Introdução à teoria de regularidade elíptica Aula 2: Teoria de DeGiorgi

Eduardo V. Teixeira

Universidade Federal do Ceará

UNICAMP, fevereiro de 2009

General problem in the Calculus of Variation

Hilbert's 19th Problem

"Are the solutions of Lagrangians always analytic?"

General problem in the Calculus of Variation

Hilbert's 19th Problem

"Are the solutions of Lagrangians always analytic?"

$$E(u) = \int_{\Omega} F(Du) dX \longrightarrow \min.$$

General problem in the Calculus of Variation

Hilbert's 19th Problem

"Are the solutions of Lagrangians always analytic?"

$$E(u) = \int_{\Omega} F(Du) dX \longrightarrow \min.$$

• Convexity of *F* is a Necessary and Sufficient condition for Weak Lower Semicontinuity of *E*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Let *u* minimizes
$$E(v) := \int_{\Omega} F(Dv) dX$$
.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Let *u* minimizes
$$E(v) := \int_{\Omega} F(Dv) dX$$
.
$$0 = \frac{d}{dt} E(u + t\varphi) \Big|_{t=0}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Let *u* minimizes
$$E(v) := \int_{\Omega} F(Dv) dX$$
.

$$0 = \frac{d}{dt} E(u + t\varphi) \Big|_{t=0} = \int_{\Omega} D\varphi \cdot F_j(Du) dX.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Let *u* minimizes
$$E(v) := \int_{\Omega} F(Dv) dX$$
. Then,
div $(F_j(Du)) = 0$.

Let *u* minimizes
$$E(v) := \int_{\Omega} F(Dv) dX$$
. Then,

$$\operatorname{div}\left(F_{j}(Du)\right)=0.$$

Passing the Derivatives Through,

$$\sum_{i,j}F_{ij}(Du)D_{ij}u=0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Let *u* minimizes
$$E(v) := \int_{\Omega} F(Dv) dX$$
. Then,
div $(F_j(Du)) = 0$.

Passing the Derivatives Through,

$$\sum_{i,j} F_{ij}(Du) D_{ij} u = 0.$$

If *F_{ij}(Du*) is Hölder Continuous, Schauder's Estimates give *u* is *C*[∞] and Analyticity follows by standard arguments.

Let *u* minimizes
$$E(v) := \int_{\Omega} F(Dv) dX$$
. Then,
div $(F_j(Du)) = 0$.

Passing the Derivatives Through,

$$\sum_{i,j} F_{ij}(Du) D_{ij} u = 0.$$

• If Du is Hölder Continuous, Schauder's Estimates give u is C^{∞} and Analyticity follows by standard arguments.

Recall

$\operatorname{div}\left(F_{j}(Du)\right)=0.$

We need to show a solution to the above equation is $C^{1,\alpha}$.

- Fix a direction μ. Deriving the above Equation in the μ direction gives
- Thus, u_{μ} satisfies an Equation

$$\operatorname{div}\left(a_{ij}(X)D\xi\right)=\mathbf{0},$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Recall

 $\operatorname{div}\left(F_{j}(Du)\right)=0.$

We need to show a solution to the above equation is $C^{1,\alpha}$.

- Fix a direction μ. Deriving the above Equation in the μ direction gives
- Thus, u_{μ} satisfies an Equation

 $\operatorname{div}\left(a_{ij}(X)D\xi\right)=\mathbf{0},$

▲□▶▲□▶▲□▶▲□▶ □ のQで

A PDE Approach for Hilbert's 19th Problem

Recall

 $\operatorname{div}\left(F_{j}(Du)\right)=0.$

We need to show a solution to the above equation is $C^{1,\alpha}$.

- Fix a direction μ. Deriving the above Equation in the μ direction gives
- Thus, u_{μ} satisfies an Equation

 $\operatorname{div}\left(a_{ij}(X)D\xi\right)=\mathbf{0},$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A PDE Approach for Hilbert's 19th Problem

Recall

$$\operatorname{div}\left(F_{j}(Du)\right)=0.$$

We need to show a solution to the above equation is $C^{1,\alpha}$.

- Fix a direction $\mu.$ Deriving the above Equation in the μ direction gives
- Thus, u_{μ} satisfies an Equation

$$\operatorname{div}\left(a_{ij}(X)D\xi\right)=\mathbf{0},$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Recall

$$\operatorname{div}\left(F_{j}(Du)\right)=0.$$

We need to show a solution to the above equation is $C^{1,\alpha}$.

- Fix a direction $\mu.$ Deriving the above Equation in the μ direction gives

$$\operatorname{div}\left(F_{ij}(Du)Du_{\mu}\right)=0.$$

• Thus, u_{μ} satisfies an Equation

 $\operatorname{div}\left(a_{ij}(X)D\xi\right)=\mathbf{0},$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall

$$\operatorname{div}\left(F_{j}(Du)\right)=0.$$

We need to show a solution to the above equation is $C^{1,\alpha}$.

• Fix a direction $\mu.$ Deriving the above Equation in the μ direction gives

$$\operatorname{div}\left(F_{ij}(Du)Du_{\mu}\right)=0.$$

• Thus, u_{μ} satisfies an Equation

$$\operatorname{div}\left(a_{ij}(X)D\xi\right)=0,$$

(ロ) (同) (三) (三) (三) (○) (○)

Goal Establish Hölder Continuity for solutions to

 $\operatorname{div}(a_{ij}(X)Du)=0,$

when a_{ij} is only known to the bounded measurable and elliptic.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Theorem

Theorem (De Giorgi-Nash-Moser)

Let a_{ij} be a uniform elliptic matrix and u an H¹ (distributional) solution to

$$\operatorname{div}\left(a_{ij}(X)Du\right)=0 \text{ in } B_1.$$

Then u is Hölder continuous in B_{1/2}. Furthermore,

$$\|u\|_{C^{\alpha}(B_{1/2})} \leq C \|u\|_{L^{2}(B_{1})},$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

where C depends only on dimension and ellipticity.

Outline

\checkmark The Proof is Divided in two parts:

An L[∞] estimate in terms of the L² norm.
 An Oscillation Lemma

Operators in Divergence Form •••••• •••••••

Outline

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

\checkmark The Proof is Divided in two parts:

- 1. An L^{∞} estimate in terms of the L^2 norm.
- 2. An Oscillation Lemma

Operators in Divergence Form •••••• •••••••

Outline

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- \checkmark The Proof is Divided in two parts:
 - 1. An L^{∞} estimate in terms of the L^2 norm.
 - 2. An Oscillation Lemma

Operators in Divergence Form •••••• •••••••

Outline

- \checkmark The Proof is Divided in two parts:
 - 1. An L^{∞} estimate in terms of the L^2 norm.
 - 2. An Oscillation Lemma: De Giorgi's famous Oscillation Lemma.

$L^2 \Rightarrow L^\infty$ Estimate

Lemma ($L^2 \Rightarrow L^{\infty}$) Let u satisfy

$\operatorname{div}\left(a_{ij}(X)Du\right)\geq 0.$

There exists a $\delta > 0$, depending only on ellipticity, such that

 $\|u^+\|_{L^2(B_1)} \le \delta$ implies $\|u^+\|_{L^\infty(B_{1/2})} \le 1$.

$L^2 \Rightarrow L^\infty$ Estimate

Lemma ($L^2 \Rightarrow L^{\infty}$) Let u satisfy

$\operatorname{div}\left(a_{ij}(X)Du\right) \geq 0.$

There exists a $\delta > 0$, depending only on ellipticity, such that

 $\|u^+\|_{L^2(B_1)} \le \delta$ implies $\|u^+\|_{L^\infty(B_{1/2})} \le 1$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$L^2 \Rightarrow L^\infty$ Estimate

Lemma ($L^2 \Rightarrow L^\infty$) Let u satisfy

$$\operatorname{div}\left(a_{ij}(X)Du\right)\geq 0.$$

There exists a $\delta > 0$, depending only on ellipticity, such that

 $\|u^+\|_{L^2(B_1)} \le \delta$ implies $\|u^+\|_{L^\infty(B_{1/2})} \le 1$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1. Sobolev Inequality:

$$\int_{B_1} |f|^p dX \le C \left(\int_{B_1} |\nabla f|^2 dX \right)^{p/2}$$

for
$$p = \frac{2n}{n-2} > 2$$
.

2. Energy Estimate: If $v \ge 0$ satisfy div $(a_{ij}(X)Dv) \ge 0$ in B_1 , Then,

 $\int_{B_1} \left| D(\psi v) \right|^2 dX \le C \sup |\nabla \psi|^2 \int_{B_1} (v)^2 dX, \quad \forall \psi \in C_0^\infty(B_1)$

< □ > < □ > < 亘 > < 亘 > < 亘 > ○ < ♡ < ♡

1. Sobolev Inequality:

$$\int_{B_1} |f|^p dX \leq C \left(\int_{B_1} |\nabla f|^2 dX \right)^{p/2},$$

for
$$p = \frac{2n}{n-2} > 2$$
.

2. Energy Estimate: If $v \ge 0$ satisfy div $(a_{ij}(X)Dv) \ge 0$ in B_1 , Then,

 $\int_{B_1} \left| D(\psi v) \right|^2 dX \le C \sup |\nabla \psi|^2 \int_{B_1} (v)^2 dX, \quad \forall \psi \in C_0^\infty(B_1)$

・ロト・四ト・モー・ ヨー うへぐ

1. Sobolev Inequality:

$$\int_{B_1} |f|^p dX \leq C \left(\int_{B_1} |\nabla f|^2 dX \right)^{p/2},$$

for
$$p = \frac{2n}{n-2} > 2$$
.

2. Energy Estimate: If $v \ge 0$ satisfy div $(a_{ij}(X)Dv) \ge 0$ in B_1 , Then,

$$\int_{B_1} \left| D(\psi v) \right|^2 dX \le C \sup |\nabla \psi|^2 \int_{B_1} (v)^2 dX, \quad \forall \psi \in C_0^\infty(B_1)$$

1. Sobolev Inequality:

$$\int_{B_1} |f|^p dX \leq C \left(\int_{B_1} |\nabla f|^2 dX \right)^{p/2},$$

for
$$p = \frac{2n}{n-2} > 2$$
.

2. Energy Estimate: If $v \ge 0$ satisfy $\operatorname{div} (a_{ij}(X)Dv) \ge 0$ in B_1 , Then,

$$\int_{B_1} \left| D(\psi v) \right|^2 dX \le C \sup |\nabla \psi|^2 \int_{B_1} (v)^2 dX, \quad \forall \psi \in C_0^\infty(B_1)$$

1. Sobolev Inequality:

$$\int_{B_1} |f|^p dX \leq C \left(\int_{B_1} |\nabla f|^2 dX \right)^{p/2},$$

for $p = \frac{2n}{n-2} > 2$.

2. Energy Estimate: If $v \ge 0$ satisfy $\operatorname{div} (a_{ij}(X)Dv) \ge 0$ in B_1 , Then,

$$\int_{B_1} \left| D(\psi v) \right|^2 dX \le C \sup |\nabla \psi|^2 \int_{B_1} (v)^2 dX, \quad \forall \psi \in C_0^\infty(B_1)$$

* Sobolev and Energy Inequalities compete in a different homogeneity *

Family of Cut-offs

• Define
$$\psi_k(X) := \left\{ egin{array}{cccc} 1 & ext{in} & B_{rac{1}{2}+2^{-k}} \ 0 & ext{in} & B_1 \setminus B_{rac{1}{2}+2^{-(k-1)}}. \end{array}
ight.$$

•
$$|D\psi_k| \sim 2^k$$
.

•
$$\psi_{k-1} \equiv 1$$
 in supp ψ_k .

Family of Cut-offs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

• Define
$$\psi_k(X) := \left\{ egin{array}{cccc} 1 & ext{in} & B_{rac{1}{2}+2^{-k}} \ 0 & ext{in} & B_1 \setminus B_{rac{1}{2}+2^{-(k-1)}}. \end{array}
ight.$$

•
$$|D\psi_k| \sim 2^k$$
.

• $\psi_{k-1} \equiv 1$ in supp ψ_k .

Family of Cut-offs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• Define
$$\psi_k(X) := \begin{cases} 1 & \text{in } B_{\frac{1}{2}+2^{-k}} \\ 0 & \text{in } B_1 \setminus B_{\frac{1}{2}+2^{-(k-1)}}. \end{cases}$$

•
$$|D\psi_k| \sim 2^k$$
.

•
$$\psi_{k-1} \equiv 1$$
 in supp ψ_k .

Family of Cut-offs

• Define

$$\psi_k(X) := \begin{cases} 1 & \text{in } B_{\frac{1}{2}+2^{-k}} =: B_k \\ 0 & \text{in } B_1 \setminus B_{\frac{1}{2}+2^{-(k-1)}}. \end{cases}$$

•
$$|D\psi_k| \sim 2^k$$
.

•
$$\psi_{k-1} \equiv 1$$
 in supp ψ_k .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Family of Cut-offs

• Define

$$\psi_k(X) := \begin{cases} 1 & \text{in } B_{\frac{1}{2}+2^{-k}} =: B_k \\ 0 & \text{in } B_1 \setminus B_{\frac{1}{2}+2^{-(k-1)}}. \end{cases}$$

•
$$|D\psi_k| \sim 2^k$$
.

•
$$\psi_{k-1} \equiv 1$$
 in supp ψ_k .

Operators in Divergence Form ○○○○ ○○○● ○○○○

Non-Linear Recursive Relation

• Define $u_k := (u - [1 - 2^{-k}])^+$, & $A_k := \|u_k \psi_k\|_{L^2}$.

(日)

• Define $u_k := (u - [1 - 2^{-k}])^+$, & $A_k := \|u_k \psi_k\|_{L^2}$.

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Define $u_k := (u - [1 - 2^{-k}])^+$, & $A_k := \|u_k \psi_k\|_{L^2}$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

- Define $u_k := (u [1 2^{-k}])^+$, & $A_k := \|u_k \psi_k\|_{L^2}$.
- We want to show

$$\psi_k u_k \stackrel{k \to \infty}{\longrightarrow} 0$$
, provided $||u^+||_{L^2} \ll 1$.

• Combing Sobolev Inequality and Energy Estimate, we reach the following Non-Linear Recursive Relation:

$$A_k \le C \left[2^{2k} A_{k-1} \right]^{\mu+1}$$

• Thus, if A_0 is small enough, indeed $A_k \stackrel{k \to \infty}{\longrightarrow} 0$.

・ロト・四ト・日本・日本・日本・日本

- Define $u_k := (u [1 2^{-k}])^+$, & $A_k := \|u_k \psi_k\|_{L^2}$.
- We want to show

$$\psi_k u_k \stackrel{k \to \infty}{\longrightarrow} 0$$
, provided $||u^+||_{L^2} \ll 1$.

• Combing Sobolev Inequality and Energy Estimate, we reach the following Non-Linear Recursive Relation:

$$A_k \leq C \left[2^{2k} A_{k-1} \right]^{\mu+1}$$

A D F A 同 F A E F A E F A Q A

• Thus, if A_0 is small enough, indeed $A_k \stackrel{k \to \infty}{\longrightarrow} 0$.

- Define $u_k := (u [1 2^{-k}])^+$, & $A_k := \|u_k \psi_k\|_{L^2}$.
- We want to show

$$\psi_k u_k \stackrel{k \to \infty}{\longrightarrow} 0$$
, provided $||u^+||_{L^2} \ll 1$.

k2||
 Combing Sobolev Inequality and Energy Estimate, welkWg 0r0 g g

Oscillation Lemma

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Lemma (De Giorgi's oscillation lemma) Let u be a solution to $div(a_{ij}(X)Du) = 0$ in B_1 . Assume $osc_{B_1} u = 2$, then $osc_{B_1} u \le 2\lambda$, $B_{1/2}$

for some $\lambda < 1$ that depends only on ellipticity.

Oscillation Lemma

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Lemma (De Giorgi's oscillation lemma)

Let u be a solution to $div(a_{ij}(X)Du) = 0$ in B_1 . Assume $\underset{B_1}{osc \ u = 2}$, then $\underset{B_{1/2}}{osc \ u \le 2\lambda}$,

for some $\lambda < 1$ that depends only on ellipticity.

Oscillation Lemma

Lemma (De Giorgi's oscillation lemma)

Let u be a solution to $div(a_{ij}(X)Du) = 0$ in B_1 . Assume osc u = 2, then osc $u \le 2\lambda$,

B_{1/2}

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

for some $\lambda < 1$ that depends only on ellipticity.

1. We can assume $-1 \le u \le 1$.

2. If u is a solution, then u^+ is a subsolution.

3. If , previous Lemma guarantees

 $u^+ \le 1/2$ in $B_{1/2}$,

▲□▶▲□▶▲□▶▲□▶ □ のQで

- 1. We can assume $-1 \le u \le 1$.
- 2. If u is a solution, then u^+ is a subsolution .
- 3. If , previous Lemma guarantees

 $u^+ \le 1/2$ in $B_{1/2}$,

▲□▶▲□▶▲□▶▲□▶ □ のQで

- 1. We can assume $-1 \le u \le 1$.
- 2. If *u* is a solution, then u^+ is a subsolution (suitable for the $L^2 \Rightarrow L^{\infty}$ Lemma).
- 3. If , previous Lemma guarantees

 $u^+ \leq 1/2$ in $B_{1/2}$,

▲□▶▲□▶▲□▶▲□▶ □ のQで

- 1. We can assume $-1 \le u \le 1$.
- 2. If *u* is a solution, then u^+ is a subsolution (suitable for the $L^2 \Rightarrow L^{\infty}$ Lemma).
- 3. If *u*⁺ is zero "most of the time", previous Lemma guarantees

 $u^+ \leq 1/2$ in $B_{1/2}$,

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- 1. We can assume $-1 \le u \le 1$.
- 2. If *u* is a solution, then u^+ is a subsolution (suitable for the $L^2 \Rightarrow L^{\infty}$ Lemma).
- 3. If $||u^+||_{L^2(B_{3/4})} \le \delta/2$, previous Lemma guarantees

$$u^+ \le 1/2$$
 in $B_{1/2}$,

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 1. Assume $u^+ \equiv 0$ at least half of the time in $B_{3/4}$.
- 2. Cut the graph of u^+ at level 1/2, i.e. define

- Because ||u⁺||_{L²} is under control, it needs some room to go from 0 to 1/2.
- 4. Thus, Vol.($\{v_1 = 1/2\}$) is a fixed proportion larger than Vol.($\{u^+ = 0\}$) in $B_{3/4}$.
- 5. Consider the above part of the truncation and re-scale it to the normalized picture.
- 6. Repeat the procedure until you reach the previous situation.

- 1. Assume $u^+ \equiv 0$ at least half of the time in $B_{3/4}$.
- 2. Cut the graph of u^+ at level 1/2, i.e. define

- Because ||u⁺||_{L²} is under control, it needs some room to go from 0 to 1/2.
- 4. Thus, Vol.($\{v_1 = 1/2\}$) is a fixed proportion larger than Vol.($\{u^+ = 0\}$) in $B_{3/4}$.
- 5. Consider the above part of the truncation and re-scale it to the normalized picture.
- 6. Repeat the procedure until you reach the previous situation.

- 1. Assume $u^+ \equiv 0$ at least half of the time in $B_{3/4}$.
- 2. Cut the graph of u^+ at level 1/2, i.e. define

- Because ||u⁺||_{L²} is under control, it needs some room to go from 0 to 1/2.
- 4. Thus, Vol.($\{v_1 = 1/2\}$) is a fixed proportion larger than Vol.($\{u^+ = 0\}$) in $B_{3/4}$.
- 5. Consider the above part of the truncation and re-scale it to the normalized picture.
- 6. Repeat the procedure until you reach the previous situation.

- 1. Assume $u^+ \equiv 0$ at least half of the time in $B_{3/4}$.
- 2. Cut the graph of u^+ at level 1/2, i.e. define

- Because ||u⁺||_{L²} is under control, it needs some room to go from 0 to 1/2.
- 4. Thus, Vol.($\{v_1 = 1/2\}$) is a fixed proportion larger than Vol.($\{u^+ = 0\}$) in $B_{3/4}$.
- 5. Consider the above part of the truncation and re-scale it to the normalized picture.
- 6. Repeat the procedure until you reach the previous situation.

- 1. Assume $u^+ \equiv 0$ at least half of the time in $B_{3/4}$.
- 2. Cut the graph of u^+ at level 1/2, i.e. define

- Because ||u⁺||_{L²} is under control, it needs some room to go from 0 to 1/2.
- 4. Thus, Vol.($\{v_1 = 1/2\}$) is a fixed proportion larger than Vol.($\{u^+ = 0\}$) in $B_{3/4}$.
- 5. Consider the above part of the truncation and re-scale it to the normalized picture.
- 6. Repeat the procedure until you reach the previous situation.

- 1. Assume $u^+ \equiv 0$ at least half of the time in $B_{3/4}$.
- 2. Cut the graph of u^+ at level 1/2, i.e. define

- Because ||u⁺||_{L²} is under control, it needs some room to go from 0 to 1/2.
- 4. Thus, Vol.($\{v_1 = 1/2\}$) is a fixed proportion larger than Vol.($\{u^+ = 0\}$) in $B_{3/4}$.
- 5. Consider the above part of the truncation and re-scale it to the normalized picture.
- 6. Repeat the procedure until you reach the previous situation.

 $Vol_2 > Vol_1 +$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Closing

Próxima Aula

Problemas Não-Variacionais e a teoria de Krylov-Safonov.

Closing

Próxima Aula

Problemas Não-Variacionais e a teoria de Krylov-Safonov.

