e. define

$$
v_{1}:=\min \left\{u^{+}, 1 / 2\right\} .
$$

3. Because $\left\|\mathbf{u}^{+}\right\|_{L^{2}}$ is under control, it needs some room to go from 0 to $1 / 2$.
4. Thus, Vol. $\left(\left\{\mathrm{v}_{1}=1 / 2\right\}\right)$ is a fixed proportion larger than Vol. $\left(\left\{\mathbf{u}^{+}=0\right\}\right)$ in $\mathrm{B}_{3 / 4}$.
5. Consider the above part of the truncation and re-scale it to the normalized picture.
6. Repeat the procedure until you reach the previous situation.

$$
\mathrm{Vol}_{2}>\mathrm{Vol}_{1}+\varepsilon
$$

Closing

Próxima Aula
Problemas Não-Variacionais e a teoria de Krylov-Safonov.

Closing

Próxima Aula
Problemas Não-Variacionais e a teoria de Krylov-Safonov.

Universidade Federal do Ceará
Departamento de Matemática

Eduardo Teixeira

```
www.mat.ufc.br./~teixeira
eteixeira@ufc.br
```

