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Non-variational Semilinear Elliptic Systems

DJAIRO G. DE FIGUEIREDO

September 8, 2008

1 Introduction

In these lectures we survey some results on the existence of solutions for the
system of semilinear elliptic equations of the type

−∆u = f(x, u, v), −∆v = g(x, u, v) in Ω. (1.1)

Most of the material presented here is taken from our recent paper [70].
Details of the proofs can be seen in the papers listed in the References. The
list of papers in the References at the end of these lectures were taken from
[70].

On the above equations u and v are real-valued functions u, v : Ω → IR,
where Ω is some domain in RN , N ≥ 3, and Ω its closure. In order to simplify
the statements we assume that Ω is a smooth domain, although most of the
results can be obtained under less regularity of the domain. We do not discuss
the case N = 2, where the imbedding theorems of Trudinger-Moser allow the
treatment of nonlinearities which have a growth faster than the polynomial
growth required by the Sobolev imbeddings.

Although we concentrate in the case of the Laplacian many results can
be extended to general second order elliptic operators. Of course, there is
the problem of Maximum Principles for systems, which poses interesting
questions.

In the present lectures the nonlinearity of the problem appears only in
the real-valued functions f, g : Ω × IR × IR → IR. Problems involving the
p-Laplacian and fully nonlinear operators have been extensively studied re-
cently.

Let us just mention two classes of variational systems that have been
object of much research recently.

The system( 1.1) is variational if either one of the following conditions
holds:
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(I) There is a real-valued differentiable function F (x, u, v) for (x, u, v) ∈
Ω× IR× IR such that

∂F

∂u
= f and

∂F

∂v
= g. In this case, the system is said

to be gradient.
(II) There is a real-valued differentiable function H(x, u, v) for (x, u, v) ∈

Ω× IR× IR such that
∂H

∂u
= g and

∂H

∂v
= f . In this case, the system is said

to be Hamiltonean.
The terminology variational comes from the fact that in both cases, the

above system is the Euler-Lagrange equations of a functional naturally asso-
ciated to the system. Indeed, if we work with functions u and v in H1

0 (Ω),
the functional associated to the gradient system is

Φ(u, v) =
1

2

∫

Ω

(|∇u|2 + |∇v|2)−
∫

Ω

F (x, u, v). (1.2)

while the one associated to a Hamiltonean system is

Φ(u, v) =

∫

Ω

∇u.∇v −
∫

Ω

H(x, u, v), (1.3)

provided F and H have the appropriate growth in order to get their integra-
bility. Namely,

F (x, u, v) ≤ C(1 + |u|p + |v|q), ∀x ∈ Ω, u, v ∈ IR

with p, q ≤ 2N
N−2

, if the dimension N ≥ 3, and

H(x, u, v) ≤ C(1 + |u|p + |v|q),∀x ∈ Ω, u, v ∈ IR

with p, q ≤ 2N
N−2

.
This restriction on the powers of u and v in the Hamiltonean case is too

restrictive. It has been proved that more general values of p, q can be allowed,
see [26] and [84].

These two types of variational systems can be treated using Critical Point
Theory.

However, if the system is not variational we use topological methods, via
Leray-Schauder degree theory. The difficulty is obtaining a priori bounds for
the solutions. There are several methods to tackle this question. We will
comment some of them, including the use of Moving Planes and Hardy type
inequalities. However the most successful one in our framework seems to
be the Blow-up method; here we follow [42]. This method leads naturally
to Liouville type theorems, that is, theorems asserting that certain systems
have no non-trivial solution in the whole space RN or in a half-space RN

+ . In
Section 2, we present some results on Liouville theorems for systems.
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The well-known notion of criticality for the Dirichlet problem

−∆u = f(u), in Ω, v = 0 on ∂Ω,

that is p = N+2
N−2

, if |f(u)| ∼ |u|p as u → ∞, is replaced in the case of
systems by the so-called critical hyperbola. In [26] we studied the system




−∆u = f(v), in Ω,
−∆v = g(u), in Ω,

u = 0, v = 0 on ∂Ω,
(1.4)

where |f(v)| ≤ |v|p, and |g(u)| ≤ |u|q, as u, v → +∞.
There we observed that a priori bounds on positive solutions could be

obtained by the technique used in [39] if

(p, q) satisfy 1
p+1

+ 1
q+1

> 1− 2
N

.

p

q

N+2
N−2

N
N−2

C

Figure 1: 1
p+1

+ 1
q+1

= 1− 2
N

.

In the above picture the higher curve C is the critical hyperbola. The lower
parabola is the one obtained by Souto [95], related to the Liouville results,
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and the two little curves are connected with the work of Busca-Manasevich
[18].

We call a system (1.4) to be sub-critical if the powers p, q are the coordi-
nates of a point below the critical hyperbola.

For N ≥ 3, the ”critical hyperbola” plays an important role on the ex-
istence of non-trivial solutions. For instance, for the model problem (1.4)
with (p, q) ∈ R2 on and above this curve, one finds the typical problems of
non-compactness, and non-existence of solutions, as it was proved in [100],
[26], [77], using Pohozaev type arguments.

2 Nonvariational elliptic systems.

In this section we study some systems of the general form (1.1) that do not
fall in the categories of the variational systems mentioned before. So we shall
treat them by Topological Methods. We will discuss here the existence of
positive solutions. The main tool is the following result, due to Krasnoselskii
[73], see also [12], [39].

Theorem 2.1 ( Krasnoselski ) Let C be a cone in a Banach space X and
T : C → C a compact mapping such that T (0) = 0. Assume that there are
real numbers 0 < r < R and t > 0 such that

(i) x 6= tTx for 0 ≤ t ≤ 1 and x ∈ C, ||x|| = r, and
(ii) There exists a compact mapping H : BR × [0,∞) → C (where Bρ =

{x ∈ C : ||x|| < ρ}) such that
(a) H(x, 0) = Tx for ||x|| = R,
(b) H(x, t) 6= x for ||x|| = R and t ≥ 0
(c) H(x, t) = x has no solution x ∈ BR for t ≥ t0
Then

ic(T, Br) = 1, ic(T, BR) = 0, ic(T, U) = −1,

where U = {x ∈ C : r < ||x|| < R}, and ic denotes the Leray-Schauder index.
As a consequence T has a fixed point in U .

When applying this result the main difficulty arises in the verification of
condition (b), which is nothing more than an a priori bound on the solutions of
the system. It is well known that the existence of a priori bounds depends on
the growth of the functions f and g as u and v go to infinity. It is known that,
when treating the variational systems in dimension N ≥ 3, the nonlinearities
were restricted to have polynomial growth. This was a requirement in order
to get the associated functional defined, as well as a Palais-Smale condition.
Here similar restrictions appear in order to get a priori bounds.
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A priori bounds for positive solutions of superlinear elliptic equations (the
scalar case), namely

−∆u = f(x, u) in Ω, u = 0 on ∂Ω (2.1)

was first considered by Brézis-Turner [21] using an inequality due to Hardy.
The same technique was used in [27] to obtain a priori bounds for solutions
of systems

−∆u = f(x, u, v,∇u,∇v),
−∆v = g(x, u, v,∇u,∇v) in Ω,

u = v = 0 on ∂Ω
(2.2)

under the following set of conditions:

(f1) f, g : Ω× IR× IR×RN ×RN −→ IR is continuous,

(f2) lim inft→∞
f(x,s,t,ξ,η)

t
> λ1 uniformly in (x, s, t, ξ, η) ∈ Ω × IR × IR ×

RN ×RN ,

(f3) There exist p ≥ 1 and σ ≥ 0 such that

|f(x, s, t, ξ, η)| ≤ C(|t|p + |s|pσ + 1)

(g2) lim inft→∞
g(x,s,t,ξ,η)

t
> λ1 uniformly in (x, s, t, ξ, η) ∈ Ω × IR × IR ×

RN ×RN ,

(g3) There exist q ≥ 1 and σ′ ≥ 0 such that

|g(x, s, t, ξ, η)| ≤ C(|s|q + |t|qσ′ + 1).

In the work [27], instead of the critical hyperbola, two other hyperbolas
appeared, due to the limitations coming from the method. Namely

1

p + 1
+

N − 1

N + 1

1

q + 1
=

N − 1

N + 1
,

N − 1

N + 1

1

p + 1
+

1

q + 1
=

N − 1

N + 1
.

This is precisely like in the scalar case in [21] where the exponent N+1
N−1

appeared instead of N+2
N−2

. Observe that the intersection of the two above

hyperbolas is the Brézis-Turner exponent N+1
N−1

.
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Theorem 2.2 Let Ω be a smooth bounded domain in RN , with N ≥ 4.
Assume that the conditions f1,f2,f3,g2,g3 hold with p, q being the coordinates
of a point below both of the above hyperbolas. Suppose that σ, σ′ are given by

σ =
L

max(L,K)
, σ′ =

K

max(L,K)
,

where

K =
p

p + 1
− 2

N
> 0, L =

q

q + 1
− 2

N
> 0.

Then the positive solutions of the system (2.2) are bounded in L∞.

Remarks on the proof of Theorem 2.2. As said above the proof relies
on an inequality of Hardy, namely

‖ u

ϕ1

‖Lq ≤ C‖Du‖Lq , ∀ u ∈ W 1,q
0 .

Here q > 1 and ϕ1 is the eigenfunction associated to the first eigenvalue
of (−∆, H1

0 (Ω)). In [21] they introduced an interpolation of the Hardy
inequality (q = 2) with Sobolev inequality

‖u‖2∗ ≤ C‖Du‖L2 , , ∀ u ∈ H1
0 ,

obtaining the inequality below

‖ u

ϕτ
1

‖Lq ≤ C‖Du‖L2 , ∀ u ∈ H1
0 ,

where 1
q

= 1
2
− 1−τ

N
. For the purpose of proving Theorem 2.2 one needs a

Hardy-type inequality which follows from the inequalities above, namely

Proposition 2.1 Let r0 ∈ (1,∞], r1 ∈ [1,∞) and u ∈ Lr0(Ω)
⋂

W 1,r1

0 .
Then for all τ ∈ [0, 1] we have

u

ϕτ
1

∈ Lr(Ω), where
1

r
=

1− τ

r0

+
τ

r1

.

Moreover
‖ u

ϕτ
1

‖Lr ≤ C‖u‖1−τ
Lr0 ‖u‖τ

W 1,r1 ,

where the constant C depends only on τ , r0 and r1.
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In [39], moving planes techniques and Pohozaev type identities were
used to obtain a priori bounds for positive solutions of the scalar equation
(2.1). This method was extended by Clement-deFigueiredo-Mitidieri [26]
to Hamiltonian systems of the type (1.4). Although one obtains the right
growth for the nonlinear terms, namely f(s) ∼ sq, g(s) ∼ sp with any p, q
below the critical hyperbola, the method does not generalizes for other second
order elliptic operators, and there are restrictions on the type of regions Ω.

Another interesting approach to obtaining a priori bounds can be seen in
Quittner-Souplet [87] using weighted Lebesgue spaces.

The Blow-up Method.
The other technique used to obtain a priori bounds for solutions of sys-

tems is the blow-up method, first used in [64] to treat scalar equations as
(2.1). Since there is some symmetry regarding the assumptions on the be-
havior of the nonlinearities with respect to the unknowns u, v, we change
henceforth in this section the notations of these variables, and use u1, u2. So,
let us consider the system in the form:





−∆u1 = f(x, u1, u2) in Ω
−∆u2 = g(x, u1, u2) in Ω

u1 = u2 = 0 on ∂Ω,
(2.3)

where u1, u2 are consequently real-valued functions defined on a smooth
bounded domain Ω in RN , N ≥ 3, and f and g are real-valued functions
defined in Ω×R×R.

We then write the system as follows, assuming that the leading parts of
f and g involve just pure powers of u1 and u2.

{ −∆u1 = a(x)uα11
1 + b(x)uα12

2 + h1(x, u1, u2)
−∆u2 = c(x)uα21

1 + d(x)uα22
2 + h2(x, u1, u2),

(2.4)

where the α’s are nonnegative real numbers, a(x), b(x), c(x), d(x) are non-
negative continuous functions on Ω, and h1, h2 are locally bounded functions
(the lower order terms) such that





lim
|(u1,u2)|→∞

(a(x)uα11
1 + b(x)uα12

3 )−1 |h1(x, u1, u2)| = 0

lim
|(u1,u2)|→∞

(c(x)uα21
1 + d(x)uα22

2 )−1 |h2(x, u1, u2)| = 0.
(2.5)

Now we treat the system (2.4) using the blow-up method. So let us
assume, by contradiction, that there exists a sequence (u1,n, u2,n) of positive
solutions of (2.4) such that at least one of the sequences u1,n and u2,n tends
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to infinity in the L∞-norm. Passing to subsequences if necessary, we may
suppose that

||u1,n||β2
∞ ≥ ||u2,n||β1

∞,

where β1, β2 are positive constants to be chosen later. Let xn ∈ Ω be a
point where u1,n assumes its maximum: u1,n(xn) = maxx∈Ω u1,n(x). Then

the sequence λn = u1,n(xn)
− 1

β1 is such that λn → 0. The functions

vi,n(x) = λβi
n ui,n(λnx + xn),

satisfy v1,n(0) = 1, 0 ≤ vi,n ≤ 1 in Ω. One also verifies that the functions
v1,n and v2,n satisfy

{
−∆v1,n = a(·)λβ1+2−β1α11

n vα11
1,n + b(·)λβ1+2−β2α12

n vα12
2,n + h̃1(·)

−∆v2,n = c(·)λβ2+2−β1α21
n vα21

1,n + d(·)λβ2+2−β2α22
n vα22

2,n + h̃2(·),
(2.6)

in the domain Ωn =
1

λn

(Ω− xn), where the dot stands for λnx + xn.

The idea of the method is then to pass to the limit as n → ∞ in (2.6) and
obtain a system either in RN or in RN

+ , which can be proved that it has only
the trivial solution. This would contradict the fact that the limit of v1,n has
value 1 at the origin. By compactness the sequence (xn) or a subsequence of
it converges to a point x0. We observe that the limiting system is defined in
RN or in RN

+ , accordingly to this limit point (x0) being a point in Ω or in
∂Ω. In the next proposition we make precise these statements.

Proposition 2.2 The sequences (v1,n) and (v2,n) converge in W 2,p
loc , with 2 ≤

p < ∞ to functions v1, v2 ∈ C2(G)
⋂

C0(G), satisfying the limiting system of
(2.6) in G = RN or in G = RN

+ , provided all the powers of λn in (2.6) are
non-negative. This limiting system is obtained by removing the terms in (2.6)
where the powers of λn are strictly positive, the terms where the coefficients
vanishes at x0, and the lower order terms.

In [79] and [41] two special classes of systems were studied, (i) weakly
coupled and (ii) strongly coupled. The terminology is explained by the type
of system obtained after the passage to the limit. We next analyze these two
classes, and later we present more general results obtained recently in [42].

Definition 1. System (2.4) is weakly coupled if there are positive numbers
β1, β2 such that

β1 + 2− β1α11 = 0 , β1 + 2− β2α12 > 0 (2.7)

β2 + 2− β1α21 > 0 , β2 + 2− β2α22 = 0
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Definition 2. System (2.4) is strongly coupled if there are positive numbers
β1, β2 such that

β1 + 2− β1α11 > 0 , β1 + 2− β2α12 = 0 (2.8)

β2 + 2− β1α21 = 0 , β2 + 2− β2α22 > 0

Remark 2.1 It follows that if the system (2.4) is weakly coupled then nec-
essarily we should have

β1 =
2

α11 − 1
and β2 =

2

α22 − 1
. (2.9)

which requires that α11 > 1, α22 > 1 and

α12 <
α22 − 1

α11 − 1
α11 and α21 <

α11 − 1

α22 − 1
α22, (2.10)

Remark 2.2 If the system (2.4) is strongly coupled then

β1 =
2(α12 + 1)

α12α21 − 1
and β2 =

2(α21 + 1)

α12α21 − 1
. (2.11)

which requires that α12α21 > 1 and

α11 <
α21 + 1

α12 + 1
α12 and α22 <

α12 + 1

α21 + 1
α21, (2.12)

Remark 2.3 We observe that the requirements that α11, α22 > 1 and
α12α21 > 1 are known as super-linearity conditions.

Weakly Coupled System. After the blow-up, the limiting system be-
comes, using a scaling of the solutions v1, v2:

−∆w1 = wα11
1 (2.13)

−∆w2 = wα22
2 , in RN ,

and

−∆w1 = wα11
1 , (2.14)

−∆w2 = wα22
2 in RN

+

w1 = w2 = 0 on xN = 0.

The existence or not of positive solutions for such systems is the object of the
so-called Liouville type theorems. They will be discussed in the next section.
For the time being we anticipate that
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(i) the equations in system (2.13) have only the trivial solution if
0 < α11, α22 < N+2

N−2

(ii) the equations in system (2.14) have only the trivial solution if
1 < α11, α22 < N+1

N−3
, if the dimension N > 3, see Section 3.

So the following result holds.

Theorem 2.3 Let (2.4) be a weakly coupled system with continuous coeffi-
cients a, b, c, d, exponents α′s ≥ 0, and such that a(x), d(x) ≥ c0 > 0 for
x ∈ Ω. Assume also that 0 < α11, α22 < (N + 2)/(N − 2). Then there is a
constant C > 0 such that

||u1||L∞ , ||u2||L∞ ≤ C

for all positive solutions u1, u2 ∈ C2(Ω) ∩ C0(Ω) of system (2.4).

Strongly Coupled System. As in the case of a weakly coupled system,
the limiting systems are

−∆ω1 = ωα12
2 , −∆ω2 = ωα21

1 in RN (2.15)

and
−∆ω1 = ωα12

2 , −∆ω2 = ωα21
1 in (RN)+ (2.16)

with
w1 = w2 = 0 on xN = 0

So a contradiction comes if the exponents are such that (2.15) and (2.16)
have only the trivial solution ω1 = ω2 ≡ 0. In summary, the following result
holds.

Theorem 2.4 Let (2.4) be a strongly coupled system with continuous coef-
ficients a, b, c, d, exponents α′s ≥ 0, and such that b(x), c(x) ≥ c0 > 0 for
x ∈ Ω. Assume that the following conditions hold:

(L1) The exponents α12 and α21 are such that the only non- negative
solution of

−∆ω1 = ωα12
2 , −∆ω2 = ωα21

1 in RN

is w1 = ω2 ≡ 0.
(L2) The only non-negative solution of

−∆ω1 = ωα12
2 , −∆ω2 = ωα21

1 in RN
+

with ω1(x
′, 0) = ω2(x

′, 0) = 0 is ω1 = ω2 ≡ 0. Then there is a constant C > 0
such that

||u1||L∞ , ||u2||L∞ ≤ C

for all non-negative solutions (u1, u2) of system (2.4).
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Remark 2.4 Which conditions should be required on the exponents α12 and
α21 in such a way that (L1) and (L2) holds? Again these are Liouville type
theorems for systems, which will be described in the next section.

A more complete analysis of the blow-up process.
Now we proceed to do a more complete analysis of the system (2.4) using

the blow up explained above and considering other types of limiting systems.
We follow [42].

By looking at system (2.6), we see that in order to arrive at some system
in RN or RN

+ , by using the blow up method, it is necessary that all the
exponents in the λn are greater than or equal to 0. When one of these
exponents is positive, then the corresponding term vanishes in the limit (as
n → ∞), while if the exponent is zero than that term remains after the
limiting process. The many possibilities would be better understood by the
analysis of the figure below, Figure 2.

Π

α11−1

2

α22 1−
2

α

α

21

2

12

2

2

1

β

β

−

−

2

2

1

4

3

l

l
l

2l

Figure 2: Admissible couples (β1, β2) lie to the left of or on l1, below or on l2,
below or on l3, and above or on l4.
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In the (β1, β2)-plane we denote
−→
β = (β1, β2) ∈ R2

+, and introduce the
lines, whose expressions come from the exponents of λn in (2.6),

l1 =
{

~β | β1 + 2− β1α11 = 0
}

, l2 =
{

~β | β2 + 2− β2α22 = 0
}

,

l3 =
{

~β | β1 + 2− β2α12 = 0
}

, l4 =
{

~β | β2 + 2− β1α21 = 0
}

,

In order to have exponents of the λn greater or equal to 0, we have to consider
points (β1, β2) ∈ R2

+, which are to the left of or on l1, below or on l2 (note
that l1 and l2 can be empty, and then they introduce no restriction), below
or on l3, and above or on l4. Those points are called admissible. We divide
the systems studied in three classes, which are determined by the exponents
αi,j:

Case A.The intersection of l1 and l2 is admissible. Then we set (β1, β2) =
l1

⋂
l2. In this case we shall assume that the functions a(x) and d(x) are

bounded below on Ω by a positive constant.

Case B.The intersection of l3 and l4 is admissible. Then we set (β1, β2) =
l3

⋂
l4. In this case we shall assume that the functions b(x) and c(x) are

bounded below on Ω by a positive constant. Further, we have to assume
that α12, α21 > 1. (This last requirement comes from a restriction in some
Liouville theorems).

Case C.None of l1
⋂

l2 and l3
⋂

l4 is admissible. Then either l1
⋂

l3 or l2
⋂

l4
is admissible and we take this intersection point to be our (β1, β2). In this
case we shall assume that the function b(x) (resp c(x)) is bounded below on
Ω by a positive constant.

Now we can state the main result of this section:

Theorem 2.5 Assume that system (2.4) satisfies the conditions above and
that the pair (β1, β2), which corresponds to the type of the system (A, B or C),
satisfies the condition

min{β1, β2} ≥ N − 2

2
. (2.17)

Then all positive solutions of the system (2.4) are bounded in L∞.

Remarks on the proof of Theorem 2.5. The proof in all three cases
consists in verifying that the limiting systems have only the trivial, coming
then to a contradiction. In the sequel we use G to denote either RN or RN

+
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In Case A we choose (β1, β2) = l1
⋂

l2, that is

β1 =
2

α11 − 1
, β2 =

2

α22 − 1
.

For the limiting systems there are three possibilities:
(a) if none of the lines l3 and l4 passes through l1

⋂
l2 we get

−∆w1 = wα11
1 (2.18)

−∆w2 = wα22
2 , in G,

and as a consequence of hypothesis (2.17) we obtain

max{α11, α22} <
N + 2

N − 2
,

which then implies that system (2.18) has only the trivial solution. (This is
precisely the weakly coupled case discussed before).
(b) If exactly one of the lines l3 and l4 (say l3)passes through l1

⋂
l2 we get

−∆v1 = a0v
α11
1 + b0v

α12
2 (2.19)

−∆v2 = d0v
α22
2 , in G,

where a0 > 0, b0 ≥ 0, d0 > 0. So as above system (2.19) has only the trivial
solution.
(c) If all four lines meet (this also contains one of the possibilities of Case B)
we get

−∆v1 = a0v
α11
1 + b0v

α12
2 (2.20)

−∆v2 = c0v
α21 + d0v

α22
2 , in G,

with all four coefficients positive. In order to see that such a system under the
assumption (2.17) has only the trivial solution, one requires a new Liouville
theorem, which is proved in [42]. As in [18] our proof uses a change to polar
coordinates and some monotonicity argument.

In Case B we choose (β1, β2) = l3
⋂

l4, that is,

β1 =
2(1 + α12)

α12α21 − 1
, β2 =

2(1 + α21)

α12α21 − 1
.

For the limiting systems there are two possibilities:

13



(a) if none of the lines l1 and l2 passes through l3
⋂

l4 we get (after scaling)

−∆v1 = vα12
2 (2.21)

−∆v2 = vα21
1 , in G,

From results of the next section it follows that system (2.21), under the
hypothesis (2.17), has only the trivial solution. (This is precisely the strongly
coupled case discussed above.)
(b) If one of the lines l1 and l2 (say l1)passes through l3

⋂
l4 we get

−∆v1 = a0v
α11
1 + b0v

α12
2 (2.22)

−∆v2 = c0v
α21
1 , in G,

where b0, c0 > 0, and a0 ≥ 0, and the results on Section 3 give that v1 = v2 ≡
0.

In Case C there are two possibilities: (a) the line l3 meets l1 in a point
above l4, (b) the line l4 meets l2 in a point below l3. In both cases (β1, β2) is
chosen as this point of intersection. In case (a) we take

β1 =
2

α11 − 1
, β2 =

2α11

α12(α11 − 1)
.

The limiting system is

−∆v1 = a0v
α11
1 + b0v

α12
2 (2.23)

−∆v2 = 0 , in G,

which is easily treated by the Liouville results of the next section.

3 Liouville Theorems

The classical Liouville Theorem from Function Theory says that every bounded
entire function is constant. In terms of a differential equation one has: if
(∂/∂z)f(z) = 0 and |f(z)| ≤ C for all z ∈ C then f(z) =const. Hence
results with a similar contents are nowadays called Liouville theorems. For
instance, a superharmonic function defined in the whole plane R2, which is
bounded below, is constant. Also, all results discussed in this section have
this nature. For completeness, we survey also results on a single equation,
namely

−∆u = up (3.1)

14



If the equation is considered in R2, then a non-negative solution of (3.1)
is necessarily identically zero. The case when RN , N ≥ 3 is quite distinct.
We discuss this case next.

Theorem 3.1 Let u be a non-negative C2 function defined in the whole of
RN , such that (3.1) holds in RN . If 0 < p < (N + 2)/(N − 2), then u ≡ 0.

This result was proved by Gidas-Spruck [65] in the case 1 < p < (N +
2)/(N − 2). A simpler proof using the method of moving parallel planes
was given by Chen-Li [25], and it is valid in the whole range of p. A very

elementary proof valid for p ∈ [1,
N

N − 2
) was given by Souto [95]. In fact,

his proof is valid for the case of u being a non-negative supersolution, i.e.

−∆u ≥ up in RN , (3.2)

with p in the same restricted range.

Theorem 3.2 Let u ∈ C2(RN
+ ) ∩ C0(RN

+ ) be a non- negative function such
that { −∆u = up in RN

+

u(x′, 0) = 0
(3.3)

If 1 < p ≤ (N + 2)/(N − 2) then u ≡ 0.

Remark 3.1 This is Theorem 1.3 of [64], plus Remark 2 on page 895 of the
same paper. It is remarkable that in the case of the half-space the exponent
(N + 2)/(N − 2) is not the right one for theorems of Liouville type. Indeed,
Dancer [30] has proved the following result.

Theorem 3.3 Let u ∈ C2(RN
+ )∩C0(RN

+ ) be a non- negative bounded solution
of (3.3). If 1 < p < (N + 1)/(N − 3) for N ≥ 4 and 1 < p < ∞ for N = 3,
then u ≡ 0.

Remark 3.2 If p = (N+2)/(N−2), N ≥ 3, then (3.1) has a two-parameter
family of bounded positive solutions:

Uε,x0(x) =

[
ε
√

N(N − 2)

ε2 + |x− x0|2
]N−2

2

,

which are called instantons.

Next we state some results on supersolutions still in the scalar case.
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Theorem 3.4 Let u ∈ C2(RN) be a non-negative supersolution of (3.2). If

1 ≤ p ≤ N

N − 2
, then u ≡ 0.

This result is proved in Gidas [62] for 1 < p ≤ N/(N − 2). The case
p = 1 is included in Souto [95]. See [7] and [74] for Liouville theorems for
equations defined in cones.

Liouvile for systems defined in the whole of RN .
We start considering systems of the form

−∆u = vp, −∆v = uq. (3.4)

In analogy with the scalar case just discussed, here the dividing line
between existence and non-existence of positive solutions (u, v) defined in the
whole of RN should be the critical hyperbola, [26], [84], introduced before .
We recall that, such hyperbola associated to problems of the form (3.4) is
defined by

1

p + 1
+

1

q + 1
= 1− 2

N
, p, q > 0 (3.5)

Continuing the analogy with the scalar case, one may conjecture that
(3.4) has no bounded positive solutions defined in the whole of RN if

1

p + 1
+

1

q + 1
> 1− 2

N
, p, q > 0. (3.6)

To our knowledge, this conjecture has not been settled in full so far.
Why such a conjecture? In answering it, let us remind some facts, already
contained in the previous sections. The critical hyperbola appeared in the
study of existence of positive solutions for superlinear elliptic systems of the
form

−∆u = g(v), −∆v = f(u) (3.7)

subject to Dirichlet boundary conditions in a bounded domain Ω of RN . If
g(v) ∼ vp and f(u) ∼ uq as u, v → ∞, then system (3.7) is said to be sub-
critical if p, q satisfy (3.6). For such systems [in analogy with sub-critical
scalar equations, −∆u = f(u), f(u) ∼ up and 1 < p < (N + 2)/(N −
2)] one can establish a priori bounds of positive solutions, prove a Palais-
Smale condition and put through an existence theory by a topological or a
variational method. This sort of work initiated in [26] and [84] has been
continued. Recall that the problem in the critical scalar case, ( that is,
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−∆u = |u|2∗−2u in Ω, u = 0 on ∂Ω,) has no solution u 6= 0 if Ω is a star-
shaped bounded domain in RN , N ≥ 3. In the case of systems, the critical
hyperbola appears in the statement: if Ω is a bounded star-shaped domain
in RN , N ≥ 3, the Dirichlet problem for the system below has no non-trivial
solution:

−∆u = |v|p−1v, −∆v = |u|q−1u

if, p, q satisfy (3.5). This follows from an identity of Pohozaev-type, see
Mitidieri [77]; also Pucci-Serrin [86] for general forms of Pohozaev-type
identities.

Next we describe several Liouville-type theorem for systems.

Theorem 3.5 Let p, q > 0 satisfying (3.6). Then system (3.4) has no
nontrivial radial positive solutions of class C2(RN).

Remark 3.3 This result settles the conjecture in the class of radial func-
tions. It was proved in [77] for p, q > 1, and for p, q in the full range by
Serrin-Zou [91]. The proof explores the fact that eventual positive radial so-
lutions of (3.4) have a definite decay at ∞; this follows from an interesting
observation (cf. Lemma 6.1 in [77]): If u ∈ C2(RN) is a positive radial
superharmonic function, then

ru′(r) + (N − 2)u(r) ≥ 0, for all r > 0.

Theorem 3.5 is sharp as far as the critical hyperbola is concerned. Indeed,
there is the following existence result of Serrin-Zou [91].

Theorem 3.6 Suppose that p, q > 0 and that

1

p + 1
+

1

q + 1
≤ 1− 2

N
(3.8)

Then there exist infinitely many values ξ = (ξ1, ξ2) ∈ R+ × R+ such
that system (3.4) admits a positive radial solution (u, v) with central values
u(0) = ξ1, v(0) = ξ2. Moreover u, v → 0 as |x| → ∞. So the solution is in
fact a ground state for (3.4).

Let us now mention some results on the nonexistence of positive solutions
(or super-solutions) of (3.4), without the assumption of being radial.
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Theorem 3.7 Let u, v ∈ C2(RN) be non-negative super-solutions of (3.4),
that is

−∆u ≥ vp, −∆v ≥ uq in RN , (3.9)

where p, q > 0 and
1

p + 1
+

1

q + 1
≥ N − 2

N − 1
. (3.10)

Then u = v ≡ 0.

This result is due to Souto [95]. The idea of his interesting proof is to
reduce the problem to a question concerning a scalar equation. Suppose, by
contradiction, that u and v are positive solutions of (3.9) in RN . Introduce
a function ω = uv. So

∆ω ≤ 2∇u∇v − uq+1 − vp+1. (3.11)

Using the inequality

a · b ≤ 1

4
|a + b|2 a, b ∈ RN

we get that

2∇u∇v ≤ 1

2
ω−1|∇ω|2.

On the other hand, choose r > 0 such that
1

r
=

1

p + 1
+

1

q + 1
. Then by

Young’s inequality

ωr = urvr ≤ r

q + 1
uq+1 +

r

p + 1
vp+1 ≤ uq+1 + up+1.

So

∆ω ≤ 1

2
ω−1|∇ω|2 − ωr. (3.12)

Replacing ω by f 2 in (3.12) one obtains

−∆f ≥ 1

2
f 2r−1 in RN ,

with f > 0 in RN . Using Theorem 3.4, we see that this is a contradiction,
since 2r− 1 ≤ N/(N − 2). It is of interest to observe that Souto’s hyperbola
intersects the bisector of the first quadrant precisely at the Serrin exponent

N
N−2

.

In order to state the next results, we assume that pq > 1 and introduce
the following notations
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α =
2(p + 1)

pq − 1
, β =

2(q + 1)

pq − 1
. (3.13)

Theorem 3.8 Suppose that p, q > 1 and

max{α, β} ≥ N − 2. (3.14)

Then system (3.9) has no nontrivial super-solution of class C2(RN).

Remark. The above result is Corollary 2.1 in [78]. Under hypothesis (3.14),
it is proved in [90] that system (3.4) has no nontrivial solution, provided
a weaker condition than p, q > 1 holds, namely pq > 1. In [90] it is also
proved that (3.4) has no nontrivial solution in RN , if pq ≤ 1.

In order to illustrate some useful technique, let us comment briefly the
proof given in [78], which uses spherical means. Let v ∈ C(RN), then the
spherical mean of v at x of radius ρ is

M(v; x, ρ) =
1

meas[∂Bρ(x)]

∫

∂Bρ(x)

v(y)dσ(y).

Changing coordinates we obtain

M(v; x, ρ) =
1

ωN

∫

|ν|=1

v(x + ρν)dω (3.15)

where ωN denotes the surface area of the unit sphere of RN and ν ranges
over this unit sphere. Then, one has Darboux formula

(
∂2

∂ρ2
+

N − 1

ρ

∂

∂ρ

)
M(v; x, ρ) = ∆xM(v; x, ρ). (3.16)

Now let us use these ideas for the functions u and v in system (3.9):

∆xM(u; x, ρ) =
1

ωN

∫

|ν|=1

∆xu(x + ρν)dω ≤ − 1

ωN

∫

|ν|=1

[v(x + ρν)]pdω

and using Jensen’s inequality we obtain

∆xM(u; x, ρ) ≤ −[M(v; x, ρ)]p. (3.17)
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Using the notation

M(u(x); x, ρ) = u#(ρ) , M(v(x); x, ρ) = v#(ρ)

we obtain

−∆ρu
# ≥ (v#)p, −∆ρv

# ≥ (u#)q, where, ∆ρ =

(
∂2

∂ρ2
+

N − 1

ρ

∂

∂ρ

)

(3.18)
The proof of Theorem 3.8 will be concluded by the use of the following results,
see [78].

Proposition 3.1 If v ∈ C2(RN), then M(v; x, ρ) is also C2(RN) in the
variable x and C2([0,∞)) in the variable ρ. Moreover,

(
d

dρ
v#

)
(0) = 0, and

(
d

dρ
v#

)
(ρ) ≤ 0,

that is v#(ρ) is non-increasing.

Proposition 3.2 If u ∈ C2(RN) is a positive radial superharmonic function,
then

ru′(r) + (N − 2)u(r) ≥ 0 for r > 0. (3.19)

Proposition 3.3 Let u(ρ), v(ρ) be two C2 functions defined and non-increasing
in [0,∞), such that u′(0) = v′(0) = 0 and

−∆ρu ≥ vp, −∆ρv ≥ uq. (3.20)

Suppose that p, q > 1 and that (3.14) holds. Then u = v ≡ 0.

The next result extends, as compared with the previous results, the region
under the critical hyperbola where the Liouville theorem holds.

Theorem 3.9 A) If p > 0 and q > 0 are such that p, q ≤ (N + 2)/(N − 2),
but not both equal to (N + 2)/(N − 2), then the only non-negative solution
of (3.4) is u = v = 0.

B) If α = β = (N +2)/(N −2), then u and v are radially symmetric with
respect to some point of RN .
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This theorem is due to deFigueiredo-Felmer [40]. The proof uses the method
of Moving Planes. A good basic reference of this method is [14]. The idea in
the proof of the above theorem is to use Kelvin transform in the solutions u, v
of (3.4), which a priori have no known (or prescribed) behavior at infinite.
By means of Kelvin’s u and v are transformed in new unknowns w and z
satisfying

−∆w = 1
|x|N+2−p(N−2) z

p(x),

−∆z = 1
|x|N+2−q(N−2) w

q(x)
(3.21)

which now have a definite decay at ∞, provided (p, q) satisfy the conditions
of Theorem 3.9. It is precisely at this point that we cannot take p > N+2

N−2
,

because then one would loose the right type of monotonicity of the coefficients
necessary to put the moving plane method to work. So having this correct
monotonicity of the coefficients the method of moving planes can start. This
result has been extended by Felmer [55] to systems with more than two
equations.

The next result is due to Busca-Manasevich [18] and extends further, as
compared with Theorem 3.9, the region of values of p, q where the Liouville
theorem for system (3.4) holds

Theorem 3.10 Suppose that p, q > 1 and

min{α, β} >
N − 2

2
. (3.22)

Then system (3.4) has no nontrivial solution of class C2(RN).

If some behavior of u and v at ∞ is known, the Liouville theorem can be
established for all (p, q) below the critical hyperbola, as in the next result.

Theorem 3.11 Let p > 0 and q > 0 satisfying (3.6) then there are no
positive solutions of (3.4) satisfying

u(x) = o(|x|− N
q+1 ), v(x) = o(|x|− N

p+1 ), as |x| → ∞. (3.23)

The above result is due to Serrin-Zou [91], where the next result is also
proved.

Theorem 3.12 Let N = 3, and p, q > 0 satisfying (3.6). Then there are
no positive solutions of (3.4) for which either u or v has at most algebraic
growth at infinity.
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Remark 3.4 Observe that Theorem 3.11 extends Theorem 3.5, since radial
positive solutions have a decay at infinity.

The proof of Theorem 3.11 is based on an interesting L2 estimate of the
gradient of a superharmonic function, namely,

Lemma 3.1 Let ω ∈ C2(RN) be positive, superharmonic (i.e. −∆ω ≥ 0 in
RN) and

ω(x) = o(|x|−γ) as |x| → ∞. (3.24)

Then ∫

B2R\BR

|∇ω|2 = o(RN−2−2γ) as R →∞, (3.25)

where BR is the ball of radius R in RN centered at the origin.

Another basic ingredient in the proof of Theorem 3.11 is an identity of
Pohožaev-type, a special case of a general identity in [86]. As a matter of
fact, the formula below is exactly the one in Corollary 2.1 of [77], taking
there h = x and Ω = Bρ

Lemma 3.2 Let (u, v) be a positive solution of (3.4) and let a1 and a2 be
constants such that a1 + a2 = N − 2. Then

∫
Bρ

{(
N

p+1
− a1

)
vp+1 +

(
N

q+1
− a2

)
uq+1

}
= ρ

∫
∂Bρ

{
vp+1

p+1
+ uq+1

q+1

}

+ρ
∫

∂Bρ

(
2∂u

∂r
∂v
∂r
−∇u · ∇v

)
+

∫
∂Bρ

(
a1

∂u
∂r

v + a2u
∂v
∂r

)
. (3.26)

Proof of Theorem 3.11. using these two lemmas. Choose a1 and a2 in
such a way that

N

p + 1
− a1 =

N

q + 1
− a2 = δ, a1 + a2 = N − 2.

Next, dividing (3.26) by ρ and integrating with respect to ρ between some
R and 2R and estimating we get

δ ln 2

∫

BR

(uq+1 + vp+1) ≤
∫

B2R\BR

(
uq+1

q + 1
+

vp+1

p + 1

)

+

∫

B2R\BR

|∇u.∇v|+ cR−1

∫

B2R\BR

(v|∇u|+ u|∇v|), (3.27)
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where c is a constant < N −2. Now using the hypothesis (3.23), we see that
the first integral in the right side of (3.27) is o(1). Next one uses Lemma 3.1

with ω = u, γ =
N

q + 1
and ω = v, γ =

N

p + 1
. With that we can estimate

the second and third integrals using Cauchy -Schwarz and get that they are

o(RN−2− N
p+1

− N
q+1 ) which is o(1). Then if follows from (3.27), letting R →∞,

that u = v = 0.

Liouville theorems for systems defined in half-spaces
Now we look at the system below and state some results on the nonexis-

tence of non-trivial solutions and also of supersolutions.




−∆u = vp in RN
+

−∆v = uq in RN
+

u, v ≥ 0 in RN
+

u, v = 0 on ∂RN
+

(3.28)

Theorem 3.13 Let p, q > 1 satisfying

max(α, β) ≥ N − 3. (3.29)

Then the system (3.28) has only the trivial solution.

Remark 3.5 This result is due to Birindelli-Mitidieri [16], where, instead
of a half- space, more general cones are considered. It is also proved there
that system (3.28) has no supersolutions if

max(α, β) ≥ N − 1,

where α, β are defined in (3.13).

A Liouville theorem for a full system.
Now we consider the following system

−∆u1 = uα11
1 + uα12

2 (3.30)

−∆u2 = uα21
1 + uα22

2 , in RN ,

which has appeared in Section 2, when we proved a priori bounds for solutions
of systems in Case A. That was when all 4 lines l1, l2, l3, l4 intersect at
(β1, β2). This implies that
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β1 =
2

α11 − 1
, β2 =

2

α22 − 1

α12 =
α11(α22 − 1)

α11 − 1
, α21 =

α22(α11 − 1)

α22 − 1

Theorem 3.14 System (3.30) has only the trivial solution if the following
condition hold:

α11, α22 <
N + 2

N − 2
. (3.31)

Remark. In terms of (β1, β2), the condition of the Theorem 3.14 reads
as follows:

min(β1, β2) >
N − 2

2
.

This result is due to deFigueiredo-Sirakov [42], and it relies on the fol-
lowing three theorems, which are also proved in [42]. The first one is an
extension of a result by Dancer [30], proved for the scalar case. The third
one is an extension of a result in [18].We state those results in the special
case of system (3.30), although they are valid for more general functions in
the right hand sides of the system.

Theorem 3.15 Suppose that u1, u2 is a nonnegative bounded classical solu-
tion of system (3.30) in RN

+ such that u1 = u2 = 0 on ∂RN
+ . Then

∂ui

∂xN

> 0, in RN
+ , for i = 1, 2.

Theorem 3.16 Suppose that system (3.30) has a nontrivial nonnegative
bounded classical solution defined in RN

+ , such that u1 = u2 = 0 on ∂RN
+ .

Then the same problem has a positive solution in RN−1 (the limit as xN →∞
in RN

+ .

Theorem 3.17 Let ui(t, θ), i=1,2 be a C2-function defined in IR × SN−1

satisfying
∂2ui

∂t2
+ ∆θui − δi

∂ui

∂t
− νiui + uαi1

1 + uαi2
2 = 0,

in IR× SN−1 , with ui → 0 as t → −∞.
Suppose that δi ≥ 0, max{δ1, δ2} > 0, νi > 0, i = 1, 2 are constants.
Assume also that there exists t0 ∈ IR such that ∂ui

∂t
> 0 in (−∞, t0) ×

SN−1, i = 1, 2.
Then ∂ui

∂t
> 0 in IR× SN−1, for i=1,2.
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Remarks on the proof of Theorem 3.14
We follow [42]. Assume first G = RN

+ . Then it follows from Theorem 3.16
that if (u1, u2) 6= (0, 0) then there exists a nontrivial solution of system (3.30)
in RN−1. So if we prove that system (3.30) has only the trivial solution in
RN under hypothesis (3.31), then it has no nontrivial solution in RN

+ , under
the hypothesis min{β1, β2} > N−3

2
, which is a consequence of (3.31).

So from now on we suppose G = RN and distinguish two cases,

max{β1, β2} ≥ N − 2 (Case 1) and max{β1, β2} < N − 2 (Case 2).

In Case 1 (say β1 ≥ N − 2) we have α11 ≤ N
N−2

. But the first equality in

system (3.30 ) implies −∆u1 ≥ a0u
α11
1 in RN , so u1 ≡ 0 in RN , by the results

about non-existence of supersolutions for scalar equations. Then the second
equation in (3.30) becomes −∆u2 = d0u

α22
2 in RN . So u2 ≡ 0 in RN , because

α22 < N+2
N−2

.

In Case 2 we write system (3.30 )in polar coordinates (r, θ) ∈ IR×SN−1 and
make the change of variables, as in [18],

t = ln |x| ∈ IR, θ =
x

|x| ∈ SN−1,

and set
wi(t, θ) = eβitui(e

t, θ).

Then system (3.30) transforms into




−L1w1 = a0e
(β1+2−α11β1)twα11

1 + b0e
(β1+2−α12β2)twα12

2

−L2w2 = c0e
(β2+2−α21β1)twα21

1 + d0e
(β2+2−α22β2)twα22

2

(3.32)

in IR× SN−1, where

Li =
∂2

∂t2
+ ∆θ − δi

∂

∂t
− νi, i = 1, 2,

and
δi = 2βi − (N − 2), νi = βi(N − 2− βi), i = 1, 2.

Observe that the system is autonomous (the exponents in equation (3.32)
are the equations of the lines l′s) and both δi and νi are positive. So we can
apply Theorem 3.17. It follows that ∂wi

∂t
> 0 in R× SN−1. Then

βiui + r
∂ui

∂r
> 0, i = 1, 2.
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Observing that all the above arguments can be carried out for any transla-
tions of (u1, u2), we get

βiui(x) +∇ui(x).(x− x0) > 0

for all x, x0 ∈ RN . This implies ∇ui(x) ≡ 0 (write x0 = x − τe, τ > 0, e ∈
SN−1, divide by τ , let τ →∞, and observe that this holds for any e ∈ SN−1).
And from equation (3.30) we conclude.

Final remarks on Liouville Theorem For Systems.

(i) The conjecture on the validity of a Liouville theorem in the whole of
RN for all p and q below the critical hyperbola, and p, q > 0, seems to be
unsettled at this moment. In dimension N = 3, the conjecture has been
proved in [90], see Theorem 3.12 above, provided one supposes that u or v
has at most algebraic growth.
(ii) Liouville theorems for systems of inequalities in the whole of RN are given
in Theorems 3.7 and 3.8. Is inequality

max{α, β} ≥ N − 2

in (3.14) sharp? Observe that if p = q, (3.14) yields p ≤ N/(N − 2), which
is the value obtained in Theorem 3.4.
(iii) Observe that a Liouville theorem for a system of inequalities in RN

+ is
stated in the Remark right after Theorem 3.13. Compare this result with
the following theorem of [95].

Theorem 3.18 Let u, v ∈ C2(RN
+ ) ∩ C0(RN

+ ) be non-negative solutions of

(3.28) with u = v = 0 on ∂RN
+ . If 1 ≤ p, q ≤ N + 2

N − 2
then u = v ≡ 0.

(iv) Liouville-type theorems for systems of p-Laplacians have been studied
recently by Mitidieri-Pohozaev.
(v) Liouville theorems for equations with a weight have been considered in
Berestycki, Capuzzo Dolcetta- Nirenberg [13].
(vi) There is a recent work of P. Souplet [94], where he proves this Liouville
theorem in dimension 4.

26



References

[1] C.O.Alves, D.C. de Morais Filho, M.A.S. Souto, On systems of elliptic
equations involving subcritical and critical Sobolev exponents, Nonl.
Anal. 42 (2000) 771-787

[2] H. Amann, Fixed Point Equation and nonlinear Eigenvalue Problems in
Ordered Banach Spaces, S.I.A.M. Review 18 (1976), 630-709.

[3] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in crit-
ical point theory and applications, J. Fctl. Anal. 14 (1973), 349-381.

[4] D. Arcoya and D. Ruiz, The Ambrosetti-Prodi problem for the p-
Laplacian, Comm. PDE 31 (2006), 841-865.

[5] A. Avila and J. Yang, On the existence and shape of least energy solu-
tions for some elliptic system, Journal Diff Eq 191 (2003), 348-376.

[6] C.Azizieh and Ph. Clément, Existence and a priori estimates for positive
solutions of p-Laplace systems, J. Diff. Eq. 184 (2002), 422-442

[7] C. Bandle and M.Essen, On positive solutions of Emden equations in
cones. Arch. Rat. Mech. Anal. 112 (1990), 319-338

[8] T. Bartsch and M. Clapp, Critical point theory for indefinite functionals
with symmetries, J. Fctl. Anal. 138 (1996), 107-136.

[9] T. Bartsch and D.G. deFigueiredo, Infinitely many solutions of nonlinear
elliptic systems, Progress in Nonlinear Differential Equations and their
Applications, Vol. 35 (The Herbert Amann Anniversary Volume)(1999),
51-68. (1996), 107-136.

[10] T. Bartsch and M. Willem, Infinitely many nonradial solutions of a
Euclidean scalar field equation, J. Fctl. Anal. 117 (1993), 447-460.

[11] V. Benci and P.H. Rabinowitz, Critical Point Theorems for Indefinite
Functionals, Invent. Math. (1979), 241-273.

[12] T. B. Benjamin, A Unified Theory of Conjugate Flows, Phil. Trans.
Royal Soc. 269 A (1971), 587-643.

[13] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear in-
definite elliptic problems and nonlinear Liouville theorems, Top.Meth.
Nonl.Anal. 4 (1995), 59-78.

27



[14] H. Berestycki and L. Nirenberg, On the method of moving planes and
the sliding method, Bull.Soc.Bras.Mat.22(1991), 1-22.

[15] M.F. Bidault-Veron and P. Grillot, Singularities in elliptic systems with
absorption terms.

[16] I. Birindelli and E. Mitidieri, Liouville Theorems for Elliptic Inequalities
and Applications. Proc. Royal Soc. Edinb. 128A (1998), 1217-1247.

[17] L. Boccardo and D.G. deFigueiredo, Some remarks on a system of quasi-
linear elliptic equations, NODEA Nonlinear Differential Equations Appl.
Vol 9 (2002), 309-323.

[18] J. Busca and R. Manasevich, A Liouville type theorem for Lane-Emden
systems, Indiana Math. J. 51 (2002), 37-51.

[19] J. Busca and B. Sirakov, Symmetry results for semilinear elliptic systems
in the whole space, J. Diif. Eq. 163 (2000), 41-56.

[20] J. Busca and B. Sirakov, Harnack type estimates for nonlinear elliptic
systems and applications. Ann. Inst. H. Poincaré, 21 (2004), 543-590.
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