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Tsirelson’s space and some applications to
Holomorphy

Pilar Rueda

Abstract

Tsirelson’s space T has provided several interesting counterexam-
ples in the frame of Banach Spaces Theory. However, the behavior
of T , that can be considered as pathological, turns to provide nice
properties in the Infinite Dimensional Holomorphy. These notes are
devoted to Tsirelson’s space, which is presented following the construc-
tion given by Figiel and Johnson, that was used by mathematicians as
Casazza and Shura or Lindenstrauss and Tzafriri. The main applica-
tion we present of Tsirelson space in Infinite Dimensional Holomorphy
is due to Alencar, Aron and Dineen. They used Tsirelson’s space to
get the first example of a reflexive space of holomorphic functions
defined on a Banach space of infinite dimension.

1 Introduction

Until 1974 all known Banach spaces had copies of c0 or `p for some 1 ≤
p < ∞. However, that year Tsirelson constructed a reflexive Banach space
with an unconditional basis that had neither isomorphic copies of `p, for any
1 ≤ p < ∞, nor of c0. Tsirelson’s work allowed many mathematicians as
Figiel, Johnson, Odell, Schechtman, Argyros, Deliyanni..., to construct new
counterexamples in the theory of Banach spaces. This examples were called
modified Tsirelson’s spaces, mixed Tsirelson’s spaces...

Tsirelson’s space has also found applications to Holomorphy. In the sev-
enties properties as reflexivity of spaces of polynomials and holomorphic func-
tions on a Banach space X were being studied although there were no known
examples yet of infinite dimensional Banach spaces X with such a property.
In 1984 Alencar, Aron and Dineen used Tsirelson’s space to get the first
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example of a reflexive space of holomorphic functions defined on an infinite
dimensional Banach space. Later on, Prieto [18] proved that the space of
all holomorphic functions on the original Tsirelson’s space T ∗ that are of
bounded type is reflexive. Rueda [19] and Garćıa, Maestre and Rueda [8]
generalized Prieto’s result to weighted spaces of holomorphic functions de-
fined on a balanced open subset of T ∗. Tsirelson’s space has been (and is
still) used in the frame of Holomorphy and that has occasioned our personal
interest on this space.

The purpose of this course is to introduce Tsirelson space paying attention
to those properties that yield mainly to the example given by Alencar-Aron-
Dineen, Prieto and Garćıa-Maestre-Rueda.

The construction we are going to follow is the one by Figiel and Johnson
[7], that was used by mathematicians as Casazza and Shura [3] or Linden-
strauss and Tzafriri [13], and that was given the name of Tsirelson’s space
T although the original Tsirelson’s space [21] is (an identification of) the
dual T ∗ of T . Both spaces T and T ∗ share the most important properties as
reflexivity, both have unconditional basis and do not contain copies of co or
any `p.

These notes are based mainly in some of the results that appear in [3],
[6], [13] concerning Tsirelson’s space. We refer to these excellent books for
further references. Some properties on T have been selected: on one hand,
the “nice” ones as reflexivity or the containment of an unconditional basis
and those “pathological” properties as the non containment of copies of any
`p and, on the other hand, those properties that yield to the applications in
Infinite Dimensional Holomorphy. The aim of proportionating self-contained
and detailed proofs around Tsirelson’s space has motivated the selection of
the results, although the basics on Banach space Theory is presented without
proofs. As these notes are addressed mainly to people that are involved
with Holomorphy, in the applications some previous results concerning just
Holomorphy and not Tsirelson’s space are supposed to be known and so, they
are used without proofs. Despite of this and for the sake of completeness, we
have reproduced some known proofs and completed or modified other ones.

A first draft of these notes was done in 2002/03 during a Seminar that I
taught in the Departamento de Análisis Matemático of the Universidad de
Valencia, where the suggestions and comments of the friends that attended
the course there helped me to improve it. Thanks are given to all of them.
In particular, I would like to thank Vicente Montesinos who proved Propo-
sition 9. His result allowed to avoid a less pleasant argument that used that
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the closed linear hull of any block sequence in T generates a complemented
subspace of T [3, Proposition II.6]. This current version forms the material
for a mini-course that will be taught in II Enama, II Encontro Nacional de
Análise Matemática e Aplicaçoes, taking place in the Universidade Federal
da Paráıba, João Pessoa, in 2008. I would like to thank Geraldo Botelho and
Daniel Pellegrino for their kind invitation to visit their respective Universities
and to give this course in the II Enama.

2 Tsirelson’s space

2.1 Preliminaries on Schauder bases

Let X be a complex Banach space and let X∗ be its topological dual. Let
(xn)n be a sequence in X. The sequence (xn)n is called a Schauder basis of X
if for every x ∈ X there exists a unique sequence of scalars (an)n such that x =∑∞

n=1 anxn. The sequence (xn)n is called a basic sequence if it is a Schauder
basis of its closed linear span. It is well known that if (xn)n is a Schauder
basis of X then the projections qm : X −→ X defined by qm(

∑∞
n=1 anxn) =∑m

n=1 anxn are bounded linear operators and c := supm ‖qm‖ < ∞. The
constant c is called the basis constant of (xn)n.

A Schauder basis (xn)n of X is called:

• equivalent to a Schauder basis (yn)n of a Banach space Y if
∑∞

n=1 anxn

converges in X if and only if
∑∞

n=1 anyn converges in Y , for any scalar se-
quence (an)n. By [4, Theorem V.5] (xn)n and (yn)n are equivalent if and only
if there is an isomorphism between X and Y that maps each xn to yn.

• unconditional if the convergence of the series
∑∞

n=1 bnxn implies the
convergence of the series

∑∞
n=1 anxn whenever |an| ≤ |bn| for all n.

• normalized if ‖xn‖ = 1 for all n (and so ( xn

‖xn‖)n is a normalized Schauder

basis of X).

• shrinking if the coordinates functionals (x∗n)n, given by x∗m(
∑∞

n=1 anxn) =
am, form a Schauder basis of X∗.

• boundedly complete if the series
∑∞

n=1 anxn converges in X whenever
supm ‖

∑m
n=1 anxn‖ < ∞.

Let us recall the following facts about a Banach space X with a Schauder
basis (xn)n:
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• X is reflexive if and only if (xn)n is shrinking and boundedly complete
(see [9] or [13, Theorem 1.b.5]).

• Assume that (xn)n is unconditional, then X does not have a copy of co

if and only if (xn)n is boundedly complete (see [13, Theorem 1.c.10]).

• Assume that (xn)n is unconditional. If X does not have copies of co or
`1 then X is reflexive (see [13, Theorem 1.c.12]).

A sequence (yn)n in X is called a block sequence of (xn)n if each yn can be
written as yn =

∑pn+1

j=pn+1 ajxj, for some sequence of scalars (an)n and some
increasing sequence of integers p1 < p2 < · · · .

Given a sequence (xn)n in X, let supp((xn)n) denote the support of (xn)n,
that is

supp((xn)n) := {n ∈ N : xn 6= 0}.

2.2 Definition and basic properties

In order to construct Tsirelson’s space, we consider the space T0 of all complex
sequences that are eventually zero. Let en = (0, . . . , 1, 0, . . .), with the 1 in
the nth position. For each x ∈ T0, x = (a1, a2, . . .), we define recurrently the
following norms:

‖x‖0 = max
n
|an|,

‖x‖m+1 = max{‖x‖m,
1

2
max

k≤n1<···<nk+1
k=1,2,...

k∑
j=1

‖
nj+1∑

n=nj+1

anen‖m}.

Lemma 1. It follows:

1. For every m = 0, 1, 2, . . ., ‖ ‖m is a norm.

2. For every m = 0, 1, 2, . . ., ‖x‖m ≤ ‖x‖m+1 for all x ∈ T0.

3. For every m = 0, 1, 2, . . ., ‖x‖m ≤ ‖x‖`1 for all x ∈ T0.

Proof: 1. It is easy to prove by induction that if ‖x‖m = 0 then x = 0
and that ‖λx‖m = |λ|‖x‖m. To prove the triangular inequality it suffices to
proceed by induction and use that max(a+b, a′+b′) ≤ max(a, a′)+max(b, b′)
for a, a′, b, b′ > 0.

2. It is trivial.
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3. We proceed by induction. Clearly ‖x‖0 ≤
∑∞

j=1 |aj| for all x ∈ T0. If
we assume that ‖x‖m ≤

∑∞
j=1 |aj| for all x ∈ T0 then for each k ≤ n1 < · · · <

nk+1, k = 1, 2, . . .

k∑
j=1

‖
nj+1∑

n=nj+1

anen‖m ≤
k∑

j=1

nj+1∑
n=nj+1

|an| ≤
∞∑

n=1

|an|.

Hence

‖x‖m+1 ≤
∞∑

n=1

|an|.

We define
‖x‖ = lim

m
‖x‖m.

By the above Lemma ‖ ‖ exists and it is easy to show that it defines a norm
on T0. Tsirelson’s space T is defined as the completion of (T0, ‖ ‖). We shall
call original Tsirelson’s space the dual T ∗ of T .

Proposition 2. The sequence (en)n is a 1-unconditional Schauder basis of
T .

Proof: Let us start proving that: if |an| < |bn| for every n (assuming that
an = 0 if bn = 0) then ‖

∑∞
n=1 anen‖m ≤ ‖

∑∞
n=1 bnen‖m, for all (b1, b2, . . .) ∈

T0 and all m = 0, 1, 2, . . .. We proceed by induction. For m = 0 is trivial. If
we assume it is true for m, then

‖
∞∑

n=1

anen‖m+1 = max{‖
∞∑

n=1

anen‖m,
1

2
max

k≤n1<···<nk+1
k=1,2,...

k∑
j=1

‖
nj+1∑

n=nj+1

anen‖m}

≤ max{‖
∞∑

n=1

bnen‖m,
1

2
max

k≤n1<···<nk+1
k=1,2,...

k∑
j=1

‖
nj+1∑

n=nj+1

bnen‖m}

= ‖
∞∑

n=1

bnen‖m+1.

Now, make m →∞. It follows that if |an| < |bn|, for all n, then ‖
∑∞

n=1 anen‖ ≤
‖

∑∞
n=1 bnen‖, for all (b1, b2, . . .) ∈ T0. As T is the closed linear span of the
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en’s the result follows from the simple fact that the linear space of all ele-
ments of the form

∑∞
n=1 anen is a closed linear space (see [13, Proposition

1.a.3]).

Proposition 3. For every x =
∑∞

n=1 anen ∈ T ,

‖x‖ = max{max
n
|an|,

1

2
sup

k≤n1<···<nk+1
k=1,2,...

k∑
j=1

‖
nj+1∑

n=nj+1

anen‖}.

Proof: Let us denote ‖|x‖| the term of the right hand. It suffices to be
proved for x =

∑∞
n=1 anen ∈ T0. Actually, in that case, if x ∈ T ,

‖x‖ = lim
n
‖xn‖ = lim

n
‖|xn‖| = ‖|x‖|,

for some sequence (xn)n in T0 that converges to x.
Since ‖x‖ ≥ maxn |an| and

‖x‖ ≥ ‖x‖m+1 ≥
1

2
max

k≤n1<···<nk+1
k=1,2,...

k∑
j=1

‖
nj+1∑

n=nj+1

anen‖m

for all m, when m →∞ it follows

‖x‖ ≥ 1

2
max

k≤n1<···<nk+1
k=1,2,...

k∑
j=1

‖
nj+1∑

n=nj+1

anen‖.

Then ‖x‖ ≥ ‖|x‖|.
If we assume that there is x ∈ T0 such that ‖x‖ > ‖|x‖| then

‖x‖ > ‖|x‖| ≥ 1

2
max

k≤n1<···<nk+1
k=1,2,...

k∑
j=1

‖
nj+1∑

n=nj+1

anen‖

≥ 1

2
max

k≤n1<···<nk+1
k=1,2,...

k∑
j=1

‖
nj+1∑

n=nj+1

anen‖m

for all m. Since ‖x‖ = limm ‖x‖m there exists a natural number l0 such that
for all l ≥ l0

‖x‖l >
1

2
max

k≤n1<···<nk+1
k=1,2,...

k∑
j=1

‖
nj+1∑

n=nj+1

anen‖m
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for all m. In particular,

‖x‖l >
1

2
max

k≤n1<···<nk+1
k=1,2,...

k∑
j=1

‖
nj+1∑

n=nj+1

anen‖l−1.

Then ‖x‖l = ‖x‖l−1. Since

‖x‖l−1 = ‖x‖l >
1

2
max

k≤n1<···<nk+1
k=1,2,...

k∑
j=1

‖
nj+1∑

n=nj+1

anen‖l−2

then ‖x‖l−1 = ‖x‖l−2. In such a way and after a finite recurrence we get that
‖x‖l = ‖x‖l−1 = · · · = ‖x‖0 = maxn |an| for all l ≥ l0. Then ‖x‖ = maxn |an|
what contradicts that ‖x‖ > ‖|x‖| ≥ maxn |an|.

Proposition 4. For every natural number k and every normalized sequence
of blocks (yi)

k
i=1 such that yi =

∑pi+1

n=pi+1 anen with 1 ≤ i ≤ k and k ≤ p1 <
p2 < · · · < pk+1 we have:

1

2

k∑
i=1

|bi| ≤ ‖
k∑

i=1

biyi‖ ≤
k∑

i=1

|bi| (1)

for all scalar sequence (bi)
k
i=1.

Proof: Since k ≤ p1 < · · · < pk+1 it follows from Proposition 3

‖
k∑

j=1

bjyj‖ ≥ 1

2

k∑
j=1

‖
pj+1∑

i=pj+1

bjaiei‖ =
1

2

k∑
j=1

|bj|‖
pj+1∑

i=pj+1

aiei‖

=
1

2

k∑
j=1

|bj|‖yj‖ =
1

2

k∑
j=1

|bj|.

On the other hand,

‖
k∑

i=1

biyi‖ ≤
k∑

i=1

|bi|‖yi‖ =
k∑

i=1

|bi|.
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The above proposition says that any sequence (yi)
k
i=1 of unitary vectors

in T with increasing disjoint finite supports (in the sense that max{i : i ∈
supp yj} < min{i : i ∈ supp yj+1} for all j) whose first k coordinates are 0
fulfills (1). Next proposition shows a dual analog in T ∗. Let (e∗n) be the dual
basis of (en)n.

Proposition 5. Let (y∗n)k
n=1 be a sequence of unitary vectors in T ∗ of the

form y∗i =
∑pi+1

n=pi+1 ane
∗
n, 1 ≤ i ≤ k and k ≤ p1 < p2 < · · · < pk+1 (with

increasing disjoint finite supports whose first k coordinates are 0). Then

sup
1≤i≤k

|bi| ≤ ‖
k∑

i=1

biy
∗
i ‖∗ ≤ 2 sup

1≤i≤k
|bi|

for all scalar sequence (bi)
k
i=1.

Proof: Let z∗j denote the restriction of y∗j to the subspace Sj generated
by epj+1, . . . , epj+1

. Let yj ∈ Sj be such that z∗j (yj) = 1. Since the supports
are disjoint it follows that y∗j (yi) = δij.

Consider the subspace F generated by y1, . . . , yk endowed with the norms
‖ ‖`1 and ‖ ‖. We know by the above proposition that 1

2
‖ ‖`1 ≤ ‖ ‖ ≤ ‖ ‖`1

in F . Taking duals in F ∗ we get that

‖x∗‖∗ = sup
‖x‖≤1,x∈F

|x∗(x)|

≤ sup
‖x‖`1

≤2,x∈F

|x∗(x)|

= sup
‖ 1

2
x‖`1

≤1,x∈F

2|x∗(1
2
x)|

= 2‖x∗‖∞
and

‖x∗‖∞ = ‖x∗‖∗`1 = sup
‖x‖`1

≤1

|x∗(x)| ≤ sup
‖x‖≤1

|x∗(x)| = ‖x∗‖∗

for all x∗ ∈ F ∗.

2.3 T does not contain `p spaces

Let us now prove that Tsirelson’s space T contains neither copies of c0 nor of
`p, for any 1 < p < ∞. We start proving next result on equivalent sequences
whose proof is taken from [4, Theorem V.9].
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Proposition 6. ([4, Theorem V.9]) Let (xn)n be a basic sequence in a Ba-
nach space X and let (x∗n)n be the sequence of coordinates functionals. If
(yn)n is a sequence in X such that

∑∞
n=1 ‖x∗n‖‖xn − yn‖ < 1 then (yn)n is a

basic sequence equivalent to (xn)n.

Proof: By Hahn-Banach extension Theorem we extend each x∗n to the
whole X. Define S : X −→ X as S(x) =

∑∞
n=1 x∗n(x)(xn − yn). Since

‖S‖ ≤
∞∑

n=1

‖x∗n‖‖xn − yn‖ < 1

then I − S is an invertible operator with (I − S)(xn) = yn.

Before proving next theorem observe the following remark:
Let Y be either c0 or `p, 1 ≤ p < ∞, and let (un)n the canonical basis

of Y . For each increasing sequence of natural numbers (nk)k, the mapping
S(nk) : Y −→ Y given by S(nk)(

∑∞
n=1 anun) =

∑∞
k=1 akunk

is an isomorphism
into whose inverse is S−1

(nk)(
∑∞

k=1 ank
unk

) =
∑∞

k=1 ank
uk, and that maps each

uk to unk
. Therefore (unk

)k is equivalent to (un)n, for all sequence (unk
)k.

Moreover, each S(nk) is an isometry. Indeed, if Y = c0 then

‖
∞∑

k=1

akunk
‖∞ = sup

k
|ak| = ‖

∞∑
k=1

akuk‖∞,

whereas if Y = `p, 1 ≤ p < ∞, then

‖
∞∑

k=1

akunk
‖p = (

∞∑
k=1

|ak|p)1/p = ‖
∞∑

k=1

akuk‖p.

The proof of T not containing copies of c0 nor of `p, 1 < p < ∞, is based on
the Selection Principle of Bessaga-Pelczyński that asserts that given a Banach
space X with a Schauder basis (xn)n, if (x∗n)n is the sequence of coordinates
functionals and (yn)n is a sequence in X such that liminfk ‖yk‖ > 0 and
limk x∗nyk = 0 for all n then (yn)n has a subsequence which is equivalent to
a basic block sequence of (xn)n. We will reproduce his proof while proving
Theorem 7.

Theorem 7. Tsirelson’s space T does not contain subspaces that are isomor-
phic to c0 or `p, for all 1 < p < ∞.
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Proof: Let Y denote either c0 or `p, 1 < p < ∞. Let us assume that
there exists an isomorphism into S : Y −→ T . Let c, C > 0 be constants
such that

c‖y‖ ≤ ‖S(y)‖ ≤ C‖y‖,
for all y ∈ Y . Consider the canonical basis (un)n of Y . Then yn := S(un) is
a basic sequence of T equivalent to (un)n. Writing ym =

∑∞
n=1 am

n en we have
that, for each fixed n,

am
n = e∗n(S(um)) = tS(e∗n)(um)

converges to 0 when m → ∞. Indeed, from tS(e∗n) ∈ Y ∗, if tS(e∗n) =∑∞
m=1 bn

mu∗m then tS(e∗n)(um) = bn
m −→ 0 when m →∞.

Moreover, for each increasing sequence (nk)k, S ◦ S(nk) ◦ S−1|LIN(yk)
∞
k=1

is

an isomorphism into that maps each yk to ynk
. Then (yk)k is equivalent to

(ynk
)k. For each m

‖
m∑

k=1

akynk
‖ ≤ C‖

m∑
k=1

akunk
‖ = C‖

m∑
k=1

akuk‖ ≤
C

c
‖

m∑
k=1

akyk‖.

Then

‖
m∑

k=1

akyk‖ ≥
c

C
‖

m∑
k=1

akynk
‖ (2)

for all increasing sequence of natural numbers (nk)k and all natural number
m.

“ Let K be the basic constant of (en)n that is, K := supn ‖qn‖ where
qn(

∑∞
k=1 bkek) =

∑n
k=1 bkek.

Let p1 > 1 be such that

‖y1 −
p1∑

n=1

a1
nen‖ ≤

c

8K2
.

Let 0 < ε1 < c
8K2

. For p1, as
∑p1

n=1 am
n en −→ 0 when m →∞, there exists

n1 so that

‖
p1∑

n=1

an1
n en‖ ≤ ε1.

Let now p2 > p1 + 1 such that

‖
∞∑

n=p2+1

an1
n en‖ < (

c

8K2
− ε1).
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Then

‖yn1 −
p2∑

n=p1+1

an1
n en‖ = ‖

p1∑
n=1

an1
n en +

∞∑
n=p2+1

an1
n en‖ ≤ ε1 +(

c

8K2
− ε1) =

c

8K2
.

Let 0 < ε2 < c
8K22 . For p2, since

∑p2

n=1 am
n en −→ 0 when m →∞ there exists

n2 > n1 so that

‖
p2∑

n=1

an2
n en‖ ≤ ε2.

Let now p3 > p2 + 2 be such that

‖
∞∑

n=p3+1

an2
n en‖ < (

c

8K22
− ε2).

Then

‖yn2−
p3∑

n=p2+1

an2
n en‖ = ‖

p2∑
n=1

an2
n en+

∞∑
n=p3+1

an2
n en‖ ≤ ε2+(

c

8K22
−ε2) =

c

8K22
.

By induction we construct sequences (nj)j and (pj)j with pj+1 > pj + j such
that

‖ynj
−

pj+1∑
n=pj+1

anj
n en‖ ≤

c

8K2j

for all j. Let us denote

zj :=

pj+1∑
n=pj+1

anj
n en, j ≥ 1.

Then (zj)j is a block sequence of (en)n with supp(zj) > j. So, if p < q then

‖
p∑

j=1

ajzj‖ ≤ K‖
q∑

j=1

ajzj‖

for all scalar sequence (an)n. Hence, (zj)j is a basic sequence with basic
constant less than or equal to K. Therefore, given x =

∑∞
i=1 z∗j (x)zj it

follows that

K ≥ sup
i
‖qi‖ ≥ ‖qj‖ = sup

‖y‖≤1

‖qj(y)‖ ≥ ‖qj(
x

‖x‖
)‖ =

1

‖x‖
‖qj(x)‖

11



and then
‖z∗j (x)zj‖ = ‖qj(x)− qj−1(x)‖ ≤ 2K‖x‖.

From ‖yn‖ ≥ c for all n, it follows that

c ≤ ‖ynj
‖ ≤ ‖ynj

− zj‖+ ‖zj‖ ≤
c

8K2j
+ ‖zj‖.

Then
‖zj‖ ≥ c− c

8K2j
≥ c

2
.

Hence

|z∗j (x)| = ‖z∗j (x)zj‖
1

‖zj‖
≤ 2K

2

c
‖x‖ =

4K

c
‖x‖.

Thus ‖z∗j ‖ ≤ 4K
c

and then

∞∑
j=1

‖z∗j ‖‖zj − ynj
‖ ≤ 4K

c

∞∑
j=1

‖zj − ynj
‖ ≤ 4K

c

∞∑
j=1

c

8K2j
≤ 1

2

∞∑
j=1

1

2j
< 1.

From Proposition 6 it follows that (ynj
)j is a basic sequence equivalent to

(zj)j. Then there exists a constant M > 0 such that

‖
∞∑

j=1

ajzj‖ ≤ M‖
∞∑

j=1

ajynj
‖

for all scalar sequence (aj)j.”
From (2), taking the sequence (nm−1+j)j, it follows that for any m and

any finite sequence (aj)
m
j=1

C
m∑

j=1

|aj| = C
m∑

j=1

|aj|
‖yj‖
‖yj‖

≥ ‖
m∑

j=1

ajyj‖

≥ c

C
‖

m∑
j=1

ajynm−1+j
‖ ≥ c

CM
‖

m∑
j=1

ajznm−1+j
‖

≥ 1

2

c

CM

m∑
j=1

|aj|,

where we have used Proposition 4 in the last inequality. That is,

C
m∑

j=1

|aj| ≥ ‖
m∑

j=1

ajyj‖ ≥
c

2CM

m∑
j=1

|aj|

12



for all sequence (aj)
m
j=1 and all m. So, (yj)j is equivalent to the canonical

basis of `1 which is absurd.

The quoted part of the proof constitutes the proof of Bessaga-Pelczyński
Selection Principle (see also [4]).

Next step is to prove that T does not contain a copy of `1. We need the
following result due to James [10]:

Theorem 8. (James) If X is a Banach space that contains a subspace iso-
morphic to `1 then, for any ε > 0 there exists a sequence (un)n in X with
‖un‖ ≤ 1 such that

(1− ε)
∞∑

j=1

|bj| ≤ ‖
∞∑

j=1

bjuj‖ ≤
∞∑

j=1

|bj| (3)

for all sequence (bj)j ∈ `1.

Proof: Let (xn)n be a basic sequence in X which is equivalent to the
canonical basis of `1. Then there exist m, M > 0 such that

m
∞∑

j=1

|aj| ≤ ‖
∞∑

j=1

ajxj‖ ≤ M
∞∑

j=1

|aj|

for all sequence (aj)j ∈ `1.
For each n we define

En = {(aj)j ∈ `1 : ‖(aj)j‖`1 = 1, supp(aj)j < ∞ and a1 = a2 = · · · = an = 0}

Kn = inf{‖
∞∑

j=1

ajxj‖ : (aj)j ∈ En}.

Since En+1 ⊂ En, the sequence (Kn)n is increasing. Since m ≤ Kn ≤ M
for all n, there exists K := limn Kn. Moreover, K ≥ Kj for all j and
m ≤ K ≤ M .

Let 0 < θ < 1 < θ′.
Chose p1 > 1 such that Kp1 > θK. Since Kp1 < θ′K there exists a

sequence of the form (0, . . . , 0, ap1+1, . . . , ap2 , 0, . . .) ∈ Ep1 such that

‖
p2∑

j=p1+1

ajxj‖ < θ′K.

13



Since Kp2 < θ′K there exists a sequence (0, . . . , 0, ap2+1, . . . , ap3 , 0, . . .) ∈ Ep2

such that

‖
p3∑

j=p2+1

ajxj‖ < θ′K.

By induction we construct for each j scalars apj+1, . . . , apj+1
such that

pj+1∑
n=pj+1

|an| = 1 and ‖
pj+1∑

n=pj+1

anxn‖ < θ′K.

Let

yj :=

pj+1∑
n=pj+1

anxn.

Then (yn)n is a block sequence of (xn)n and ‖yj‖ < θ′K. Define

uj :=
yj

θ′K
.

Then ‖uj‖ < 1 and

‖
∞∑

j=1

bjuj‖ ≤
∞∑

j=1

|bj|‖uj‖ ≤
∞∑

j=1

|bj|

for all sequence (bj)j ∈ `1.
On the other hand, let (bj)j ∈ `1 and m ≥ 1. Since

m∑
j=1

pj+1∑
n=pj+1

|bjan| =
m∑

j=1

(|bj|
pj+1∑

n=pj+1

|an|) =
m∑

j=1

|bj|

then

z :=
1∑m

j=1 |bj|
(0, . . . , b1ap1+1, . . . , b1ap2 , . . . , bmapm+1, . . . , bmapm+1 , 0, . . .) ∈ Ep1 .

Hence

‖
m∑

j=1

bjyj‖ = ‖
m∑

j=1

pj+1∑
n=pj+1

bjanxn‖
∑m

j=1 |bj|∑m
j=1 |bj|

≥ Kp1

m∑
j=1

|bj| > θK

m∑
j=1

|bj|.

14



Thus,

‖
m∑

j=1

bjuj‖ >
θ

θ′

m∑
j=1

|bj|,

for all m. Therefore,

‖
∞∑

j=1

bjuj‖ >
θ

θ′

∞∑
j=1

|bj|.

It suffices to chose θ and θ′ such that θ/θ′ > 1− ε.

Note that in the proof of the Theorem of James (Theorem 8) we have
started with a basic sequence in X equivalent to the canonical basis of `1.
When X = T , if we assume that T contains a copy of `1 then we can assume
that this sequence is a block sequence of (en)n. Indeed, we have the following
result due to Vicente Montesinos. We shall say that a basic sequence (un)n

is (1− ε)-equivalent to the canonical basis of `1 if it fulfils (3).

Proposition 9. (V. Montesinos) Let X be a Banach space with a Schauder
basis (tn)n and let 0 < ε < 1. If X has an isomorphic copy of `1, then it has
a basic sequence which is (1 − ε)-equivalent to the canonical basis of `1 and
equivalent to a block sequence of (tn)n.

Proof: By Theorem 8 if a Banach space X has an isomorphic copy of `1,
then it has a basic sequence (un)n (1− ε)-equivalent to the canonical basis of
`1. Let (t∗n)n be the sequence of coordinates functionals associated to (tn)n.
For each n = 1, 2, . . ., let Sn denote the linear span of {un, un+1, un+2, . . .}
and, for m ≥ n let Sm

n denote the linear span of {un, un+1, . . . , um}. Since
ker(t∗1) ∩ S1 6= {0} there exist p1 ∈ N and b1 ∈ X, ‖b1‖ = 1, such that

b1 ∈ ker(t∗1) ∩ Sp1

1 .

Since
⋂2

i=1 ker(t∗i ) ∩ Sp1+1 6= {0} there exist p2 > p1 and b2 ∈ X, ‖b2‖ = 1,
such that

b2 ∈
2⋂

i=1

ker(t∗i ) ∩ Sp2

p1+1.

By induction, we construct a normalized sequence (bn)n in X such that
limk t∗n(bk) = 0 for all n. Applying Bessaga-Pelczyński Selection Principle,
(bn)n has a subsequence, (sn)n, which is equivalent to a basic block sequence
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of (tn)n. Being (sn)n a normalized block sequence of (un)n, (sn)n is (1− ε)-
equivalent to the canonical basis of `1.

We can then conclude the following fact: if T contains a copy of `1 then
T has a basic block sequence of (en)n equivalent to the canonical basis of `1.
If we start the proof of Theorem 8 with such a block sequence, then what we
eventually show is that if T contains a copy of `1 then T has a basic block
sequence of (en)n (1− ε)-equivalent to the canonical basis of `1. We will use
this fact in the proof of Theorem 10.

Theorem 10. Tsirelson’s space T has no subspaces isomorphic to `1.

Proof: Taken from [13, Example 2.e.1]. Assume that T has a subspace
isomorphic to `1. By the above comment, there exists a basic block sequence
(vj)

∞
j=0 of (en)n, with ‖vj‖ ≤ 1, for all j = 0, 1, . . ., and such that for all

sequence (bj)
∞
j=0 ∈ `1

8

9

∞∑
j=0

|bj| ≤ ‖
∞∑

j=0

bjvj‖ ≤
∞∑

j=0

|bj|.

In particular,

‖v0 +
1

r
(v1 + · · ·+ vr)‖ ≥

16

9
, r = 1, 2, . . . (4)

Consider k ≤ p1 < p2 < · · · < pk+1 and for each j = 1, 2, . . . , k let

qj(
∞∑

n=1

bnen) :=

pj+1∑
n=pj+1

bnen.

Using the characterization of the norm of T it follows that

‖x‖ ≥ 1

2

k∑
j=1

‖qj(x)‖,

for all x ∈ T .
Let n0 := max{i : i ∈ supp(v0)} and let z = v0 + 1

r
(v1 + · · ·+ vr). Let us

show that
∑k

j=1 ‖qj(z)‖ ≤ 7
2
. We distinguish two cases:
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If k ≥ n0 then qj(v0) = 0 for all j = 1, . . . , k. Then,

k∑
j=1

‖qj(z)‖ =
k∑

j=1

‖qj(
1

r
(v1 + · · ·+ vr))‖ ≤ 2‖1

r
(v1 + · · ·+ vr)‖ ≤ 2 ≤ 7

2
.

If k < n0 we define

δ := {i ≥ 1 : ‖qj(vi)‖ 6= 0 for at least two values of j}

σ := {i ≥ 1 : ‖qj(vi)‖ 6= 0 for at most a value of j}.
Since there are k blocks determined by p1 < · · · < pk+1 and the vi have
disjoint supports then the cardinal of δ is |δ| ≤ k−1. Moreover, if i ∈ σ and j0

is the only integer between 1 and k such that ‖qj0(vi)‖ 6= 0 (if there is no such
j then ‖qj(vi)‖ = 0 for all j = 1, . . . , k) then supp(vi) ⊂ {pj0 + 1, . . . , pj0+1}.
Hence qj0(vi) = vi and qj(vi) = 0 for all j 6= j0. Thus

k∑
j=1

‖qj(z)‖ ≤
k∑

j=1

‖qj(v0)‖+
1

r

r∑
i=1

k∑
j=1

‖qj(vi)‖

=
k∑

j=1

‖qj(v0)‖+
1

r
(
∑
i∈δ

k∑
j=1

‖qj(vi)‖+
∑
i∈σ

k∑
j=1

‖qj(vi)‖)

≤ 2‖v0‖+
1

r
(2

∑
i∈δ

‖vi‖+
∑
i∈σ

‖vi‖)

≤ 2 +
1

r
(2|δ|+ |σ|) = 2 +

1

r
(|δ|+ r)

≤ 2 +
1

r
(k − 1 + r) = 3 +

k − 1

r
< 3 +

n0 − 1

r
.

Taking r ≥ 2n0 we have that

k∑
j=1

‖qj(z)‖ ≤ 3 +
n0 − 1

2n0

≤ 7

2
.

Then we can conclude that for z =
∑∞

n=1 anen we get

‖z‖ = max{max
n
|an|,

1

2
sup

k≤p1<···<pk+1
k=1,2,...

k∑
j=1

‖qj(z)‖}

≤ max{max
n
|an|,

7

4
} =

7

4
. (5)
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Indeed, as the vj have disjoint supports, for each n such that an 6= 0 there
exists a j so that n ∈ supp(vj), then

if j ≥ 1 we have that |an| ≤ 1
r
‖vj‖ ≤ 1

r
≤ 1 ≤ 7

4
,

if j = 0 we have that |an| ≤ ‖v0‖ ≤ 1 ≤ 7
4
.

Hence, from (4) and (5) it follows that 16/9 ≤ 7/4 which is absurd.

Corollary 11. Tsirelson’s space T is reflexive.

Proof: Since T has an unconditional basis, but it does not have copies
of c0 or `1 then it is reflexive (see [13, Theorem 1.c.12]).

3 Applications to Infinite Dimensional Holo-

morphy

3.1 Preliminaries

Let X be a complex Banach space and let U be an open subset of X. Let
P(nX) denote the space of all continuous n-homogeneous polynomials on X.
Let Pw(nX) (Pwsc(

nX)) be the subspace of P(nX) of all continuous polyno-
mials that are weakly continuous on bounded sets (resp. weakly sequentially
continuous). Clearly Pw(nX) ⊂ Pwsc(

nX) ⊂ P(nX). We consider these
spaces with the usual supremum norm. Given P ∈ P(nX), by P̌ we mean
the continuous symmetric n-linear mapping associated to P .

Let H(U) be the space of all holomorphic functions on U . If f ∈ H(U)

we denote by
∑∞

n=0

cdnf(0)
n!

the Taylor series expansion of f at the origin.
A semi-norm p on H(U) is ported by the compact set K ⊂ U if for every
open set V , K ⊂ V ⊂ U , there exists a constant c(V ) > 0 such that p(f) ≤
c(V ) supx∈V |f(x)| for all f ∈ H(U). The Nachbin or ported topology onH(U)
is the locally convex topology generated by the semi-norms ported by the
compact subsets of U , and it is denoted by τω. Another important topology
we shall consider on H(U) is the τδ topology generated by the countable open
covers, that is, a semi-norm p on H(U) is τδ continuous if for each increasing
countable open cover of U , (Un)n, there exist a constant C > 0 and a natural
number n0 such that p(f) ≤ C supx∈Un0

|f(x)|, for all f ∈ H(U). The τδ

topology is then defined as the locally convex topology generated by all τδ

continuous semi-norms. The τδ topology is related to the Nachbin topology τω

in the sense that τδ is the barrelled topology associated with τω [17] (see also
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[6, Corollary 3.37(b)]). Moreover, we can consider a fundamental system of
semi-norms for τδ with “good Taylor series convergence” properties. Indeed,
the τδ topology is generated by all semi-norms p on H(U) satisfying that

p|P(mX)
is τω continuous for all m and that p(

∑∞
n=0

cdnf(0)
n!

) =
∑∞

n=0 p(
cdnf(0)

n!
)

for all
∑∞

n=0

cdnf(0)
n!

∈ H(U). It is worth mentioning that τδ = τω = ‖.‖ on
P(mX), for all m (see [5, Example 1.36]). Moreover, if X is a Banach space
with a Schauder basis and U is a balanced open subset of X then τω = τδ on
H(U) (see [15] and [6, Corollary 4.16]).

Let Hb(U) denote the space of holomorphic functions of bounded type
on U , that is, the space of all holomorphic functions that are bounded on
U -bounded sets. Recall that a bounded subset A ⊂ U is U -bounded if its
distance to the boundary of U is positive (when U = X, U bounded sets are
just all bounded sets). The space Hb(U) is endowed with the topology τb of
uniform convergence on U -bounded sets. It is well known that (Hb(U), τb) is
a Fréchet space.

3.2 Reflexive spaces of holomorphic functions

Let us recall that the dual T ∗ of T is called the original Tsirelson’s space.
In 1984 Alencar, Aron and Dineen [1] prove that for any balanced open sub-
set U of the original Tsirelson’s space T ∗ the space (H(U), τω) is reflexive.
That was the first known example in the frame of infinite dimensional Ba-
nach spaces. However, examples of non normable locally convex spaces were
known (e.g. E Fréchet nuclear with the DN property) for which the cor-
respondent space of entire functions was reflexive. On the other hand, the
space H(`p) is not reflexive for any 1 ≤ p ≤ ∞ (see [20]). Let us mention
what Casazza and Shura [3, Chapter XI] commented about Infinite Dimen-
sional Holomorphy and, in particular, about the example by Alencar, Aron
and Dineen: “It is curious to us that this is the only area of analysis wherein
the `p spaces are pathological, while Tsirelson’s construction yields an ex-
ample of a space with ‘good’ properties”. In 1992 Prieto [18] reinforced this
appreciation by showing that (Hb(T

∗), τb) is also reflexive. Garćıa, Maestre
and Rueda used Prieto’s techniques to generalize this to weighted spaces of
holomorphic functions. In particular, they proved Prieto’s result for Hb(U)
where U is any balanced open subset of T ∗.

Let us start, in a similar way as in [1], by showing that any Banach space
X for which (H(X∗), τω) is reflexive has to share many of the properties of
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T . For example, as X is a subspace of (H(X∗), τω), X should be reflexive.
Moreover, if we assume that X has a copy of some `p, 1 < p < ∞, then let
S : `p −→ X be an isomorphism into. Consider its transpose tS : X∗ −→
`′p =: `q and let (un)n be the canonical basis of `p. For each x ∈ X∗ and each
(xn)n ∈ `p we have that

tS(x)((xn)n) = tS(x)(
∞∑

n=1

xnun) =
∞∑

n=1

xn
tS(x)(un) =

∞∑
n=1

xnx(S(un)). (6)

Since `′p = `q it follows that (x(S(un)))n ∈ `q and then,

∞∑
n=1

|x(S(un))|q < ∞. (7)

Let l := [q] + 1 and Qn := S(un)l ∈ P(lX∗). By (7) it follows that

M :=
∞∑

n=1

|Qn(x)| =
∞∑

n=1

|x(S(un))|l < ∞. (8)

Using that the pointwise limit of a sequence of continuous homogeneous poly-
nomials is continuous, we get that

∑∞
n=1 Qn ∈ P(lX∗). These calculations

will allow to prove that P(lX∗) has a copy of `∞.
Indeed, if we start with (xn)n ∈ `∞, from (6) and (8) the mapping (xn)n ∈

`∞ 7→ P(xn) ∈ P(lX∗) given by

P(xn)(x) :=
∞∑

n=1

xn( tS(x)(un))l

is well defined. Let yn ∈ X∗ be such that tS(yn) = u∗n. Since ‖yn‖ ≤
C‖ tS(yn)‖ = C‖u∗n‖ = C for some C > 0, and P(xn)(yn) = xn, then

sup
n
|xn| =

C l

C l
sup

n
|P(xn)(yn)| ≤ C l‖P(xn)‖ ≤ C l sup

n
|xn|M.

Hence P(lX∗) should have a copy of `∞ which is impossible by reflexivity.
Thus, X should be a reflexive Banach space without copies of `p, 1 < p < ∞.
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3.2.1 Weakly sequentially continuous polynomials

In order to prove the result by Alencar, Aron and Dineen we need the follow-
ing Lemma. With the aim of giving as many details as possible we include
the proof which is taken from [6, Lemma 1.9(b)]:

Lemma 12. [6, Lemma 1.9(b)] Let X be a Banach space and let (xj)
k
j=1 be

a finite sequence in X. Then

sup
|λj |≤1

j=1,...,k

|P (
k∑

j=1

λjxj)|2 ≥
k∑

j=1

|P (xj)|2,

for all P ∈ P(mX).

Proof: Let P ∈ P(mX). We start by proving [6, Lema 1.9] that for any
x, y ∈ X then

sup
|λ|≤1

|P (x + λy)|2 ≥ |P (x)|2 + |P (y)|2. (9)

Define

g(λ) := P (x + λy) =
m∑

j=0

(
m
j

)
P̌ (xj, ym−j)λm−j.

Denoting am−j :=

(
m
j

)
P̌ (xj, ym−j) we have a0 = P (x) and am = P (y).

Then, by the Maximum Modulus Principle

sup
|λ|≤1

|P (x + λy)|2 = sup
|λ|=1

|P (x + λy)|2 = sup
|λ|=1

|g(λ)|2

=
1

2π

∫ 2π

0

sup
|λ|=1

|g(λ)|2 dθ ≥ 1

2π

∫ 2π

0

|g(eiθ)|2 dθ

=
1

2π

∫ 2π

0

(
m∑

j=0

aje
ijθ)(

m∑
k=0

ake
−ikθ) dθ

=
∑

0≤j,k≤m

ajak
1

2π

∫ 2π

0

ei(j−k)θ dθ

=
m∑

j=0

|aj|2 ≥ |a0|2 + |am|2

= |P (x)|2 + |P (y)|2.
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Hence if |µ| = 1,

sup
|λ|≤1

|P (µx + λy)| ≥ (|P (µx)|2 + |P (y)|2)1/2 = (|P (x)|2 + |P (y)|2)1/2,

and using again the Maximum Modulus Principle,

sup
|λ|≤1

|µ|≤1

|P (µx + λy)| = sup
|λ|≤1

|µ|=1

|P (µx + λy)| ≥ (|P (x)|2 + |P (y)|2)1/2.

Apply now induction: if we assume that given x1, . . . , xk−1 ∈ X

sup
|λj |≤1

j=1,...,k−1

|P (
k−1∑
j=1

λjxj)|2 ≥
k−1∑
j=1

|P (xj)|2,

then for x1, . . . , xk ∈ X it follows that

sup
|λj |≤1

j=1,...,k

|P (
k∑

j=1

λjxj)|2 = sup
|λj |≤1

j=1,...,k−1

sup
|λk|≤1

|P ((
k−1∑
j=1

λjxj) + λkxk)|2

≥ sup
|λj |≤1

j=1,...,k−1

|P (
k−1∑
j=1

λjxj)|2 + |P (xk)|2

≥
k−1∑
j=1

|P (xj)|2 + |P (xk)|2 =
k∑

j=1

|P (xj)|2.

Theorem 13. (Alencar, Aron, Dineen [1]) Every continuous polynomial on
T ∗ is weakly sequentially continuous at the origin.

Proof: It is an adaptation of the proof of [1, Theorem 6]. Assume that
there exist m and P ∈ P(mT ∗) which is not weakly sequentially continuous
at the origin. Let δ > 0 and (xn)n ∈ T ∗ weakly convergent to 0 such that
|P (xn)| > δ for all n. We can assume that ‖xn‖ ≤ 1 for all n.

Let (tn)n be the Schauder basis of T ∗, that is, tn = e∗n. For each natural
number N we write xN =

∑∞
j=1 aN

j tj.
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Take N1 := 1. Since

δ < |P (x1)| = |P (
∞∑
i=1

a1
i ti)| = lim

n
|P (

n∑
i=1

a1
i ti)|

there exists n1 > 2 such that

|P (

n1∑
i=1

a1
i ti)| > δ.

Being (xN)N weakly convergent to 0, given m the sequence em(xN) = aN
m

converges to 0 when N → ∞. Then
∑n1

i=1 aN
i ti −→ 0 when N → ∞. Let

N2 > N1 be such that

‖
n1∑
i=1

an
i ti‖ ≤

1

2

for all n ≥ N2. By induction we construct strictly increasing sequences (nj)j

and (Nj)j such that

|P (

nj∑
i=1

a
Nj

i ti)| > δ and ‖
nj∑
i=1

aNk
i ti‖ ≤

1

2j

for all k > j. Let qnj(xNj
) :=

∑nj

i=1 a
Nj

i ti. By the above Lemma, given a
natural number l,

sup
|λj |≤1

j=2l+1,...,2l+1

∣∣∣∣∣∣P
 2l+1∑

j=2l+1

λjq
nj(xNj

)

∣∣∣∣∣∣
2

≥
2l+1∑

j=2l+1

|P (qnj(xNj
))|2

>
2l+1∑

j=2l+1

δ2 = δ2(2l+1 − 2l)

= δ22l.

Then there exists a sequence (λj)
2l+1

j=2l+1
, with |λj| ≤ 1, such that∣∣∣∣∣∣P

 2l+1∑
j=2l+1

λjq
nj(xNj

)

∣∣∣∣∣∣ > δ(
√

2)l. (10)
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On the other hand, if we call

qnj
nj−1

(xNj
) := qnj(xNj

)− qnj−1(xNj
) =

nj∑
i=nj−1+1

a
Nj

i ti,

then the vectors {qnj
nj−1(xNj

)}2l+1

j=2l+1
have increasing disjoint supports.

If 2l + 1 ≤ j ≤ 2l+1 then nj−1 ≥ j − 1 ≥ 2l. Hence

q2l(qnj
nj−1

(xNj
)) = 0,

that is, the first 2l coordinates are 0. This allows us to apply Proposition 5
and we get

‖
2l+1∑

j=2l+1

λjq
nj
nj−1

(xNj
)‖ ≤ 2 sup

2l+1≤j≤2l+1

|λj|‖qnj
nj−1

(xNj
)‖

≤ 2 sup
2l+1≤j≤2l+1

‖
nj∑

i=nj−1+1

a
Nj

i ti‖

≤ 2 sup
2l+1≤j≤2l+1

‖xNj
‖ ≤ 2.

Then,∥∥∥∥∥∥
2l+1∑

j=2l+1

λjq
nj(xNj

)

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
2l+1∑

j=2l+1

λjq
nj−1(xNj

)

∥∥∥∥∥∥ +

∥∥∥∥∥∥
2l+1∑

j=2l+1

λjq
nj
nj−1

(xNj
)

∥∥∥∥∥∥
≤

2l+1∑
j=2l+1

|λj|
1

2j−1
+ 2 ≤ 3.

Hence ∣∣∣∣∣∣P
 2l+1∑

j=2l+1

λjq
nj(xNj

)

∣∣∣∣∣∣ ≤ ‖P‖3m.

Thus, using (10) it follows that

δ(
√

2)l < ‖P‖3m

for any l, which is absurd. It has been proved that any continuous polynomial
is weakly sequentially continuous at the origin.
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Theorem 14. (Alencar, Aron, Dineen [1]) Let X be a Banach space and
let m ∈ N. All continuous polynomials of degree less than or equal to m are
weakly sequentially continuous if and only if all of them are weakly sequen-
tially continuous at the origin.

Proof: The proof is taken from [6, Lema 2.32]. Let us just prove the
non trivial implication. Assume that every continuous polynomial of degree
≤ m is weakly sequentially continuous at 0. Let P =

∑m
n=0 Pn, Pn ∈ P(nX).

Let (xj)j weakly convergent to some x in X. For each j we have that

|P (xj)−P (x)| = |
m∑

n=0

(Pn(xj)−Pn(x))| ≤
m∑

n=0

∣∣∣∣∣
n∑

k=1

(
n
k

)
P̌n(xn−k, (xj − x)k)

∣∣∣∣∣ .

For each n and k, 1 ≤ k ≤ n, the mapping

y 7→
(

n
k

)
P̌n(xn−k, yk)

is a k-homogeneous polynomial, k ≤ m and, by hypothesis, weakly sequen-
tially continuous at 0. Then,(

n
k

)
P̌n(xn−k, (xj − x)k) −→ 0

when j → ∞, for all 1 ≤ k ≤ n ≤ m. Hence P (xj) −→ P (x) when j → ∞.
Thus P is weakly sequentially continuous at x.

Corollary 15. P(nT ∗) = Pwsc(
nT ∗), for all n.

3.2.2 Reflexivity on spaces of polynomials

Using weakly sequentially continuity of polynomials, Ryan [20] proved the
following result about reflexivity on certain spaces of polynomials.

Theorem 16. (Ryan [20]) Let X be a reflexive Banach space. If P(nX) =
Pwsc(

nX) then P(nX) is reflexive.

Proof: We follow the proof of [6, Proposition 2.30]. By [11] a Banach
space is reflexive if and only if every continuous linear functional attains its
supremum on the unit sphere. So, since P(nX) is a dual space it follows
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that P(nX) is reflexive if and only if every P ∈ P(nX) attains its norm.
Let P ∈ P(nX) and choose a sequence (xn)n, ‖xn‖ ≤ 1, such that (P (xn))n

converges to ‖P‖. Being the closed unit ball of X weakly sequentially com-
pact by the Eberlein-Smulian Theorem (see [4, Theorem III]), there exists
a subsequence (xnk

)k weakly convergent to some x in X. By assumption P
is weakly sequentially continuous and then (P (xnk

))k converges to P (x) too.
Hence P (x) = ‖P‖. Thus, P(nX) is reflexive.

Corollary 17. (Alencar, Aron, Dineen [1]) The space P(nT ∗) is reflexive,
for all n.

Proof: It follows from Corollaries 11, 15 and Theorem 16.

We have seen that P(nT ∗) = Pwsc(
nT ∗), for all n. Let us go further by

proving that Pw(nT ∗) = Pwsc(
nT ∗), for all n.

Theorem 18. (Aron, Hervés, Valdivia [2]) Let X be a Banach space. If X
does not have copies of `1 then every weakly sequentially continuous polyno-
mial on X is weakly continuous on bounded sets.

Proof: The proof follows [6, Proposition 2.36]. Let P be a weakly
sequentially continuous polynomial on X. Using Rosenthal’s `1-Theorem,
every bounded sequence on X contains a weakly Cauchy subsequence (the
result can be found in [13, Theorem 2.e.5] or [4]). Moreover, every bounded
subset is sequentially dense in its weak closure. Then if A is a bounded subset

of X and x belongs to the weak closure of A, A
σ(X,X∗)

, then there exists a
sequence (xj)j ⊂ A weakly convergent to x. Being P weakly sequentially
continuous it follows that P (xj) converges to P (x). Then

P (A
σ(X,X∗)

) ⊂ P (A).

Hence P is weakly continuous on bounded sets.

The converse to this result is also true and is due to Diestel (see [6,
Proposition 2.36]).

Corollary 19. P(nT ∗) = Pwsc(
nT ∗) = Pw(nT ∗) for all n.
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3.2.3 Reflexivity on spaces of holomorphic functions of bounded
type

By using a projective description of the space Hb(U) and the linearization of
spaces of bounded holomorphic mappings given by Mujica [14, Theorem 2.1],
Mujica and Valdivia [16] proved next result, that yields to the reflexivity of
(Hb(U), τb), for all balanced open subset U ⊂ T ∗.

Theorem 20. (Mujica, Valdivia [16, Corollary 4.2]) Let X be a reflexive
Banach space. If every continuous polynomial on X is weakly continuous on
bounded sets then (Hb(U), τb) is reflexive, for all balanced open subset U of
X.

Let us now show another approach to the reflexivity of Hb(T
∗) by means

of Schauder decompositions. We will follow the work of Prieto [18] and
Garćıa, Maestre and Rueda [8].

Given a locally convex space E, a sequence (En)n of subspaces of E is said
to be a Schauder decomposition of E if any x in E can be written in a unique
way as x =

∑∞
n=1 xn, with xn ∈ En, and the projections x =

∑∞
n=1 xn 7→∑m

n=1 xn, m ∈ N , are continuous. Schauder bases on Banach spaces can be
considered as Schauder decompositions of dimension one.

Schauder decompositions are a powerful tool to lift properties from the
spaces forming the decomposition to the whole space. Next result, due to
Kalton [12, Theorem 3.2], shows that the reflexivity property can be lifted
for some special Schauder decompositions.

A Schauder decomposition (En)n of E is shrinking if ((En)′β)n is a Schauder
decomposition of E ′

β, where E ′
β denotes the strong dual of E. The Schauder

decomposition (En)n is called boundedly complete if the series
∑∞

n=1 xn, xn ∈
En, converges in E whenever the sequence (

∑m
n=1 xn)m is bounded in E.

The Schauder decomposition (En)n is said Taylor Series convergent (T.S.
τ -convergent for short) if for any sequence (xn)n, xn ∈ En, n ∈ N, the series∑∞

n=1 xn converges in E whenever the series
∑∞

n=1 p(xn) converges for all
continuous semi-norm p on E. Finally, (En)n is called unconditional if, for
each x =

∑∞
n=1 xn in E, xn ∈ En for all n, the series

∑∞
n=1 xσ(n) converges to

x, for all permutation σ of the natural numbers.
The key to study the reflexivity of spaces of holomorphic functions is the

following result due to Kalton [12, Theorem 3.2]:

Theorem 21. (Kalton [12, Theorem 3.2]) A locally convex space E with a
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boundedly complete shrinking Schauder decomposition (En)n is semi-reflexive
if and only if each space En is semi-reflexive.

We recall that a locally convex space is reflexive if and only if it is semi-
reflexive and barrelled. For instance, any Fréchet space is barrelled.

Using Kalton’s result and the fact that (P(nX))n is a boundedly complete
shrinking Schauder decomposition of the Fréchet space (Hb(U), τb), Prieto
[18] and Garćıa, Maestre and Rueda [8] showed the equivalence between the
reflexivity of Hb(U) and the reflexivity of all P(nX), n ∈ N. Prieto proves
it for U = X whereas Garćıa, Maestre and Rueda got it for an arbitrary
balanced open subset U ⊂ X. Actually, in [8] it is shown a much more
general result involving weighted spaces of holomorphic functions.

Theorem 22. Let X be a Banach space and let U be a balanced open subset
of X. The space (Hb(U), τb) is reflexive if and only if (P(nX), ‖.‖) is reflexive
for all n ∈ N.

As a consequence they also proved Corollary 23 (for U = X in [18] and
arbitrary balanced open set U ⊂ T ∗ in [8]).

Corollary 23. The space (Hb(U), τb) is reflexive, for all balanced open subset
U ⊂ T ∗.

3.2.4 Reflexivity on spaces of holomorphic functions

Let us now prove that (H(U), τω) is reflexive, for all balanced open subset U
of T ∗. We will follow the above ideas by looking for a Schauder decomposition
of (H(U), τω).

Lemma 24. Let (En)n be a Schauder decomposition of a locally convex space
(E, τ) which is T.S. τ -complete. Assume that τ is generated by a family of
semi-norms p satisfying that

(a) p|En
is τ continuous in En, for all n, and

(b) p(x) =
∑∞

n=1 p(xn) for all x =
∑∞

n=1 xn ∈ E.

Then (En)n is boundedly complete.

Proof: Let (xn)n, xn ∈ En, n ∈ N, such that (
∑m

n=1 xn)m is τ bounded.
We have to show that the sequence (

∑m
n=1 xn)m converges to some x in E.
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Let p be a continuous semi-norm. By assumption we can choose p satisfy-
ing (b). Then the sequence (p(

∑m
n=1 xn))m = (

∑m
n=1 p(xn))m is bounded.

Hence
∑∞

n=1 p(xn) converges. Since (En)n is T.S. τ -complete we conclude
that

∑∞
n=1 xn converges in E.

Theorem 25. Let U be a balanced open subset of a Banach space X. Then
(P(nX), ‖.‖)n is a boundedly complete shrinking Schauder decomposition of
(H(U), τδ).

Proof: By [6, Proposition 3.36] and [5, Corollary 3.14] (P(nX))n is
a shrinking Schauder decomposition of H(U). Moreover, since (H(U), τδ)
is T.S. τδ complete (see the proof of [6, Corollary 3.53]) it follows from
Lemma 24 that (P(nX))n is a boundedly complete Schauder decomposition
of H(U).

Actually, it is well-known that (H(U), τδ) is complete when U is a bal-
anced open subset of a Banach space X (see [6, Corollary 3.53]).

Theorem 26. (Dineen [6, Corollary 4.19]) Let X be a Banach space with a
Schauder basis. Let U be a balanced open subset of X. The space (H(U), τω)
is reflexive if and only if (P(nX), ‖.‖) is reflexive for all n.

Proof: By Theorem 25 and Kalton’s result it follows that (H(U), τδ)
is semi-reflexive if and only if (P(nX), ‖.‖) is reflexive for all n. Since the
τδ topology is barrelled (see [6, Corollary 3.37]), and a locally convex space
is reflexive if and only if it is semi-reflexive and barrelled, it follows that
(H(U), τδ) is reflexive if and only if (P(nX), ‖.‖) is reflexive for all n. More-
over, since X has a Schauder basis, by [15] or [6, Corollary 4.16], τω = τδ on
H(U).

Corollary 27. (Alencar, Aron, Dineen [1]) The space (H(U), τω) is reflexive,
for all balanced open subset U of T ∗.

Proof: It follows from Proposition 2 and Theorem 26.
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