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1. Introduction

These notes are based in particular on several joint works with Flávio Dickstein
and Fred Weissler, whose overall objective is to shed some light on the mecha-
nisms that lead certain solutions of nonlinear evolution PDEs to blow up in finite-
time. More specifically, we study here finite-time blowup for the complex Ginzburg-
Landau equation

e−iθut = ∆u+ |u|αu, (1.1)

where α > 0 and −π2 ≤ θ ≤ π
2 . In fact, changing u to u in (1.1) changes θ to −θ,

so we may as well assume

0 ≤ θ ≤ π

2
. (1.2)

Equation (1.1) with θ = 0 reduces to the nonlinear heat equation

ut −∆u = |u|αu. (1.3)

For θ = π/2, equation (1.1) becomes the nonlinear Schrödinger equation

iut + ∆u+ |u|αu = 0. (1.4)

Thus (1.1) is “intermediate” between the nonlinear heat and Schrödinger equations.
The equation (1.1) is a particular case of the more general complex Ginzburg-

Landau equation
ut = eiθ∆u+ eiγ |u|αu, (1.5)

which has been studied in the context of a wide variety of applications. The non-
linear Schrödinger equation (1.4) is an important model in nonlinear optics and
in the study of weakly nonlinear dispersive waves. (See [44].) The nonlinear heat
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equation (1.3) is also an important model, in particular in biology and chemistry.
(See [11].) In the general case, equation (1.5) is used to model such phenomena
as superconductivity, chemical turbulence and various types of fluid flows. (See [9]
and the references cited therein.)

Local and global existence of solutions of (1.5), on both the whole space RN and
a domain Ω ⊂ RN , are known under various boundary conditions and assumptions
on the parameters, see e.g. [10, 12, 13, 17, 27, 32, 33, 34, 35].

On the other hand, when the equation (1.5) is neither the nonlinear heat equation
(i.e. θ = γ = 0) nor the nonlinear Schrödinger equation (i.e. θ = γ = π/2), there
are relatively few results concerning the existence of solutions which blow up in
finite time. In [46], blowing-up solutions for the equation (1.5) on RN are proved to
exist, when the equation is “close” to the nonlinear heat equation (1.3), i.e. when
θ = 0 and |γ| is small. A result in the same spirit is obtained in [42] when the
equation is “close” to the nonlinear Schrödinger equation (1.4). The result in [46]
was significantly extended in [21], where the authors give a rigorous justification of
the numerical and formal arguments of [37, 38]. More precisely, they consider the
equation (1.5) on RN with −π/2 < θ, γ < π/2 and prove the existence of blowing-up
solutions when tan2 γ+(α+2) tan γ tan θ < α+1. In [43], the authors prove finite-
time blowup under a general negative energy condition when θ = γ, N = 1, 2,
α = 2 and |θ| < π/4. The calculations of [43] can be carried out in any space
dimension and for more general values of α, and the condition |θ| < π/4 takes the
form cos2 θ > 2

α+2 (still assuming θ = γ). Note also that, under certain assumptions

on the parameters, blowup for an equation similar to (1.5) on a bounded domain
with Dirichlet or periodic boundary conditions, but with the nonlinearity |u|α+1

instead of |u|αu is proved to occur in [28, 29, 36].
There are essentially two types of techniques for proving blowup in nonlinear

evolution PDEs. One can look for an ansatz of an approximate blowing-up solution,
and then show that the remainder becomes small with respect to the approximate
solution, as time tends to the blow-up time of the approximate solution. The first
difficulty in applying this method is to find the appropriate ansatz. Then, proving
the smallness of the remainder is often quite involved technically. When this method
is successful, it provides a precise description of how the corresponding solutions
blow up. It may also explain the mechanism that makes these solution blow up. The
drawback is that it applies only to initial values in some small neighborhood. This
is the strategy employed in particular by Merle and Zaag [26] (for the nonlinear
heat equation); Zaag [46], Masmoudi and Zaag [21] (for the complex Ginzburg-
Landau equation); Martel and Merle [19], Martel, Merle and Raphaël [20] (for the
generalized KdV equation); Merle and Raphaël [22, 23, 24], Raphaël [40], Raphaël
and Szeftel [41], Merle, Raphaël and Szeftel [25] (for the nonlinear Schrödinger
equation).

The second type of arguments often used for proving finite-time blowup consists
in deriving a differential inequality on some quantity related to the solution, which
can only hold on a finite-time interval. The major difficulty there is to guess the
appropriate quantity to calculate. However, when such a method can be applied,
it normally proves blowup under an explicit condition on the initial value, which
usually yields a large class of initial values for which blowup occurs. The drawback
is that it does not give any idea of what is the mechanism that leads to blowup.
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This is the type of argument used by Kaplan [15], Levine [18], Ball [2] (for the non-
linear heat equation); Snoussi and Tayachi [43] (for the complex Ginzburg-Landau
equation); Glassey [14], Zakharov [47], Kavian [16], Ogawa and Tsutsumi [30, 31]
(for the nonlinear Schrödinger equation).

In what follows, we mostly use the second approach to study blowup for (1.1).
In Section 2, we consider the endpoint θ = 0 in (1.1), i.e. the nonlinear heat
equation (1.3). We review the classical techniques, then we present some results
that indicate that the mechanisms leading to finite-time blowup are not as simple
as what appears at first sight. In Section 3, we recall the classical results for the
other endpoint of equation (1.1), i.e. the nonlinear Schrödinger equation (1.4),
and we discuss the possible mechanisms leading to blowup. Finally, we consider
in Section 4 the equation (1.1) in the intermediate case 0 < θ < π/2. We obtain
a general condition for finite-time blowup and we study how the blow-up time
depends on the parameter θ.

Notation. Given a domain Ω ⊂ RN , we denote by Lp(Ω), for 1 ≤ p ≤ ∞,
the usual (complex valued) Lebesgue spaces endowed with their standard norms.
H1(Ω), H1

0 (Ω) and H−1(Ω) are the usual (complex valued) Sobolev spaces, endowed
with their standard norms. (See e.g. [1] for the definitions and properties of these
spaces.) We denote by C∞c (Ω) the set of (complex valued) functions that are
compactly supported in Ω and of class C∞. We denote by C0(Ω) the closure
of C∞c (Ω) in L∞(Ω). In particular, C0(Ω) is the space of functions u that are
continuous Ω → C and such that u(x) = 0 for all x ∈ ∂Ω and u(x) → 0 if x ∈ Ω,
|x| → ∞. C0(Ω) is endowed with the sup norm (i.e. the norm of L∞(Ω)).

2. The nonlinear heat equation

The nonlinear heat equation (1.3) is probably the technically simplest case
of (1.1). If we neglect the Laplacian in (1.3), then we obtain the ODE

z′ = |z|αz. (2.1)

The solution of (2.1) with the initial condition z(0) = c ∈ C is given by

z(t) =
c

[1− tα|c|α]
1
α

, (2.2)

for all t ≥ 0 such that tα|c|α < 1. If c 6= 0, it blows up at the finite time Tmax =
1/α|c|α.

Remark 2.1. Note that if one changes the sign of the nonlinearity, i.e. if one
considers the ODE z′ + |z|αz = 0, then the solution with the initial condition

z(0) = c is given by u(t) = c(1 + tα|c|α)−
1
α . In particular, we see that all solutions

are global and bounded as t→∞.

The above calculation clearly implies finite-time blowup for constant in space
solutions of (2.3). Indeed, if Ω ⊂ RN and c ∈ C, c 6= 0, then

u(t, x) = z(t),

for all 0 ≤ t < Tmax and x ∈ Ω, where z is given by (2.2), is a solution of (1.3)
on [0, Tmax) × Ω which becomes singular (everywhere in space) at the time Tmax.
These are admissible solutions if the equation is set on RN or on a domain with
the Neumann boundary condition.
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Consider now the initial-boundary value problem for (1.3) with Dirichlet bound-
ary condition. More precisely, let Ω ⊂ RN be a smooth domain (bounded or not),
and consider the problem 

ut = ∆u+ |u|αu,
u|∂Ω = 0,

u(0, ·) = u0(·).
(2.3)

If Ω is unbounded, the boundary condition u|∂Ω = 0 is interpreted as u(t, x) = 0 if
x ∈ ∂Ω and |u(t, x)| → 0 if x ∈ Ω, |x| → ∞. It is well known that the problem (2.3)
is locally well posed in appropriate spaces. In particular, given any u0 ∈ C0(Ω),
there exist T = T (‖u0‖L∞) > 0 and a unique function u ∈ C([0, T ], C0(Ω)) which
is C1 in t ∈ (0, T ) and C2 in x ∈ Ω, satisfies the equation ut = ∆u + |u|αu on
(0, T ) × Ω and such that u(0) = u0. Moreover, u can be extended to a maximal
existence interval [0, Tmax) and satisfies the blowup alternative: either Tmax = ∞
(i.e. u is a global solution) or else Tmax < ∞ and ‖u(t)‖L∞ → ∞ as t ↑ Tmax (i.e.
u blows up in finite time). In addition, if u0 is real valued, then so is u; if u0 ≥ 0,
then u(t) ≥ 0 for all 0 ≤ t < Tmax; and if u0 ≥ 0, u0 6≡ 0, then u(t) > 0 for all
0 ≤ t < Tmax. Furthermore, if u0 ∈ H1

0 (Ω), then u ∈ C([0, Tmax), H1
0 (Ω)); and if

u0 is radially symmetric, then so is u(t) for all 0 ≤ t < Tmax. See for example [39].
Note that in [39] real valued solutions are considered, but the same arguments apply
to complex valued solutions.

Remark 2.2. Note that if one changes the sign of the nonlinearity, i.e. if one
considers the equation ut = ∆u− |u|αu, then all solutions are global. This follows
from the blowup alternative and the maximum principle (see Section 52 in [39]).
Indeed, it follows from the maximal principle that ‖u(t)‖L∞ ≤ ‖u0‖L∞ . Using the
blowup alternative, we conclude that u is global.

Note that the fact that the solution of (2.3) vanishes on the boundary competes
with the tendency of the nonlinear term to make the solution blow up. In fact,
it is not difficult to show when Ω is bounded that if ‖u0‖L∞ is sufficiently small,
then the corresponding solution of (2.3) is global. (This is a consequence of the
exponential decay of the heat semigroup. See e.g. Theorem 19.2 in [39].)

A general condition for blowup of positive solutions of (2.3) was obtained by
Kaplan [15] in the case where Ω is bounded. It is based on the following calculation

d

dt

∫
Ω

uϕ1 = −λ1

∫
Ω

uϕ1 +

∫
Ω

|u|αuϕ1 ≥ −λ1

∫
Ω

uϕ1 +
(∫

Ω

uϕ1

)α+1

,

where we used Jensen’s inequality. Here ϕ1 is the first eigenfunction of −∆ in
L2(Ω) with Dirichlet boundary condition, normalized by the condition

∫
Ω
ϕ1 = 1.

Comparing with the solution of the ODE z′ = −λ1z + |z|αz, z(0) = z0
def
=
∫

Ω
u0ϕ1,

we deduce that ∫
Ω

u(t)ϕ1 ≥
λ1z0

[λα1 − zα0 (1− e−λ1t)]
1
α

,

for all t < Tmax such that t < T ? where

T ? =

∞ if z0 ≤ λ
1
α
1 ,

− 1
αλ1

log(1− ϕ1

zα0
) if z0 > λ

1
α
1 .
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Thus we see that if u0 ∈ C0(Ω), u0 ≥ 0 satisfies∫
Ω

u0ϕ1 > λ
1
α
1 ,

then Tmax < T ? <∞, so that the corresponding solution of (2.3) blows up in finite
time (by the blowup alternative).

A different condition was obtained by Levine [18], and it applies to sign-changing
initial values and, more generally, to any complex valued solution with initial value
in C0(Ω) ∩H1

0 (Ω). It is based on the energy identities

1

2

d

dt

∫
Ω

|u|2 = −I(u(t)), (2.4)

d

dt
E(u(t)) = −

∫
Ω

|ut|2, (2.5)

where

I(w) =

∫
Ω

|∇w|2 −
∫

Ω

|w|α+2, (2.6)

E(w) =
1

2

∫
Ω

|∇w|2 − 1

α+ 2

∫
Ω

|w|α+2. (2.7)

The identity (2.4) (respectively, (2.5)) is obtained by multiplying the equation (2.3)
by u (respectively, ut), integrating by parts and taking the real part. Note that

I(w) = 2E(w)− α

α+ 2

∫
Ω

|w|α+2

= (α+ 2)E(w)− α

2

∫
Ω

|∇w|2.
(2.8)

Levine’s argument shows that if E(u0) < 0, then the corresponding solution of (2.3)
blows up in finite time. (Note that if w ∈ C0(Ω) ∩ H1

0 (Ω), w 6= 0 and u0 = kw,
then E(u0) < 0 for |k| large.) Indeed, it follows from (2.4) and the first identity
in (2.8) that

d

dt

∫
Ω

|u|2 = −4E(u(t)) +
2α

α+ 2

∫
Ω

|u|α+2. (2.9)

Assuming E(u0) < 0, we deduce from (2.5) that E(u(t)) ≤ E(u0) < 0, so that (2.9)
yields

d

dt

∫
Ω

|u|2 ≥ 2α

α+ 2

∫
Ω

|u|α+2 ≥ 2α

α+ 2
|Ω|− 2

α

(∫
Ω

|u|2
)α+2

2

, (2.10)

for all 0 < t < Tmax. One concludes as above that Tmax < ∞. This is in fact the
argument of Ball [2]. The original argument of Levine is slightly more involved,
but it applies in any domain, bounded or not.

Theorem 2.3 (Levine [18]). Let u0 ∈ C0(Ω)∩H1
0 (Ω) and let u be the corresponding

solution of (2.3) defined on the maximal interval [0, Tmax). If E(u0) < 0, then
Tmax <∞, i.e. u blows up in finite time.

Proof. It follows from (2.4), the second identity in (2.8), and (2.5) that

d

dt

∫
Ω

|u|2 ≥ −2(α+ 2)E(u(t))

= −2(α+ 2)E(u0) + 2(α+ 2)

∫ t

0

∫
Ω

|ut|2.
(2.11)
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Assuming by contradiction that u is global, we deduce from (2.11) that

‖u(t)‖L2 −→
t→∞

∞. (2.12)

Moreover, setting

f(t) =

∫ t

0

‖u(t)‖2L2 ,

it follows from (2.11) and Cauchy-Schwarz that

ff ′′ ≥ 2(α+ 2)
(∫ t

0

∫
Ω

|ut|2
)(∫ t

0

∫
Ω

|u|2
)

≥ 2(α+ 2)
(∫ t

0

∫
Ω

|uut|
)2

≥ 2(α+ 2)
(∫ t

0

∣∣∣∫
Ω

uut

∣∣∣)2

≥ α+ 2

2

(∫ t

0

d

dt

∫
Ω

|u|2
)2

,

which means

ff ′′ ≥ α+ 2

2
(f ′(t)− f ′(0))2. (2.13)

Since f ′(t)→∞ as t→∞ by (2.12) we deduce from (2.13) that for t large

ff ′′ ≥ α+ 4

4
f ′2,

so that

(f−
α
4 )′′ ≤ 0. (2.14)

Equations (2.12) and (2.14) are clearly incompatible. �

The above techniques, especially that of Kaplan, are closely related to the
ODE (2.1). They seem to indicate that the solution of (2.3) blows up in finite
time whenever the nonlinear term in the right-hand side of the equation dominates
the linear part.

This is also what is suggested by the following classical result. (See Section 19.2,
pp. 120–125 in [39].) Suppose Ω is bounded and

α <

∞ N = 1, 2;
4

N − 2
N ≥ 3.

(2.15)

It follows that there exists a positive, stationary solution φ ∈ C0(Ω)∩H1
0 (Ω) of (2.3),

i.e. {
−∆φ = |φ|αφ,
φ|∂Ω = 0.

If 0 ≤ u0 ≤ φ and u0 6= φ, then the corresponding solution of (2.3) is global and
converges (exponentially) to 0 as t→∞. On the other hand, if u0 ≥ φ, u0 6= φ, then
the corresponding solution of (2.3) blows up in finite time. This can be interpreted
as follows:

(i) If u0 = φ, there is a perfect balance between the linear and the nonlinear terms
in the right-hand side of the equation, and the resulting solution is stationary.

(ii) If 0 ≤ u0 ≤ φ and u0 6= φ then, with respect to the previous case, the nonlinear
term in the right-hand side of the equation becomes smaller than the linear
term (at t = 0), and the resulting solution is global.
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Figure 1. First movie: u0 = kφ with k = 1.01 (click on the
picture to play the movie)

(iii) If u0 ≥ φ and u0 6= φ then, with respect to the first case, the nonlinear term
in the right-hand side of the equation becomes larger than the linear term (at
t = 0), and the resulting solution blows up.

Note, however, that this interpretation may fail in the case of sign-changing
stationary solutions. The two movies in figures 1 and 2 show what happens in
the cubic, three dimensional case (α = 2, N = 3), when Ω is the unit ball. The
initial value u0 has the form u0 = kφ, where φ is the one-node, radially symmetric
stationary solution which is positive at the origin. The first movie corresponds to
k = 1.01 and the second to k = 0.99. (Click on the picture to play the movie)

The movies suggest that multiplying the sign-changing stationary solution by a
constant smaller than one, even though making the contribution of the nonlinear
term smaller than the contribution of the linear term at t = 0, makes the corre-
sponding solution blow up in finite time. In fact, such a property can be proved.
More precisely, the following holds.

Theorem 2.4 ([5]). Let Ω be the unit ball of RN , N ≥ 3. It follows that there
exists 0 < α < 4

N−2 with the following property. If α < α < 4
N−2 and if Φ ∈ C0(Ω)

is a radially symmetric stationary solution of (2.3) which takes both positive and
negative values, then there exist 0 < λ < 1 < λ such that if λ < λ < λ and λ 6= 1,
then the classical solution of (2.3) with the initial value u0 = λΦ blows up in finite
time.

Proof. Here is a sketch of the proof. For the details, see [5]. We linearize around
the stationary solution Φ, i.e. we set

zλ =
uλΦ(t)− Φ

λ− 1


101.mov
Media File (video/quicktime)
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Figure 2. Second movie: u0 = kφ with k = 0.99 (click on the
picture to play the movie)

where uλΦ is the solution of (2.3) with the initial value λΦ. As λ → 1, zλ → z
uniformly on bounded time intervals, where{

zt = ∆z + (α+ 1)|Φ|αz,
z(0) = Φ.

Let λ1 and ϕ1 > 0 be the first eigenvalue and eigenvector of the operator −∆ −
(α+ 1)|Φ|α on L2(Ω) with Dirichlet boundary condition. If

I =

∫
Ω

Φϕ1 6= 0, (2.16)

(first Fourier coefficient of the expansion of Φ), then

z(t) ≈ Ie−λ1tϕ1 as t→∞.
Therefore, if I 6= 0, for exemple if I > 0, then z(T ) > 0 for T large. Thus, if |λ−1|
is small, then zλ(T ) > 0, i.e.

uλΦ(T ) > Φ if λ > 1, uλΦ(T ) < Φ if λ < 1.

In both cases, uλΦ blows up. (Φ is unstable from both above and below.)
We have finished if we can show (2.16). Φ is given, after scaling, by the solution

w of (see figure 3) w′′ +
N − 1

r
w′ + |w|αw = 0,

w(0) = 1, w′(0) = 0.

If α ↑ α? = 4/(N − 2), it follows that w → w?, where

w?(r) = (1 +
1

N(N − 2)
r2)−

N−2
2 > 0


099.mov
Media File (video/quicktime)
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6

-

w(r)

r

ρ0 ρ1

Figure 3. The function w

is the solution for α = α?. Now, if ψ? is the first eigenvector (which exists) of
−∆− (α? + 1)wα?? in RN with ψ?(0) = 1, then obviously

∫
RN w?ψ? > 0. A limiting

argument shows that I > 0 if α is close to α? (independently of the number of
zeroes). �

Remark 2.5. Here are some comments on Theorem 2.4.

(i) The condition (2.16) is essential in the proof of Theorem 2.4.
(ii) One can obtain a similar result when N = 3 and α small, by a passage to the

limit as above, but as α→ 0 instead of α→ α?. See [6].
(iii) Note that in space dimension N = 1, we have I = 0 for all α > 0 and all

sign-changing stationary solutions.
(iv) In space dimension N ≥ 2, numerical experiments indicate that the prop-

erty (2.16) holds for all 0 < α < 4
N−2 and all sign-changing, radially symmet-

ric stationary solutions of (2.3). However, the mechanism which is involved
is not trivial, see figure 4, which represents Φ/Φ(0) (blue curve), where Φ is
the one-node stationary solution, and the corresponding first eigenvector (red
curve), in the case N = 3, α = 2.

Open problem 2.6. Does property (2.16) hold for all N ≥ 2, all 0 < α < 4
N−2

and all sign-changing, radially symmetric stationary solutions of (2.3)?

3. The nonlinear Schrödinger equation

Consider the nonlinear Schrödinger equation{
iut + ∆u+ |u|αu = 0 (t, x) ∈ (0, T )× RN ,
u(0, x) = u0(x) x ∈ RN ,

(3.1)

where α > 0. The nonlinearity is called “focusing”, while with the other sign it is
called “defocusing”. For the ODE

iz + |z|αz, (3.2)
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

!0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4. The functions Φ and ϕ1

with the initial condition z(0) = c ∈ C, there is no blowup. All solutions are global
and bounded, given by

z(t) = ceit|c|
α

.

If one changes the sign of the nonlinearity, i.e. if one considers the ODE iz′−|z|αz =
0, the solution is given by z(t) = ce−it|c|

α

. Here again, all solutions are global and
bounded, and there is no obvious distinction between the cases of the focusing and
defocusing nonlinearities.

It is well known that the Cauchy problem (3.1) is locally well posed in H1(RN )
provided

α <
4

N − 2
. (3.3)

(It is also locally well posed if α = 4
N−2 , but there is not the usual blowup alter-

native.) In particular, given any u0 ∈ H1(RN ), there exist T = T (‖u0‖H1) > 0
and a unique solution u ∈ C([0, T ], H1(RN )) ∩ C1([0, T ], H−1(RN ) of (3.1). More-
over, u can be extended to a maximal existence interval [0, Tmax) and satisfies the
blowup alternative: either Tmax =∞ (i.e. u is a global solution) or else Tmax <∞
and ‖u(t)‖H1 → ∞ as t ↑ Tmax (i.e. u blows up in finite time). In addition, if
u0 ∈ L2(RN , |x|2dx), then u ∈ C([0, Tmax, L

2(RN , |x|2dx)). Moreover, if u0 is ra-
dially symmetric, then so is u(t) for all 0 ≤ t < Tmax. In contrast with the heat
equation, there is conservation of charge and energy,∫

RN
|u(t, x)|2dx =

∫
RN
|u0|2, (3.4)

E(u(t)) = E(u0), (3.5)

for all t ∈ [0, Tmax), where the energy E is defined by (2.7). (See, e.g. [4] and the
references therein for all the above properties.)

Finite-time blowup for (3.1) is known to occur if α ≥ 4/N .
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Theorem 3.1 ([47, 14]). Assume (3.3) and

α ≥ 4

N
. (3.6)

Let u0 ∈ H1(RN )∩L2(RN , |x|2dx) and let u be the corresponding solution of (3.1)
defined on the maximal interval [0, Tmax). If E(u0) < 0, then Tmax < ∞, i.e. u
blows up in finite time.

Proof. In view of the conservation laws (3.4) and (3.5), one cannot apply Levine’s
argument to prove blowup for (3.1). Instead, the proof of blowup is based on the
variance identity (see e.g. Proposition 6.5.1 in [4] for details)

1

2

d2

dt2

∫
RN
|x|2|u|2 = − 2Nα

α+ 2

∫
RN
|u|α+2 + 4

∫
RN
|∇u|2

= 2NαE(u0)− (Nα− 4)

∫
RN
|∇u|2.

(3.7)

If E(u0) < 0, then

d2

dt2

∫
RN
|x|2|u|2 ≤ −A, (3.8)

with A = −4NαE(u0) > 0. Since
∫
RN |x|

2|u|2 ≥ 0 for all 0 ≤ t < Tmax, we see that
the solution cannot be global. �

Remark 3.2. Note that if

α <
4

N
,

then all solutions of (3.1) are global. Indeed, it follows easily from the conser-
vation laws (3.4) and (3.5) together with Gagliardo-Nirenberg’s inequality that
sup0≤t<Tmax

‖u(t)‖H1 < ∞. Thus Tmax = ∞ by the blowup alternative. (See e.g.
Theorem 6.1.1 in [4] for details.)

Remark 3.3. Note that if one changes the sign of the nonlinearity, i.e. if one
considers the equation iut+∆u−|u|αu = 0, then all solutions are global. Indeed, it
follows from the conservation laws (3.4) and (3.5) that sup0≤t<Tmax

‖u(t)‖H1 <∞.
(Note that if one changes the sign of the nonlinearity, this changes the sign of the
term |u|α+2 in the energy.) Thus Tmax =∞ by the blowup alternative.

The assumption u0 ∈ L2(RN , |x|2dx) in Theorem 3.1 is relaxed in [30, 31] if
N = 1 and α = 4, or if N ≥ 2, α ≤ 4 and u0 is radially symmetric. In particular,
we have the following result.

Theorem 3.4 ([30]). Suppose N ≥ 2, (3.3) and 4/N ≤ α ≤ 4. Let u0 ∈ H1(RN )
be radially symmetric and let u be the corresponding solution of (3.1) defined on
the maximal interval [0, Tmax). If E(u0) < 0, then Tmax < ∞, i.e. u blows up in
finite time.

The proof of Theorem 3.4 uses an identity of the type (3.7) but with with the
function |x|2 replaced by a bounded function which coincides with |x|2 on a large
set. More precisely, fix a real-valued function Ψ ∈ C∞(RN ) ∩ W 4,∞(RN ), let
u0 ∈ H1(RN ) and let u be the corresponding solution of (3.1) defined on the
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maximal interval [0, Tmax). It follows that

1

2

d2

dt2

∫
RN

Ψ|u|2 = −1

2

∫
RN

∆2Ψ|u|2 − α

α+ 2

∫
RN

∆Ψ|u|α+2

+ 2<
∫
RN
〈H(Ψ)∇u,∇u〉, (3.9)

for all 0 < t < Tmax, where H(Ψ) is the Hessian matrix (∂2
ijΨ)i,j . (See Kavian [16].)

If both u and Ψ are radially symmetric, then (3.9) takes the form

1

2

d2

dt2

∫
RN

Ψ|u|2 = 2NαE(u(t))− (Nα− 4)

∫
RN
|ur|2 − 2

∫
RN

(2−Ψ′′)|ur|2

+
α

α+ 2

∫
RN

(2N −∆Ψ)|u|α+2 − 1

2

∫
RN

∆2Ψ|u|2. (3.10)

For a radially symmetric solution, the identity (3.10) resembles (3.7), except that
there are extra terms that must be estimated. This is the purpose of the following
lemma.

Lemma 3.5 (Lemma 5.3 in [7]). Suppose N ≥ 2 and α ≤ 4. Given any 0 < a,A <
∞, there exists a radially symmetric function Ψ ∈ C∞(RN )∩W 4,∞(RN ), such that
Ψ(x) > 0 for x 6= 0 and

− 2

∫
RN

(2−Ψ′′)|ur|2 +
α

α+ 2

∫
RN

(2N −∆Ψ)|u|α+2 − 1

2

∫
RN

∆2Ψ|u|2 ≤ a, (3.11)

for all radially symmetric u ∈ H1(RN ) such that ‖u‖2L2 ≤ A.

The proof of Lemma 3.5 is somewhat technical, and we refer the reader to [7]
for its proof. We now can complete the proof of Theorem 3.4.

Proof of Theorem 3.4. Let u0 and u be as in the statement and let Ψ ∈ C∞(RN )∩
W 4,∞(RN ) be real-valued and radially symmetric. We deduce from (3.10), (3.5)
and the assumtion α ≥ 4/N that

1

2

d2

dt2

∫
RN

Ψ|u|2 ≤ 2NαE(u0)− 2

∫
RN

(2−Ψ′′)|ur|2

+
α

α+ 2

∫
RN

(2N −∆Ψ)|u|α+2 − 1

2

∫
RN

∆2Ψ|u|2. (3.12)

We now observe that by (3.4), ‖u(t)‖L2 = ‖u0‖L2 . Applying Lemma 3.5 with
a = −NαE(u0) > 0 and A = ‖u0‖2L2 , we deduce from (3.12) that

d2

dt2

∫
RN

Ψ|u|2 ≤ NαE(u0), (3.13)

for all 0 ≤ t < Tmax. Since NαE(u0) < 0 and
∫
RN Ψ|u|2 ≥ 0, we conclude that

Tmax <∞. �

Remark 3.6. The assumptions that u0 is radially symmetric and that α ≤ 4 in
Theorem 3.4 may seem unnatural. However, both these assumptions are necessary



FINITE-TIME BLOWUP 13

for the method we use. Indeed, the proof of Theorem 3.4 relies on the identity (3.9).
Assuming that Ψ is radially symmetric, (3.9) takes the form

1

2

d2

dt2

∫
RN

Ψ|u|2 = 2NαE(u(t))

− (Nα− 4)

∫
RN
|∇u|2 + 2

∫
RN

(Ψ′

r
−Ψ′′

)
(|∇u|2 − |ur|2)− 2

∫
RN

(2−Ψ′′)|∇u|2

+
α

α+ 2

∫
RN

(2N −∆Ψ)|u|α+2 − 1

2

∫
RN

∆2Ψ|u|2.

In order to complete the argument, we need at least an estimate of the form

− (Nα− 4)

∫
RN
|∇u|2 + 2

∫
RN

(Ψ′

r
−Ψ′′

)
(|∇u|2 − |ur|2)

− 2

∫
RN

(2−Ψ′′)|∇u|2 +
α

α+ 2

∫
RN

(2N −∆Ψ)|u|α+2 ≤ F (‖u‖L2), (3.14)

where F is bounded on bounded sets. Lemma 3.5 provides such an estimate for
radially symmetric u under the assumption α ≤ 4. It is not difficult to show that if
Nα > 4, then there is no radially symmetric Ψ ∈ C4(RN ) ∩ L∞(RN ), Ψ ≥ 0, such
that the estimate (3.14) holds for general u. (See Section 6 in [7].) Furthermore,
one can also show that the assumption α ≤ 4 is necessary in order that (3.14) holds
for some Ψ ∈ W 4,∞(RN ) ∩ C4(RN ) and all radially symmetric u. (See Section 6
in [7].)

Open problem 3.7. Can the finite variance assumption (i.e. u0 ∈ L2(RN , |x|2dx))
be removed in Theorem 3.1?

The above techniques do not give any clue as to what produces blowup in (3.1).
We recall the following discussion from [8]. Given a function u : [0, T ]× RN → C,
set

h(t) =
<u=ut −<ut=u

|u|2
It follows that

=uut = |u|2h(t)

and, if we write u = ρeiθ, then h(t) = θt. In other words, h measures the speed of
rotation of u.

Suppose first that u is a solution of the linear Schrödinger equation

iut +4u = 0. (3.15)

Multiplying (3.15) by u, integrating over RN , and taking the real part, we get that∫
RN
|u(t)|2h(t) dx = −‖∇u(t)‖2L2 = −‖∇u(0)‖2L2 .

Now suppose that u is a solution of the ODE (3.2). Multiplying (3.2) by u and
taking the real part (without integrating) quickly yields that

h(t) = |u(t)|α. (3.16)

The competition between the two parts of (3.1), i.e. equations (3.15) and (3.2),
is now evident. The linear equation (3.15) produces, on the average, a negative
rotation, while the ordinary differential equation (3.2) produces a positive rotation
at every point.
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Finally, suppose that u is a solution of (3.1) with 4/N ≤ α ≤ 4/(N − 2) and

that u(0)
def
= u0 ∈ H1(RN ) ∩ L2(RN , |x|2dx). Following the same steps as with

equation (3.15) above, we arrive at the formula∫
RN
|u(t)|2h(t) dx = −2E(u0) +

α

α+ 2
‖u(t)‖α+2

Lα+2 .

If u is a global solution and scatters as t→ +∞, it follows easily that ‖u(t)‖Lα+2 →
0 as t → ∞. Moreover, since E(u0) < 0 implies finite-time blow up and since u
being a solution that scatters at +∞ is an open condition on u0 ∈ H1(RN ), we see
that E(u0) > 0. Thus, ∫

RN
|u(t)|2h(t) dx→ −2E(u0) < 0,

as t → ∞. In this case, the negative rotation induced by (3.15) wins. If, on the
other hand, u blows up in finite time Tmax, then ‖u(t)‖Lα+2 →∞, as t ↑ Tmax; and
so, ∫

RN
|u(t)|2h(t) dx→∞,

as t ↑ Tmax. Here, the positive rotation induced by (3.16) wins.

4. The complex Ginzburg-Landau equation

Consider the complex Ginzburg-Landau equation{
e−iθut = ∆u+ |u|αu (t, x) ∈ (0, T )× RN ,
u(0, x) = u0(x) x ∈ RN ,

(4.1)

where α > 0 and
0 ≤ θ < π

2
.

For the ODE
e−iθz′ = |z|αz,

the solution with the initial condition z(0) = c ∈ C is given by

z(t) = c[1− tα|c|α cos θ]−
1
α (1+i tan θ),

for all t ≥ 0 such that tα|c|α cos θ < 1 and blows up at the finite time

Tmax =
1

α|c|α cos θ
,

provided c 6= 0.

Remark 4.1. Note that if one changes the sign of the nonlinearity, i.e. if one
considers the ODE e−iθz′ + |z|αz = 0, then the solution with the initial condition

z(0) = c is given by z(t) = c[1 + tα|c|α cos θ]−
1
α (1+i tan θ). In particular, we see that

all solutions are global and bounded as t→∞.

Since θ < π/2, it is easy to show that the initial value problem (4.1) is locally
well posed in C0(RN ) and in C0(RN ) ∩H1(RN ) in exactly the same terms as the
heat equation. See Section 2 in [7]. More precisely, given any u0 ∈ C0(RN ), there
exist T = T (‖u0‖L∞) > 0 and a unique function u ∈ C([0, T ], C0(RN )) which is
C1 in t ∈ (0, T ) and C2 in x ∈ RN , satisfies the equation e−iθut = ∆u + |u|αu
on (0, T ) × RN and such that u(0) = u0. Moreover, u can be extended to a
maximal existence interval [0, Tmax) and satisfies the blowup alternative: either
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Tmax = ∞ (i.e. u is a global solution) or else Tmax < ∞ and ‖u(t)‖L∞ → ∞
as t ↑ Tmax (i.e. u blows up in finite time). Furthermore, if u0 ∈ H1(RN ), then
u ∈ C([0, Tmax), H1(RN )).

The main feature of the equation (4.1), with respect to the more general Ginz-
burg-Landau equation (1.5) is that its solutions satisfy energy identities. More
precisely,

1

2

d

dt

∫
Ω

|u|2 = − cos θI(u(t)), (4.2)

d

dt
E(u(t)) = − cos θ

∫
Ω

|ut|2, (4.3)

where I and E are defined by (2.6). In fact, negative energy solutions of (4.1) blow
up in finite time, as the following result shows.

Theorem 4.2 ([7], Theorem 1.1). Let u0 ∈ C0(RN ) ∩ H1(RN ) and let u ∈
C([0, Tmax), C0(RN ) ∩ H1(RN )) be the corresponding maximal solution of (4.1).
If E(u0) < 0, then Tmax <∞, i.e. u blows up in finite time.

Proof. In view of the identities (4.2) and (4.3), one can reproduce Levine’s calcu-
lations for the heat equation. Arguing as in the proof of Theorem 2.3, we obtain

d

dt

∫
Ω

|u|2 ≥ −2(α+ 2) cos θE(u(t))

= −2(α+ 2) cos θE(u0) + 2(α+ 2) cos2 θ

∫ t

0

∫
Ω

|ut|2.
(4.4)

Assuming by contradiction that u is global, we deduce from (4.4) that

‖u(t)‖2L2 ≥ [2(α+ 2) cos θE(u0)]t −→
t→∞

∞. (4.5)

Moreover, setting

f(t) =

∫ t

0

‖u(t)‖2L2 ,

it follows from (4.4) and Cauchy-Schwarz that

ff ′′ ≥ 2(α+ 2) cos2 θ
(∫ t

0

∫
Ω

|ut|2
)(∫ t

0

∫
Ω

|u|2
)

≥ 2(α+ 2) cos2 θ
(∫ t

0

∫
Ω

|uut|
)2

≥ 2(α+ 2) cos2 θ
(∫ t

0

∣∣∣∫
Ω

uut

∣∣∣)2

≥ α+ 2

2
cos2 θ

(∫ t

0

d

dt

∫
Ω

|u|2
)2

=
α+ 2

2
cos2 θ(f ′(t)− f ′(0))2.

(4.6)

One can conclude as in the proof of Theorem 2.3 provided

α+ 2

2
cos2 θ > 1.

However, the above condition can be removed. One slightly modifies (4.6) as follows.

ff ′′ ≥ 2(α+ 2) cos2 θ
(∫ t

0

∫
Ω

|ut|2
)(∫ t

0

∫
Ω

|u|2
)

≥ 2(α+ 2) cos2 θ
(∫ t

0

∣∣∣∫
Ω

uut

∣∣∣)2

.

(4.7)
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Next, we observe that, multiplying the equation (4.1) by u,∫
RN

uut = −eiθI(u),

so that ∣∣∣∫
RN

uut

∣∣∣ = |I(u)|.

Since I(u) < 0 by (2.8), we conclude that∣∣∣∫
RN

uut

∣∣∣ = −I(u) =
1

2 cos θ

d

dt

∫
Ω

|u|2, (4.8)

where we used (4.2) in the last identity. We deduce from (4.7) and (4.8) that

ff ′′ ≥ α+ 2

2
(f ′(t)− f ′(0))2, (4.9)

and we conclude as in the proof of Theorem 2.3. �

Remark 4.3. Here are some comments on Theorem 4.2.

(i) One can refine the conclusion of Theorem 4.2. More precisely, one can obtain
the following estimate of the maximal existence time

Tmax ≤
‖u0‖2L2

α(α+ 2)(−E(u0)) cos θ
. (4.10)

(See Theorem 1.1 in [7].)
(ii) One can quantify the end of the proof as follows. Set

K =
[
1−

( α+ 4

2α+ 4

) 1
2
]−1

> 1, (4.11)

and

τ = sup{t ∈ [0, Tmax); ‖u(s)‖2L2 ≤ K‖u0‖2L2 for 0 ≤ s ≤ t} ≤ Tmax. (4.12)

If τ < Tmax, we deduce from (4.4) that

‖u(s)‖2L2 ≤ K‖u0‖2L2 ≤ ‖u(t)‖2L2 0 ≤ s ≤ τ ≤ t < Tmax, (4.13)

so that α+2
2 (f ′(t)− f ′(0))2 ≥ α+4

4 f ′(t)2 for τ ≤ t < Tmax; and so (f−
α
4 )′′ ≤ 0

for τ ≤ t < Tmax. Therefore,

f(t)−
α
4 ≤ f(τ)−

α
4 + (t− τ)(f−

α
4 )′(τ) = f(τ)−

α
4

[
1− α

4
(t− τ)f(τ)−1h′(τ)

]
,

for τ ≤ t < Tmax. Since f(t)−
α
4 ≥ 0, we deduce that for every τ ≤ t < Tmax,

α

4
(t− τ)f(τ)−1h′(τ) ≤ 1,

i.e.

(t− τ)‖u(τ)‖2L2 ≤
4

α

∫ τ

0

‖u(s)‖2L2ds ≤
4

α
τ‖u(τ)‖2L2 , (4.14)

where we used (4.13) in the last inequality. Thus t ≤ α+4
α τ for all τ ≤ t <

Tmax. Thus we conclude that

Tmax ≤
α+ 4

α
τ. (4.15)
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Fix an initial value u0 ∈ C0(RN ) ∩ H1(RN ) such that E(u0) < 0 and, given
θ ∈ [0, π/2), let uθ ∈ C([0, T θmax), C0(RN )∩H1(RN )) be the corresponding solution
of (4.1), so that uθ blows up in finite time by Theorem 4.2.

If α < 4/N , then the solution of (3.1) (i.e. (4.1) for θ = π/2) is global, so we
may expect that the blow-up time T θmax of uθ goes to infinity as θ → π/2. This is
indeed the case, as the following result shows.

Theorem 4.4 ([7], Theorem 1.2). Fix an initial value u0 ∈ C0(RN )∩H1(RN ) and,
for 0 ≤ θ < π/2 let uθ ∈ C([0, T θmax), C0(RN ) ∩H1(RN )) denote the corresponding
maximal solution of (4.1). If

0 < α <
4

N
,

then there exists a constant c = c(N,α, ‖u0‖L2 , E(u0)) > 0 such that

T θmax ≥
c

cos θ
, (4.16)

for all 0 ≤ θ < π
2 .

Proof. Global existence for (3.1) with α < 4/N follows from the conservation of
charge and energy and Gagliardo-Nirenberg’s inequality. Similarly, Theorem 4.4
follows from energy identities and Gagliardo-Nirenberg’s inequality. We give here
a sketch of the proof and refer the reader to [7] for details.

If T θmax = ∞, there is nothing to prove. We then assume T θmax < ∞. Since
α < 4/N , it is not difficult to show that the Cauchy problem (4.1) is locally well
posed in L2(RN ) (see [45]), from which it follows easily that

‖uθ(t)‖L2 ↑ ∞ as t ↑ T θmax. (4.17)

Therefore, if we set

Sθ = sup{t ∈ [0, T θmax); ‖uθ(s)‖2L2 ≤ 2‖u0‖2L2 for 0 ≤ s ≤ t},

then Sθ < T θmax and

‖uθ(Sθ)‖2L2 = 2‖u0‖2L2 . (4.18)

Since E(uθ(t)) ≤ E(u0) by (4.3) and

‖uθ(t)‖2L2 ≤ 2‖u0‖2L2 , (4.19)

for 0 ≤ t ≤ Sθ, it follows from Gagliardo-Nirenberg’s inequality that there exists a
constant K such that

‖∇uθ(t)‖2L2 + ‖uθ(t)‖α+2
Lα+2 ≤ K, (4.20)

for all 0 ≤ θ < π/2 and 0 ≤ t ≤ Sθ; and so

|I(uθ(t))| ≤ K. (4.21)

Applying (4.2) and (4.21), we deduce that

‖uθ(Sθ)‖2L2 ≤ ‖u0‖2L2 + 2K cos θSθ. (4.22)

It now follows from (4.22) and (4.18) that

Sθ ≥
‖u0‖2L2

2K cos θ
, (4.23)

which proves the desired estimate. �
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Remark 4.5. Note that, under the assumptions of Theorem 4.4 and if, in addition,
E(u0) < 0, there exist c, C > 0 such that

c

cos θ
≤ T θmax ≤

C

cos θ
,

for all −π/2 < θ < π/2. This follows from (4.16) and (4.10).

As observed above (Theorem 3.1), if 4/N ≤ α < 4/(N − 2) and if u0 has negative
energy and finite variance, then the corresponding solution of the nonlinear Schrö-
dinger equation (3.1) blow up in finite time. Thus we may expect that for such
initial values u0, the blow-up time of uθ remains bounded as θ → π/2.

It seems relevant to try the variance identity. For (3.1), multiplying the equation
by −i|x|2u, integrating by parts and taking the real part yields

1

2

d

dt

∫
RN
|x|2|u|2 = 2=

∫
RN

ux · ∇u. (4.24)

The identity (3.7) follows by taking the time derivative and replacing ut in the right-

hand side by using the equation. For (4.1), multiplying the equation by eiθ|x|2uθ,
integrating by parts and taking the real part yields

1

2

d

dt

∫
RN
|x|2|uθ|2 = 2 sin θ=

∫
RN

uθx · ∇uθ

+ cos θ

∫
RN

(−2<(uθx · ∇uθ)− |x|2|∇uθ|2 + |x|2|uθ|α+2). (4.25)

Next, one must take the time derivative of (4.25). With respect to (4.24), there
are three more terms whose time derivative must be calculated. However, some of
the numerous terms that appear in the calculations combine and one can write the
resulting identity in the following form. (See Section 7 in [7].)

1

2

d2

dt2

∫
RN
|x|2|uθ|2 = 2NαE(uθ(t))− (Nα− 4)

∫
RN
|∇uθ|2

+ cos θ
d

dt

∫
RN

{
−2|x|2|∇uθ|2 +

α+ 4

α+ 2
|x|2|uθ|α+2 + 2N |uθ|2

}
− 2 cos2 θ

∫
RN
|x|2|uθt |2. (4.26)

The identity follows from formal calculations that can be justified by standard
techniques assuming u0 is sufficiently regular, and certainly if u0 ∈ C∞c (RN ). In
particular,

1

2

d2

dt2

∫
RN
|x|2|uθ|2 ≤ 2NαE(u0)

+ cos θ
d

dt

∫
RN

{
−2|x|2|∇uθ|2 +

α+ 4

α+ 2
|x|2|uθ|α+2 + 2N |uθ|2

}
. (4.27)

Integrating twice in time, one gets to an estimate of the form∫
RN
|x|2|uθ|2 ≤ C + Ct+ 2NαE(u0)t2

+ cos θ

∫ t

0

∫
RN

{
−2|x|2|∇uθ|2 +

α+ 4

α+ 2
|x|2|uθ|α+2 + 2N |uθ|2

}
. (4.28)



FINITE-TIME BLOWUP 19

The factor of cos θ in (4.28) (due to the term |x|2|uθ|α+2) seems very difficult to
control, so the only hope seems to be that it can be controlled by non-weighted
terms. This can be done with the following estimate, similar to some results in [3].

Lemma 4.6 (Lemma 7.1 in [7]). Suppose N ≥ 2 and 4/N ≤ α ≤ 4. Given any
M > 0, there exists a constant C such that∫

|x|2|wα+2 ≤
∫
|x|2|∇w|2 + C

∫
|w|α+2 + C, (4.29)

for all smooth, radially symmetric w such that ‖w‖L2 ≤M .

Let K > 1 and 0 < τθ ≤ T θmax be defined by (4.11) and (4.12). We deduce
from (4.28) and Lemma 4.6 that there exists a constant C (independent of 0 ≤ θ <
π/2) such that∫

RN
|x|2|uθ|2 ≤ C + Ct+ 2NαE(u0)t2 + C cos θ

∫ t

0

∫
RN
|uθ|α+2, (4.30)

for 0 ≤ t < τθ. On the other hand, it follows from (4.2) and (2.8) that

d

dt

∫
RN
|uθ|2 = cos θ

(
−2E(uθ) +

2α

α+ 2

∫
RN
|uθ|α+2

)
≥ cos θ

2α

α+ 2

∫
RN
|uθ|α+2,

so that

cos θ

∫ τθ

0

∫
RN
|uθ|α+2 ≤ (K − 1)(α+ 2)

2α
‖u0‖2L2 . (4.31)

It now follows from (4.30) and (4.31) that, for C possibly larger but still independent
of θ, ∫

RN
|x|2|uθ|2 ≤ C + Ct+ 2NαE(u0)t2, (4.32)

for 0 ≤ t < τθ. Since the left-hand side of (4.32) is nonnegative, we deduce that
there exists T independent of θ such that τθ ≤ T <∞ for all 0 ≤ θ < π/2. Finally,
it follows from Remark 4.3 (ii) that

T θmax ≤
α+ 4

α
τθ,

for all 0 ≤ θ < π/2, so that T θmax remains bounded as θ → π/2.
The assumptions that u0 is radially symmetric and α ≤ 4 seem unnatural. These

conditions come from Lemma 4.6, which is essential in the argument. It is inter-
esting to note that both radial symmetry and the bound α ≤ 4 are essential in
Lemma 4.6. (See Section 7 in [7].)

Note that these assumptions are precisely those made by Ogawa and Tsutsumi
in [30], where the authors eliminate the finite variance assumption of [14, 47]. At
this stage one might as well proceed as in [30] and use a truncated variance. Doing
so, one obtains the following result.

Theorem 4.7 (Theorem 1.5 in [7]). Suppose

N ≥ 2,
4

N
≤ α ≤ 4, (4.33)

and fix a radially symmetric initial value u0 ∈ H1(RN ) ∩ C0(RN ). Given any
0 ≤ θ < π/2, let uθ ∈ C([0, T θmax), C0(RN ) ∩ H1(RN )) denote the corresponding
maximal solution of (4.1). If E(u0) < 0, then there exists T < ∞ such that
T θmax ≤ T for all 0 ≤ θ < π

2 .
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Proof. The proof of Theorem 4.7 is based on the following identity, valid for all ra-
dially symmetric u0 ∈ H1(RN )∩C0(RN ) and all radially symmetric Ψ ∈ C4(RN )∩
W 4,∞(RN ). (See formula (5.22) in [7].)

1

2

d2

dt2

∫
RN

Ψ|uθ|2 = 2NαE(uθ(t))− (Nα− 4)

∫
RN
|uθr|2 − 2

∫
RN

(2−Ψ′′)|uθr|2

+
α

α+ 2

∫
RN

(2N −∆Ψ)|uθ|α+2 − 1

2

∫
RN

∆2Ψ|uθ|2

+ cos θ
d

dt

∫
RN

{
−2Ψ|∇uθ|2 +

α+ 4

α+ 2
Ψ|uθ|α+2 + ∆Ψ|uθ|2

}
− 2 cos2 θ

∫
RN

Ψ|uθt |2.

Since E(uθ(t)) is nonincreasing and Nα ≤ 4, we deduce (assuming Ψ ≥ 0) that

1

2

d2

dt2

∫
RN

Ψ|uθ|2 ≤ 2NαE(u0)− 2

∫
RN

(2−Ψ′′)|uθr|2

+
α

α+ 2

∫
RN

(2N −∆Ψ)|uθ|α+2 − 1

2

∫
RN

∆2Ψ|uθ|2

+ cos θ
d

dt

∫
RN

{
−2Ψ|∇uθ|2 +

α+ 4

α+ 2
Ψ|uθ|α+2 + ∆Ψ|uθ|2

}
. (4.34)

One controls the first “problematic” terms in (4.34) by using Lemma 3.5. More
precisely, let K > 1 and 0 < τθ ≤ T θmax be defined by (4.11) and (4.12). Applying
Lemma 3.5 with a = −NαE(u0) > 0 and A = K‖u0‖2L2 , we deduce from (4.34)
that

1

2

d2

dt2

∫
RN

Ψ|uθ|2 ≤ NαE(u0)

+ cos θ
d

dt

∫
RN

{
−2Ψ|∇uθ|2 +

α+ 4

α+ 2
Ψ|uθ|α+2 + ∆Ψ|uθ|2

}
, (4.35)

for all 0 ≤ t < τθ. We next integrate (4.35) twice in time and we obtain∫
RN

Ψ|uθ|2 ≤ C + Ct+NαE(u0)t2

+ cos θ

∫ t

0

∫
RN

{
−2Ψ|∇uθ|2 +

α+ 4

α+ 2
Ψ|uθ|α+2 + ∆Ψ|uθ|2

}
, (4.36)

for all 0 ≤ t < τθ, where the constant C is independent of 0 ≤ θ < π/2. One then
concludes as above, see the argument following (4.30). �

Remark 4.8. The assumptions that u0 is radially symmetric and that α ≤ 4 in
Theorem 4.7 may seem unnatural. However, both these assumptions are necessary
for the method we use, see the comments in Remark 3.6 above.

Open problem 4.9. Suppose 4/N ≤ α < 4/(N − 2). Fix an initial value u0 ∈
H1(RN )∩C0(RN ) and, given 0 ≤ θ < π/2, let uθ ∈ C([0, T θmax), C0(RN )∩H1(RN ))
denote the corresponding maximal solution of (4.1). If E(u0) < 0 (and, possibly,
u0 ∈ L2(RN , |x|2dx)), is it true that lim supθ↑π/2 T

θ
max <∞?
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Remark 4.10. If one changes the sign of the nonlinearity in (4.1), i.e. if one
considers the equation e−iθut = ∆u−|u|αu, then the corresponding Cauchy problem
is locally well posed in C0(RN ) and in C0(RN ) ∩H1(RN ). Note that the factor of
|u|α+2 comes with a positive sign in both the corresponding quantities I and E.
If the initial value belongs to C0(RN ) ∩ H1(RN ), then the energy identities (4.2)
and (4.3) yield a control of ‖u(t)‖H1 , which is uniform in 0 ≤ t < Tmax. Using
a standard parabolic bootstrap argument, it is not difficult to deduce that if α <
4/(N −2) (α <∞ if N = 1, 2), then the L∞ norm of the solution is also controlled,
so that the solution is global by the blowup alternative. Thus we see that all
solutions with initial value in C0(RN )∩H1(RN ) are global if α < 4/(N − 2). Note
that these estimates make use of the energies, so they are not valid for initial values
that are only in C0(RN ).

In view of the above remark, we emphasize the following open problems.

Open problem 4.11. Consider the equation e−iθut = ∆u − |u|αu and sup-
pose N ≥ 3 and α ≥ 4/(N − 2). Given any u0 ∈ C0(RN ) ∩ H1(RN ) let u ∈
C([0, Tmax), C0(RN ) ∩ H1(RN )) be the the maximal solution corresponding to the
initial value u0. Is u global?

Open problem 4.12. Consider the equation e−iθut = ∆u−|u|αu. Given any u0 ∈
C0(RN ) let u ∈ C([0, Tmax), C0(RN )) be the the maximal solution corresponding to
the initial value u0. Is u global?
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[22] Merle F. and Raphaël P. Sharp upper bound on the blow up rate for critical nonlinear
Schrödinger equation, Geom. Funct. Anal. 13 (2003), 591–642. (MR1995801) (doi: 10.1007/

s00039-003-0424-9)
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