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Abstract

A group G is representable in a Banach spaceX if G is isomorphic
to the group of isometries onX in some equivalent norm. We prove that
a countable groupG is representable in a separable real Banach spaceX

in several general cases, including whenG ≃ {−1, 1} × H, H finite and
dimX ≥ |H|, or whenG contains a normal subgroup with two elements
and X is of the formc0(Y ) or ℓp(Y ), 1 ≤ p < +∞. This is a conse-
quence of a result inspired by methods of S. Bellenot and stating that under
rather general conditions on a separable real Banach spaceX and a count-
able bounded groupG of isomorphisms onX containing−Id, there exists
an equivalent norm onX for whichG is equal to the group of isometries on
X. 1

1 Introduction

The theory of representation of groups studies the possiblerepresentations of a
given groupG as some group of isometries, or of isomorphisms, on a Hilbertspace
(or more generally on a Banach space). In this mini-course weshall ask a more
restrictive question: what groupsG may be seen asthe group of isometries on a

1This minicourse is inspired from an article with the same title and written in collaboration
with E. Medina Galego from IME - USP.
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Banach spaceX? This question may be formulated by the following definition
given by K. Jarosz in [6].

Definition 1 (K. Jarosz, 1988) A groupG is representable in a Banach spaceX
if there exists an equivalent norm onX for which the group of isometries onX is
isomorphic toG.

In [6], Jarosz stated as an open question which groups were representable in a
given Banach space. The difference with the classical theory of representation of
groups on linear spaces is that here we require an isomorphism with the group of
isometries on a Banach space, and not just some group of isometries or isomor-
phisms.

Fact 2 A group which is representable in a real Banach space must always con-
tain a normal subgroup with two elements.

Proof : Indeed{−Id, Id} is always a normal subgroup of the group of isometries
on a real Banach space. �

Conversely:

Theorem 3 (J. Stern, 1979) For any groupG which contains a normal subgroup
with two elements, there exists a real Hilbert spaceH such thatG is representable
in H. Furthermore ifG is countable thenH may be chosen to be separable.

For an arbitrary Banach spaceX it remains open which groups are repre-
sentable inX. Jarosz proved that{−1, 1} is representable in any real Banach
space (that is any space may be renormed so that the only isometries are−Id and
Id), and that the unit circleC is representable in any complex space (the separable
real case had been solved previously by S. Bellenot [1]). He also proved that for
any countable groupG, {−1, 1}×G is representable inC([0, 1]), and that for any
groupG there exists a complex spaceX such thatC × G is representable inX.
These results led Jarosz to the following conjecture:

Conjecture 4 (Jarosz, 1988) The group{−1, 1} × G is representable inX for
any groupG and any real spaceX such thatdim X ≥ |G|.

In this mini-course we give a much more general answer to the question of
representability by partially answering the conjecture ofJarosz:
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• the group{−1, 1} × G is representable inX wheneverG is a finite group
andX a separable real spaceX such thatdim X ≥ |G|, Theorem 30,

• the groupG is representable inX wheneverG is a countable group admit-
ting a normal subgroup with two elements andX is a separable real Banach
space with a symmetric decomposition either isomorphic toc0(Y ) or to
ℓp(Y ) for someY and1 ≤ p < +∞, or to a dual space, Theorem 32,

• the group{−1, 1} × G is representable inX wheneverG is a countable
group andX an infinite-dimensional separable real Banach space contain-
ing a complemented subspace with a symmetric basis, Theorem34.

As an application of our results we obtain that a countable groupG is repre-
sentable inc0 (resp.C([0, 1]), ℓp for 1 ≤ p < +∞, Lp for 1 ≤ p < +∞) if and
only if it contains a normal subgroup with two elements, Corollary 33.

Our method is to ask, given a groupG of linear isomorphisms on a real Banach
spaceX, whether there exists an equivalent norm onX for whichG is the group of
isometries onX. Once the problem of representability is reduced to representing
a given group as some group of isomorphisms on a given Banach space, it is much
simpler to address, and this leads to Theorem 30, Theorem 32,and Theorem 34. In
other words, we explore in which respect the question of representability of groups
in Banach spaces belongs to the renorming theory or rather may be reduced to the
purely isomorphic theory.

If a group of isomorphisms is the group of isometries on a real(resp. complex)
Banach space in some equivalent norm, then it must be bounded, contain−Id
(resp.λId for all λ ∈ C), and be closed for the convergence ofT andT−1 in the
strong operator topology. Therefore the question is:

Question 5 Let X be a real (resp. complex) Banach space and letG be a group
of isomorphisms onX which is bounded, contains−Id (resp.λId for all λ ∈ C),
and is closed for the convergence ofT andT−1 in the strong operator topology.
Does there exist an equivalent norm onX for whichG is the group of isometries
onX?

A positive answer was obtained by Y. Gordon and R. Loewy [4] whenX = Rn

andG is finite; this answered a question by J. Lindenstrauss. In this paper, we
extend the methods of Bellenot to considerably improve thisresult:

3



• Let X be a separable real dual Banach space. Then for any countable
bounded groupG of isomorphisms onX which contains−Id and is sepa-
rated by some point with discrete orbit, there exists an equivalent norm on
X for whichG is equal to the group of isometries onX, Theorem 26.

• Let X be a separable real Banach space. Then for any finite groupG of
isomorphisms onX which contains−Id, there exists an equivalent norm
onX for whichG is equal to the group of isometries onX, Theorem 27.

Therefore for separable real spaces and finite groups, the question of repre-
sentability really does not belong to renorming theory. Also, note that a count-
able group of isomorphisms onX which is equal to the group of isometries in
some equivalent norm must always be discrete for the convergence ofT andT−1

in the strong operator topology and admit a separating point, Lemma 28. It re-
mains unknown however whether this implies the existence ofa separating point
with discrete orbit, that is, if the implication in Theorem 26 is an equivalence for
countable groups.

We deduce Theorem 30, Theorem 32 and Theorem 34 essentially from Theo-
rem 27 and Theorem 26. We also prove that Theorem 30 and Theorem 34 are op-
timal in the sense that there exists a real space in which representable finite groups
are exactly those of the form{−1, 1} × G, Proposition 35, and a real space con-
taining a complemented subspace with a symmetric basis in which representable
countable groups are exactly those of the form{−1, 1} × G, Proposition 36. On
the other hand we have the classical examples ofc0, C([0, 1]), ℓp, 1 ≤ p < +∞
andLp, 1 ≤ p < +∞ for which Corollary 33 states that representable count-
able groups are exactly those which admit a normal subgroup with two elements,
and we also provide an intermediary example of a space in which the class of
representable finite groups is strictly contained in between the above two classes,
Proposition 37.

In a first part of this minicourse we shall present some results of the isometric
theory about renormings of Banach, mainly about locally uniformly rotund (LUR)
renormings. We shall also recall a few topological properties of the group of
isometries on a Banach space. This first part should be seen asa very incomplete
introduction to the theory of renormings, concentrating onthe results which are
needed for the proofs of our main theorems. Our reference forrenorming theory
is the book of R. Deville, G. Godefroy and V. Zizler [2], and for classical results
in infinite dimensional Banach space theory, the book of J. Lindenstrauss and L.
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Tzafriri [9]. In a second part we shall sketch the proof of Theorem 30, Theorem
32, Theorem 34.

2 Renorming theory and topological properties of
isometries

Questions of differentiability have led to study the set of possible equivalent norms
on a given Banach space. A typical question in this area is, given a Banach space
X with a specific norm, whether there exists an equivalent normonX with some
additional property. The unit ball ofX is denotedBX and the unit sphereSX . Any
norm on a spaceX is by definition convex, i.e. for anyx, y in BX , x+y

2
∈ BX . Dif-

ferent stronger notions of convexity have been considered.We list some of them
here, starting from the weaker and ending with the stronger form of convexity.

Definition 6 LetX be a Banach space and‖.‖ be a norm onX. Then

X strictly convex ⇔

∀x 6= y ∈ SX ,
‖x + y‖

2
< 1, (1)

X locally uniformly convex (LUR) ⇔

∀x0 ∈ SX , {xn} ⊂ SX , (lim ‖x0 + xn‖ = 2) ⇒ lim xn = x0, (2)

X uniformly convex ⇔

∀{xn, yn} ⊂ SX , (lim ‖xn + yn‖ = 2) ⇒ lim ‖xn − yn‖ = 0, (3).

Example 7 The norm onc0 is not strictly convex. There exists a space with a
norm which is strictly convex but not LUR. The spacec0 admits an equivalent
norm which is LUR but not uniformly convex. Theℓp-norm, 1 < p < +∞ is
uniformly convex.

Proof : Exercise (hint: you may use results which will be given lateron). �

Property (3) is a very strong form of convexity. Indeed having an equivalent
uniformly convex norm is equivalent to the space being superreflexive (see [2] for
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details). Property (2) turns out to be the strongest convexity property which is
satisfied, up to equivalence of norm, by most natural spaces.First we give a list
of properties which are equivalent to the LUR property:

Proposition 8 Let X be a Banach space,‖.‖ a norm onX, andx0 ∈ SX . Then
the following are equivalent:

• The norm‖.‖ is LUR atx0.

• Whenever{xn} ⊂ X is such thatlimn ‖xn‖ = 1 and limn ‖x0 + xn‖ = 2,
thenlimn xn = x0.

• Whenever{xn} ⊂ X is such thatlimn 2(‖x0‖
2 +‖xn‖

2)−‖xn + x0‖
2 = 0,

thenlimn xn = x0.

Proof : See [2] p 42 Proposition 1.2. �

The most important result for us in the theory of LUR renormings will be the
following.

Theorem 9 (M. Kadec 1967) LetX be a real separable Banach space. ThenX
admits an equivalent LUR norm.

Proof : The theorem is a direct consequence of the next two lemmas andthe fact
that the norm onℓ2 is uniformly convex and therefore LUR. Recall that a dual
norm on a dual spaceX∗ is an equivalent norm‖.‖∗ onX∗ which is the dual norm
of some equivalent norm‖.‖ onX.

Lemma 10 LetX andY be two Banach spaces such thatY is a dual space which
admits a dual and LUR norm, and such that there existsT : Y → X a bounded
linear operator, weak* to weak continuous withTY norm dense inX. ThenX
admits a LUR norm.

Proof : (sketch) Let‖.‖ be the original norm onX and|.| be an equivalent dual
LUR norm onY . Forx ∈ X andn ∈ N, define

|x|2n = inf{‖x − Ty‖2 +
1

n
|y|2; y ∈ Y },

and

‖|x‖|2 =

∞
∑

n=1

2−n|x|2n.

Check that this defines an equivalent LUR norm onX. �
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Lemma 11 If X is a separable Banach space, then there is a bounded linear
weak* to weak continuous operatorT : X∗ → ℓ2 such thatT ∗ : ℓ∗2 ≃ ℓ2 → X is
weak* to weak continuous andT ∗(ℓ∗2) is norm dense inX∗.

Proof : (sketch) Let{xi}
∞
i=1 ⊂ SX be dense inSX . Define T by Tf(i) =

2−if(xi), i = 1, 2, . . .. � �

For the spacesc0 and ℓ1 it is possible to verify directly Theorem 9 by con-
structing an LUR norm which also respects the symmetries of these spaces.

Example 12 Day’s norm onc0, defined forx = (xn)n by

‖x‖ = sup((
n

∑

k=1

x2
ik
/4k)1/2, n ∈ N, i1, . . . , ik distinct)

is an LUR norm.

Proof : See [2] p 69 Theorem 7.3. �

Example 13 The norm defined onℓ1 by

‖x‖ = (|x|21 + |Ix|22)
1/2,

where|.|1 (resp. |.|2) is the canonical norm onℓ1 (resp. ℓ2) andI the canonical
“identity”map of ℓ1 into ℓ2 is an LUR norm.

Proof : See [2] p 72 Theorem 7.4. �

The theorem does not generalize to nonseparable spaces:

Example 14 The spaceℓ∞ does not admit an equivalent LUR norm. However it
admits an equivalent strictly convex norm.

Proof : See [2] p 48 Theorem 2.6 and p 74 Theorem 7.10. �

We shall also use the following result from [8].

Theorem 15 (G. Lancien, 1993) LetX be a separable dual Banach space. Then
X admits an equivalent norm which does not diminish the group of isometries.
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2.1 Topological properties of the group of isometries on a Ba-
nach space

In this subsection a few basic topological properties of thegroup of isometries on
a Banach space are recalled.

Definition 16 If X is a Banach space, the strong operator topology onL(X) is
defined by

fn →s f ⇔ ∀x ∈ X, lim
n

fnx = fx.

If Tn, n ∈ N andT belong toGL(X) then we say thatTn converges toT in
the strong operator topology for the convergence ofT andT−1 if Tn →s T and
T−1

n →s T−1.

Proposition 17 The group of isometries on a Banach spaceX is closed for the
convergence ofT andT−1 in the strong operator topology.

Proof : Exercise. �

Corollary 18 A groupG of isomorphisms on a Banach spaceX which is the
group of isometries onX for some equivalent norm must be bounded, contain−Id
and be closed for the convergence ofT andT−1 in the strong operator topology.

Example 19 The group of rational rotations onR2 is not the group of isometries
onR2 in some equivalent norm.

Proof : This group is not closed for the convergence ofT andT−1 in the strong
operator topology. �

Example 20 The group of rotations onR2 is bounded, contains−Id and is closed
for the convergence ofT andT−1 in the strong operator topology. However it is
not the group of isometries onR2 in some equivalent norm.

Proof : An equivalent norm invariant by rotations is a multiple of the euclidean
norm and therefore the associated group of isometries must contain the symme-
tries with respect to the axes. �
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3 Representation of countable groups on separable
real Banach spaces

3.1 G-pimple norms on separable Banach spaces

We recall the result of Bellenot from [1].

Theorem 21 (Bellenot,1986) Any separable real Banach spaceX may be re-
normed to admit only trivial isometries, i.e. so that the only isometries onX
are−Id andId.

In this subsection we extend the construction of Bellenot from {−Id, Id} to
countable groups of isometries. So in the following,X is real separable,G is
a countable group of isometries onX, and under certain conditions onG, we
construct an equivalent norm onX for whichG is the group of isometries onX.

Let us give an idea of our construction. Bellenot renormsX with an LUR
norm and then defines, forx0 in X of norm1, a new unit ball (the ”pimple” ball)
obtained by adding two small cones inx0 and−x0. Any isometry in the new
norm must preserve the cones and therefore sendx0 to ±x0. Repeating this for
a sequence(xn)n with dense linear span, chosen carefully so that one can add
the cones ”independantly”, and so that the sizes of the conesare ”sufficiently”
different, any isometry sendsxn to ±xn. Finally, if eachxn was chosen ”much
closer” tox0 than to−x0, any isometry fixingx0 must fix eachxn and therefore
any isometry is equal toId or−Id.

In our case one should obviously put cones of same size in eachgx0, g ∈ G,
defining a ”G-pimple ball”; therefore any isometry preserves the orbitGx0. Then
one repeats a similar procedure as above, adding other conesin gxn, g ∈ G for
a sufficiently dense sequence(xn)n, so that any isometry preservesGxn for all
n. Thesexn’s for n ≥ 1 are called of type1. Finally, a last step is added to
only allow as isometries isomorphisms whose restriction toGx0 is a permutation
which corresponds to the action of someg ∈ G onGx0. This is technically more
complicated and is obtained by adding cones at some points ofspanGx0 which
code the structure ofG and are called of type2.

The reader may get a geometric feeling of this proof by looking at the group
G = {±Id,±R} of R-linear isometries onC whereR is the rotation of angle
π/2. By adding cones on the unit ball at±1 and±i, one allows the isometries in
G but also symmetries with respect to the axes. A way of correcting this is to add
one well-placed smaller cone next to each element of{±1,±i} so that the only
isometries in the new norm are those ofG.
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Definition 22 Let X be a real Banach space with norm‖.‖, let G be a group of
isometries onX such that−Id ∈ G, and let(xk)k∈K be a possibly finite sequence
of unit vectors ofX. LetΛ = (λk)k∈K be such that1/2 < λk < 1 for all k ∈ K.
TheΛ, G-pimple at(xk)k for ‖.‖ is the equivalent norm onX defined by

‖y‖Λ,G = inf{
∑

[[yi]]Λ,G : y =
∑

yi},

where[[y]]Λ,G = λk ‖y‖ , whenevery ∈ V ect(g.xk) for somek ∈ K andg ∈ G,
and[[y]]Λ,G = ‖y‖ otherwise.

In other words, the unit ball for‖.‖Λ,G may be seen as the convexification of
the union of the unit ball for‖.‖ with line segments betweengxk/λk and−gxk/λk

for eachk ∈ K andg ∈ G.
Some observations are in order. First of all(infk∈K λk) ‖.‖ ≤ ‖.‖Λ,G ≤ ‖.‖ .

Any g ∈ G remains an isometry in the norm‖.‖Λ,G. In [1] Bellenot had defined
the notion ofλ-pimple atx0 ∈ X, which corresponds to(λ), {−Id, Id}-pimple
in our terminology. We recall a crucial result from [1].

Proposition 23 (Bellenot [1]) Let(X, ‖.‖) be a real Banach space and let‖x0‖ =
1 so that

• (1) ‖.‖ is LUR atx0, and

• (2) there existsǫ > 0 so that if‖y‖ = 1 and‖x0 − y‖ < ǫ, theny is an
extremal point (i.e. an extremal point of the ball of radius‖y‖).

Then givenδ > 0, B > 0 and 0 < m < 1, there exists a real0 < λ0 < 1
of the formλ0 = max(m, λ0(ǫ, δ, B, λ(x0, η(ǫ, δ, B)))) < 1, so that whenever
λ0 ≤ λ < 1 and‖.‖λ is theλ-pimple atx0, then

• (3) m ‖.‖ ≤ ‖.‖λ ≤ ‖.‖,

• (4) if 1 = ‖y‖ > ‖y‖λ then‖x0 − y‖ < δ or ‖x0 + y‖ < δ,

• (5) xλ = λ−1x0 is the only isolated extremal point of‖.‖λ which satisfies
‖x/ ‖x‖ − x0‖ < ǫ,

• (6) if w is a vector so thatxλ andxλ + w are endpoints of a maximal line
segment in the unit sphere of‖.‖λ, thenB ≥ ‖w‖ ≥ λ−1 − 1.
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For more details we refer to [1]. We generalize this result to(Λ, G)-pimples in
a natural manner which for theΛ part is inspired from[1]. Write Λ ≤ Λ′ to mean
λk ≤ λ′

k for all k ∈ K, if Λ = (λk)k andΛ′ = (λ′
k)k.

Proposition 24 Let (X, ‖.‖) be a real Banach space, letG be a group of isome-
tries onX containing−Id and let(xk)k∈K be a possibly finite sequence of unit
vectors ofX. Assume

• (1)’ ‖.‖ is strictly convex onX and LUR inxk for eachk ∈ K, and

• (2)’ for all k ∈ K, ck := inf{‖xj − gxk‖ : j ∈ K, g ∈ G, (j, g) 6=
(k, Id)} > 0.

Then givenδ > 0, B = (bk)k > 0 and0 < m < 1, there exists∆ = (δk)k with
δ0 ≤ δ and for all k ≥ 1, δk ≤ min(δk−1, ck/4, 1 − λ(xk, ck)), and0 < Λ0 =
(λ0k)k < 1 with for all k, λ0k = max(m, λ′

0(ǫk, δk, bk, λ(x0, η(ǫk, δk, bk)))) < 1,
so that wheneverΛ0 ≤ Λ < 1 and‖.‖Λ,G is theΛ, G-pimple at(xk)k, then

• (3)’ m ‖.‖ ≤ ‖.‖Λ,G ≤ ‖.‖,

• (4)’ if 1 = ‖y‖ > ‖y‖Λ,G then∃g ∈ G, k ∈ K : ‖gxk − y‖ < δk

• (5)’ xk,λ = λ−1
k xk is the only isolated extremal point of‖.‖Λ,G which satis-

fies‖x/ ‖x‖ − xk‖ < ǫk,

• (6)’ if w is a vector so thatxk,λ andxk,λ + w are endpoints of a maximal
line segment in the unit sphere of‖.‖Λ,G, thenbk ≥ ‖w‖ ≥ λ−1

k − 1.

Proof : Proposition 23 corresponds to the caseG = {−Id, Id} andK a singleton.
We shall deduce the general case from Proposition 23 and fromthe fact that for
well-chosenΛ, the closed unit ball of theΛ, G-pimple at(xk)k is equal toB0,
the union overk ∈ K andg ∈ G of the closed unit ballsBk,g of theλk-pimples
‖.‖λk,g at gxk. Let B denote the closed unit ball for‖.‖.

Note that by (1)’, Proposition 23 (1)(2) apply in anyxk, k ∈ K, for anyǫ > 0.
Let ǫk = ck/2. Let λ0k ≥ max(m, λ′

0(ǫk, δk, bk, λ(xk, η(ǫk, δk, bk)))) given by
Proposition 23 inxk for ǫ = ǫk, with 1 − λ−1

0k ≤ ck/6 for all k ∈ K and with
limk→+∞ λ0k = 1 if K is infinite. The limit condition onλ0k ensures thatB0

is closed. Assumingx, y ∈ B0 and x+y
2

/∈ B0 let (k, g) and(l, h) be such that
x ∈ Bg

k andy ∈ Bh
l . By convexity ofBg

k andBh
l , eitherk 6= l (e.g. k < l),

or k = l andg 6= ±h, andx ∈ Bg
k \ B, y ∈ Bh

l \ B, i.e. ‖x‖λk,g < ‖x‖ and
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‖y‖λl,h
< ‖y‖. Therefore by (4) applied tox for theλk-pimple atgxk, and up to

replacingg by−g if necessary,‖gxk − x‖ < δk. Likewise‖hxl − y‖ < δl. Then
∥

∥

∥

∥

x + y

2
−

gxk + hxl

2

∥

∥

∥

∥

<
δk + δl

2
≤ δk.

Since‖gxk − hxl‖ ≥ ck by (2)’, it follows by LUR of ‖.‖ in gxk that
∥

∥

∥

∥

gxk + hxl

2

∥

∥

∥

∥

≤ λ(gxk, ck) = λ(xk, ck),

and
∥

∥

∥

∥

x + y

2

∥

∥

∥

∥

≤ δk + λ(xk, ck) ≤ 1,

a contradiction. ThereforeB0 is closed convex andB0 is equal to the closed unit
ball of theΛ, G-pimple at(xk)k. Equivalently

‖.‖Λ,G = inf
k∈K,g∈G

‖.‖λk,g .

In fact, since wheneverx ∈ Bg
k \ B andy ∈ Bh

l \ B with Bg
k 6= Bh

l andk ≤ l,
and up to replacingg by −g or h by −h if necessary, we have

‖x − y‖ ≥ ‖gxk − hxl‖ − ‖x − gxk‖ − ‖y − hxl‖ ≥ ck − δk − δl ≥ ck/3,

it follows that for anyx such that‖x‖Λ,G < ‖x‖, there exists a unique(g, λk) such
that‖x‖λk,g < ‖x‖, and‖x‖Λ,G = ‖x‖λk,g.

We now prove (3)’-(6)’. (3)’ is obvious from (3) for each‖.‖λk,g. For (4)’
assume1 = ‖y‖ > ‖y‖Λ,G then as we have just observed, there existg, k such
that1 = ‖y‖ > ‖y‖λk,g, so from (4),‖gxk − y‖ < δk or ‖−gxk − y‖ < δk.

To prove (5)’ note that if‖x/ ‖x‖ − xk,Λ‖ < ǫk then wheneverg 6= Id or
k 6= l,

‖x/ ‖x‖ − gxl‖ > ‖gxl − xk‖ − ‖xk − xk.Λ‖ − ǫk

≥ ck − (1 − λ−1
k ) − ǫk ≥ ck/2 − (1 − λ−1

k0 ) ≥ δk.

Therefore by (4)’‖x‖ = ‖x‖λl,g
wheneverg 6= Id or k 6= l, and so‖x‖Λ,G =

‖x‖λk
. Now if x is an isolated extremal point of‖.‖Λ,G, it is therefore an isolated

extremal point of‖.‖λk
and by (5),x = xk,Λ.
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The proof of (6)’ is a little bit longer. WriteSg
k the unit sphere for‖.‖λk,g, SG

Λ

the unit sphere for‖.‖Λ,G, S the unit sphere for‖.‖, S ′ the set of points ofS on
which‖.‖Λ,G = ‖.‖. As we know,SG

Λ = S ′ ∪ (∪k,g(S
g
k \ S)).

As we noted before, wheneverx ∈ Sg
k \S, y ∈ Sh

l \S, with Sg
k 6= Sh

l , it follows
that ‖x − y‖ ≥ cmin(k,l)/3. So for x ∈ Sg

k \ S, ‖x − y‖ ≥ 1
3
min{ci, i ≤ k}

whenevery belongs to someSh
l \ S, with Sg

k 6= Sh
l . Therefore a line segment

in SΛ,G containing points both inSg
k \ S andSh

l \ S with Sg
k 6= Sh

l must have a
subsegment included inS, but this contradicts the strict convexity of‖.‖.

We deduce that if[xk,Λ, xk,Λ + w] is a maximal line segment inSΛ,G, it is a
line segment inSId

k . It is now enough to prove that it cannot be extended inSId
k ,

then by (6) applied for‖.‖λk,Id, bk ≥ ‖w‖ ≥ λ−1
k − 1.

But for any strict extension[xk,λ, y] of [xk,Λ, xk,Λ+w] in SId
k , either[xk,λ, y] ⊂

SId
k \S ⊂ SG

Λ and the maximality inSG
Λ is contradicted, or there exists a sequence

(yn)n of distinct points converging toxk,Λ + w in [xk,λ, y] with yn ∈ S for all n,
but this again contradicts the strict convexity of‖.‖. �

Theorem 25 LetX be a separable real Banach space with an LUR-norm‖.‖ and
let G be a countable group of isometries onX such that−Id ∈ G. Assume that
there exists a unit vectorx0 in X which separatesG and such that the orbitGx0

is discrete. ThenX admits an equivalent norm‖|.‖| such thatG is the group of
isometries onX for ‖|.‖|.

Proof : SinceGx0 is discrete andx0 separatesG, let α ∈]0, 1[ be such that
‖x0 − gx0‖ ≥ α, for all g 6= Id.

Let V0 = span{gx0, g ∈ G} and lety0 = x0. If V0 6= X then it is possible to
pick a possibly finite sequence(yn)n≥1 such that, ifVn := span{gyk, k ≤ n, g ∈
G}, we have thatyn /∈ Vn−1 for all n ≥ 1 and∪nVn is dense inX.

Let (un)n≥1 be a (possibly finite) enumeration of{gx0, g ∈ G \ {±Id}} ∪
{yk, k ≥ 1}. Then define a (possibly finite) sequence(xn)n of unit vectors ofX
by induction as follows. Assumex0, . . . , xn−1 are given.

If un = yk for somek ≥ 1 then letE = span(Vk−1, yk). Pick somezn ∈ E
such that‖zn‖ ∈ [α/10, α/5] andd(zn, Vk−1) = α/10, and letxn = anx0 + zn

wherean > 0 is such that‖xn‖ = 1. Such anxn will be called of type1.
If un is of the formgx0 then we shall pick someαn ∈ [α/10, α/5] and define

zn = αngx0, xn = anx0 + zn with an > 0 and‖xn‖ = 1. Such anxn will be
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called of type2. The choice ofαn will be made more precise later. Let us first
observe a few facts.

By construction,X is the closed linear span of{gxn, g ∈ G, n} (actually only
x0 andxn’s of type 1 are required for this). Note that for alln, ‖zn‖ ≤ α/5
and thereforean ∈ [1 − α/5, 1 + α/5]; and obviouslyx0 may also be written
x0 = a0x0 + z0 with these conditions. We now evaluate‖xn − gxm‖ for all
(n, Id) 6= (m, g).

If g 6= Id then‖xn − gxm‖ = ‖anx0 + zn − gamx0 − zm‖ therefore

‖xn − gxm‖ ≥ ‖x0 − gx0‖ − |1 − an| − |1 − am| − ‖zn‖ − ‖zm‖ ≥ α/5.

If g = Id, without loss of generality assumen > m. If xn is of type1 then, ifk
is such thatxn is associated toyk, the vectorgxm is in Vk−1 and‖xn − gxm‖ ≥
d(xn, Vk−1) = α/10. If xn is of type2 andxm of type 1 then‖xn − gxm‖ =
‖xm − g−1xn‖ ≥ d(xm, V0) ≥ α/10.

It now remains to study the more delicate case whenxn andxm both are of type
2, or one is of type2 and the other isx0. We describe how to choose thexn’s of
type2, i.e. how to choose each correspondingαn ∈ [α/10, α/5] in the definition
of xn to obtain good estimates for‖xn − xm‖ in that case. This will be done by
induction. To simplify the notation, we shall denote(x′

n)n∈N the subsequence
(xkn

)n∈N corresponding to thexk’s of type 2, with N = {1, . . . , |G| − 2} or
N = N according to the cardinality ofG, and we shall writex′

n = bnx0 +βngnx0,
wheregn is the associated element ofG \ {±Id}, bn = akn

andβn = αkn
. Write

x′
0 = x0.

Let ∀m ≥ 1, I0
m = [α/10, α/5]. Forβ ∈ [α/10, α/5], let x′

m(β) = bm(β)x0 +
βgmx0 wherebm(β) > 0 is such that‖x′

m(β)‖ = 1.
We observe that‖x′

m(β) − x′
m(γ)‖ ≥ α

2
|β − γ|. Indeed ifx′

m(β) − x′
m(γ) =

(β − γ)ǫ with ‖ǫ‖ < α/2 andβ 6= γ, then

(bm(β) − bm(γ))x0 = (γ − β)(gmx0 − ǫ),

sogmx0 − ǫ = ±‖gmx0 − ǫ‖x0. If for example± = − in this equality, then

‖gmx0 + x0‖ = ‖ǫ + (1 − ‖gmx0 − ǫ‖)x0‖ ≤ 2 ‖ǫ‖ < α,

and by separation,gm = −Id, a contradiction. Similarly the case± = + would
imply gm = Id.
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Now for all m ≥ 1 divide I0
m = [α/10, α/5] in three successive intervals of

equal lengthα/30. Since

‖x′
m(β) − x′

m(γ)‖ ≥
α

2
|β − γ| ≥

α2

60

wheneverβ is in the first andγ in the last interval, it follows that there exists an
intervalI1

m ⊂ I0
m of lengthα/30 (which is either the first or the last subinterval),

such that

β ∈ I1
m ⇒ ‖x′

m(β) − x′
0‖ ≥

α2

120
.

We then pickβ1 in I1
1 and fixx′

1 = x′
1(β1). Therefore we have ensured

‖x′
1 − x′

0‖ ≥
α2

120
.

Assume selectedβ1, . . . , βn−1, x′
1, . . . , x

′
n−1 associated, and for0 ≤ i ≤ n−1 and

m ≥ i, decreasing ini intervalsI i
m of length α

10.3i . For anym ≥ n − 1, dividing
In−1
m in three subintervals and picking the first or the last, we findby the same

reasoning as aboveIn
m ⊂ In−1

m of length α
10.3n with

β ∈ In
m ⇒

∥

∥x′
m(β) − x′

n−1

∥

∥ ≥
α2

40.3n
.

We then pickβn in In
n and fixx′

n = x′
n(βn). Therefore for allk < n, βn ∈ In

n ⊂
Ik+1
n and we have ensured

∀0 ≤ k < n, ‖x′
n − x′

k‖ ≥
α2

40.3k+1
.

We have finally proved that for allk,

inf{‖xn − gxk‖ , n ≥ k, g ∈ G, (n, g) 6= (k, Id)} ≥
α2

40.3k+1
,

and so

inf{‖xn − gxk‖ , n, g ∈ G, (n, g) 6= (k, Id)} ≥
α2

40.3k+1
,

therefore (2)’ in Proposition 24 is satisfied; and (1)’ is clearly satisfied since‖.‖
is LUR.

We then define‖|.‖| as theΛ, G-pimple at(xn)n for Λ = (λn)n associated to
ǫn, bn so that Proposition 24 applies and such thatbn > bn+1, 1/2 ≤ λn < λn+1
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andλ−1
n − 1 > 2bn+1 for all n. This is possible by induction and the expression of

Λ0 in Proposition 24.

Observe thatE = {gxn/λn, g ∈ G, n} is the set of isolated extremal points
of ‖|.‖|. Indeed for a pointx of SΛ,G either ‖x/ ‖x‖ − gxk‖ < ǫk for some
g, k, in which case by (5)’x = λ−1

k gxk if it is an isolated extremal point; or
‖x/ ‖x‖ − gxk‖ ≥ ǫk > δk for all g, k then by (4)’‖.‖ = ‖|.‖| in a neighborhood
of x and thenx is not an isolated extremal point since‖.‖ is LUR atx.

Therefore any isometryT for ‖|.‖| mapsE onto itself. Ifn < m, g ∈ G, then
T cannot mapλ−1

n xn to λ−1
m gxm. Indeed ifw (resp.w′) is a vector so thatλ−1

n xn

andλ−1
n xn + w (resp.λ−1

m gxm andλ−1
m gxm + w′) are endpoints of a maximal line

segment in the unit sphere of‖|.‖|, then sinceg is an isometry for‖|.‖| we may
assumeg = Id, and then by (6)’,

‖|w‖| ≥
1

2
‖w‖ ≥

1

2
(λ−1

n − 1) > bn+1 ≥ bm ≥ ‖w′‖ ≥ ‖|w′‖|.

It follows that for eachn, the orbitGxn is preserved byT .

We finally prove thatT belongs necessarily toG. Without loss of generality
we may assume thatTx0 = x0 and then by density it is enough to prove that
Tgxn = gxn for all g ∈ G and anyxn of type1 or equal tox0.

Let g ∈ G, g 6= ±Id. Let x′ be the associated vector of type2 of the form
x′ = ax0 + βgx0. Then

Tx′ = ax0 + βTgx0 = h(ax0 + βgx0)

for someh ∈ G. So|a| ‖x0 − hx0‖ = β ‖Tgx0 − hgx0‖ and

‖x0 − hx0‖ ≤
α/5

1 − α/5
(1 + 2‖|Tgx0‖|) ≤

α

4
(1 + 2‖|x0‖|) < α,

therefore by separationh = Id. It follows immediately that

Tgx0 = gx0.

and this holds for anyg ∈ G. Finally if xn is of type1, andg ∈ G, then

Tgxn = T (angx0 + gzn) = angx0 + Tgzn,

and sinceT (gxn) is of the formhxn for someh ∈ G,

Tgxn = anhx0 + hzn.
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Thereforean ‖gx0 − hx0‖ = ‖Tgzn − hzn‖ and by similar computations as above,

‖gx0 − hx0‖ ≤
3α/5

1 − α/5
< α,

whence again by separationg = h and

Tgxn = gxn.

�

3.2 Representable groups of linear isomorphisms

In this subsection, we give sufficient conditions for a groupof isomorphims on a
Banach spaceX to be representable inX.

Theorem 26 LetX be a separable real dual Banach space andG be a countable
bounded group of isomorphisms onX, containing−Id, and such that some point
separatesG and has discrete orbit. ThenX admits an equivalent norm for which
G is the group of isometries onX.

Proof : We may assume that everyg in G is an isometry onX by using the
equivalent normsupg∈G ‖gx‖. Then by Theorem 15X may be renormed with an
LUR norm without diminishing the group of isometries. We arethen in position
to apply Theorem 25. �

Theorem 27 LetX be a separable real Banach space andG be a finite group of
isomorphisms such that−Id ∈ G. ThenX admits an equivalent norm for which
G is the group of isometries onX.

Proof : By Theorem 9 we may assume that the norm‖.‖ onX is LUR. Then we
define an equivalent norm‖.‖G onX by

‖x‖G = (
∑

g∈G

‖gx‖2)1/2.

Since this is thel2-sum of the LUR norm‖.‖ with an equivalent norm, it is clas-
sical to check that it is also LUR, see [2] Fact 2.3, and obviously anyg ∈ G
becomes an isometry for‖.‖G. To apply Theorem 25 it therefore only remains to
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find somex0 such thatx0 6= gx0 for all g 6= Id. But if such anx0 didn’t exist then
Ker(Id − g) would have non-empty interior for someg 6= Id, but by linearity
this would actually imply thatg = Id. �

Note that the condition in Theorem 26 that some point separatesG and has
discrete orbit implies directly thatG is closed (and discrete) in the strong oper-
ator topology and therefore also for the convergence ofT andT−1 in the strong
operator topology. Conversely to Theorem 26:

Lemma 28 Let X be a separable real Banach space andG be a group of iso-
morphisms which is the group of isometries in some equivalent norm onX. If G
is countable thenG is discrete for the convergence ofT and T−1 in the strong
operator topology, andG admits a separating point. IfX is finite dimensional
andG is countable thenG is finite.

Proof : The existence of a separating point is a consequence of the Theorem of
Baire. Indeed for anyg ∈ G, g 6= Id, the set of points which separateg from Id,
i.e. the setX \ Ker(g − Id), is dense open, therefore the set of separating points
is aGδ dense set.

To prove thatG is discrete we may assume that the norm is such thatG is the
group of isometries onX. It is classical to check thatG is Polish. Indeed since
X is separable, the unit ballL1(X) of L(X) with the (relative) strong topology is
Polish [7], page 14. We defineφ : G → L1(X)×L1(X) by φ(T ) = (T, T−1) and
note thatφ(G) is closed inL1(X)×L1(X) (this follows immediately from the fact
that if (Tn)n∈N converges toT in L1(X) and(Ln)n∈N converges toL in L1(X),
thenTnLn converges toTL in L1(X)). Henceφ(G) is a Polish space, and asφ
is a bijection onto the image,G is a Polish space with the induced topology by
φ. We then conclude using the fact that every countable Polishgroup is a discrete
space. Indeed ifG is a countable Polish group, then by [7], Theorem 6.2,G is not
a perfect space, that is,G has an isolated point, therefore by the group property
all points are isolated.

Finally if X is finite dimensional then the strong topology onL1(X) coincides
with the usual one for whichL1(X) is compact. Soφ(G) as a discrete subset of
L1(X) × L1(X) is therefore finite. �

Note however that it seems to remain unknown whether a groupG of iso-
morphisms, which is the group of isometries on a real Banach spaceX in some
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equivalent norm, and which is countable, must have some separating point with
discrete orbit.

The next question remains open in general (i.e. for a space which is not iso-
morphic to a dual space):

Question 29 Let X be a separable real Banach space and letG be an infinite
countable bounded group of isomorphisms onX such that−Id ∈ G, and some
point separatesG and has discrete orbit. DoesX admit an equivalent norm for
whichG is the group of isometries onX?

3.3 Representation of countable groups in Banach spaces

Jarosz conjectured that any group of the form{−1, 1} × G (or C × G in the
complex case) could be represented in any Banach spaceX provideddim X ≥
|G|. From Theorem 27 and Theorem 25 we obtain rather general answers to his
question for countable groups and separable real spaces.

Theorem 30 Let G be a finite group andX be a separable real Banach space
such thatdim X ≥ |G|. Then{−1, 1} × G is representable inX.

Proof : The group{−1, 1} × G may be canonically represented as a group of
isometries onℓ2(G): denoting(eg)g∈G the canonical basis ofℓ2(G), associate to
any(ǫ, g) in {−1, 1} × G the isometryTǫ,g defined onℓ2(G) by

Tǫ,g(
∑

h∈G

λheh) = ǫ
∑

h∈G

λhegh.

Sincedim X ≥ |G|, the spaceX is isomorphic to thel2 direct suml2(G) ⊕2 Y ,
for some spaceY . By associating to any(ǫ, g) in {−1, 1} × G the isometryAǫ,g

defined onℓ2(G) ⊕2 Y by

Aǫ,g(t, y) = (Tǫ,g(t), ǫy),

we see that{−1, 1} × G is isomorphic to a group of isometries onℓ2(G) ⊕2 Y
containing−Id. Therefore Theorem 27 applies to deduce that{−1, 1} × G is
isomorphic to the group of isometries onX in some equivalent norm. �
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By Lemma 28 an infinite countable group is representable in a real space
X only if X is infinite dimensional. For finite groups, it seems to remainopen
whether the condition on the dimension is necessary in Theorem 30. This is not
the case when|G| is an odd prime. Indeed, lettingp = |G|, G is then isomorphic
to Z/pZ and so{−1, 1}×G is isomorphic toZ/2pZ and therefore may be repre-
sented as the group{eikπ/pId, 0 ≤ k ≤ 2p−1} of isometries onC; so{−1, 1}×G
is representable inR2, and by the proof of Theorem 30, in any separable real space
of dimension at least2. For other values of|G| the question remains open:

Question 31 For arbitrarily large n ∈ N, does there exist a groupG with |G| =
n, such that{−1, 1} × G is representable in a separable real Banach spaceX if
and only ifdim X ≥ n?

A group which is representable in a Banach space necessarilyadmits a normal
subgroup with two elements. Recall that reciprocally any (resp. countable) group
which admits a normal subgroup with two elements is representable in a (resp. the
separable) Hilbert space [10]. The next theorem shows that this extends to a wide
class of spaces, including the classical spacesc0, C([0, 1]), ℓp, 1 ≤ p < +∞, and
Lp, 1 ≤ p < +∞.

A basis (sn)s of a Banach space is said to be1-symmetric if for any per-
mutationσ and any eventually zero sequence of coefficientsan, ‖

∑

n ansn‖ =
∥

∥

∑

n ansσ(n)

∥

∥. This is the case of the standard basis ofc0 or ℓp, 1 ≤ p < +∞. A
Banach spaceX is said to have a symmetric decomposition if it is isomorphicto
a space of the form(

∑

⊕Y )S, for some spaceS with a 1-symmetric basis(sn)n,
i.e. an equivalent norm onX is given by‖(yn)n‖ = ‖

∑

n ‖yn‖ sn‖.

Theorem 32 Let G be a countable group which admits a normal subgroup with
two elements andX be an infinite-dimensional separable real Banach space with
a symmetric decomposition which either is isomorphic toc0(Y ) or to lp(Y ) for
someY and1 ≤ p < +∞, or to a dual space. ThenG is representable inX.

Proof : We first assume thatG is infinite. Let {1, j} be a normal subgroup of
G with two elements, thereforej commutes with any element ofG. Let G′ be a
subset ofG containing1 and such thatG = G′∪jG′ andG′∩jG′ = ∅. Forg ∈ G
let ǫg = 1 if g ∈ G′ andǫg = −1 otherwise, and let|g| denote the unique element
of {g, jg} ∩ G′.
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WriteX = (
∑

⊕Y )S and index the decomposition onG′, i.e write an element
of X as(yg)g∈G′. We associate to anyg in G the isomorphismTg defined onX by

Tg((yh)h∈G′) = (ǫg−1hy|g−1h|)h∈G′.

Observe that ifg, k ∈ G, then

TkTg((yh)h) = Tk((ǫg−1hy|g−1h|)h) = (ǫk−1hǫg−1|k−1h|y|g−1|k−1h||)h.

Sincej commutes with any element ofG, we have|g−1|k−1h|| = |g−1k−1h| and
it is easy to see thatǫk−1hǫg−1|k−1h| = ǫg−1k−1h, therefore

TkTg((yh)h) = (ǫ(kg)−1hy(kg)−1h)h = Tkg((yh)h).

From this we deduce that the mapg 7→ Tg is a group homomorphism, and there-
fore we may assume thatG is a bounded group of isomorphisms onX containing
−Id (here identified withj).

Let x0 be a unit vector in the summand of the decomposition indexed by 1.
We observe that‖x0 − (−x0)‖ = 2 and that for anyg ∈ G, g /∈ {−Id, Id},

‖x0 − gx0‖ ≥ c,

wherec is the constant of the basis(sg)g∈G′ of S. Thereforex0 separatesG and
has discrete orbit. Finally, whenX is a dual space, Theorem 26 applies.

WhenX is isomorphic toc0(Y ) or ℓp(Y ) for some1 ≤ p < +∞, we use the
existence of a LUR norm onX for which theTg’s are isometries. The existence of
the LUR norm may be found in the Appendix, Lemma 38 forℓp(Y ), Lemma 39 for
c0(Y ), modulo the result of Kadec that any separable spaceY has an equivalent
LUR norm. ThereforeG is representable as a group of isometries containing
−Id for an LUR norm onX. Any unit vectorx0 in the first summand of the
decomposition separatesG and has discrete orbit, therefore Theorem 25 applies.

Finally in the case whenG is finite, we may index a symmetric decomposition
of X on ∪i∈NG′

i where theG′
i are disjoint copies ofG′. We may then use the

previous method to representG, up to renorming, as a group of isometries con-
taining−Id on each space spanned by the sum of the summands indexed onG′

i,
and therefore globally as a group of isometries containing−Id on X. The rest of
the proof is as before. �

Corollary 33 A countable group is representable in the real spacec0, resp.C([0, 1]),
lp for 1 ≤ p < +∞, Lp for 1 ≤ p < +∞, if and only if it admits a normal sub-
group with two elements.
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From Theorem 32 we may also deduce the following theorem.

Theorem 34 Let G be a countable group andX be an infinite-dimensional sep-
arable real Banach space which contains a complemented subspace with a sym-
metric basis. Then{−1, 1} × G is representable inX.

Proof : By Theorem 30 we may assume thatG is infinite. Let Y be a com-
plemented subspaceY of X with a symmetric basis, and writeX = Y ⊕ Z.
Since a symmetric basis is unconditional,Y is either reflexive or contains a com-
plemented subspace isomorphic toc0 or l1, therefore we may assume thatY is
isomorphic to a dual space or is isomorphic toc0. By Theorem 32 we may assume
that{−1, 1} × G is a group of isometries onY containing−Id (here identified
with (−1, 1G)).

WhenY is a dual space, we may by applying the result of Lancien, Theorem
15, also assume that the new norm is LUR. SinceZ is separable we may also
assume it is equipped with an LUR norm, and we equipX with the l2-sum norm
‖|.‖|, i.e. X = Y ⊕2 Z. It is classical that the norm‖|.‖| is LUR onX.

Furthermore, for any(ǫ, g) in {−1, 1} × G, the mapAǫ,g defined onX =
Y ⊕2 Z by

Aǫ,g(y, z) = ((ǫ, g).y, ǫz)

is an isometry onX for ‖|.‖|. Therefore{−1, 1} × G is isomorphic to a group
of isometries on(X, ‖|.‖|) containing−Id. As in the proof of Theorem 32, the
pointx0 = e1 separatesG and has discrete orbit, wheree1 is the first vector of the
symmetric basis ofY , so finally Theorem 25 applies.

WhenY is isomorphic toc0, we may use Lemma 39 to see{−1, 1} × G as a
group of isometries containing−Id for an LUR norm onY . The rest of the proof
is as in the first case. �

Observe that Theorem 34 applies wheneverX is a subspace ofℓp, 1 ≤ p <
+∞, or, by Sobczyk’s Theorem, [9] Th. 2.f.5, wheneverX is separable and
contains a copy ofc0.

Because of Theorem 32, it is natural to ask whether Theorem 30and Theorem
34 extend to the case when one replaces groups of the form{−1, 1}×G by groups
which admit a normal subgroup with two elements. We provide examples to show
that the answer is negative in general.

The space denotedXGM is the real HI space of W.T. Gowers and B. Maurey
[5]. Every operator onXGM is of the formλId+S, λ ∈ R, S strictly singular, and
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therefore every isometry is of the form±Id + S. The complex version ofXGM is
such that every isometry is of the formλId + S, λ ∈ C, S strictly singular. For
the definition of the ideal of strictly singular operators werefer to [9].

Proposition 35 Any group which is representable in the real (resp. the complex)
XGM is of the form{−1, 1} × G (resp. C × G). In particular a finite group is
representable in the realXGM if and only if it is of the form{−1, 1} × G.

Proof : The last part of the proposition is a consequence of the initial part and of
Theorem 30. We prove the initial part. LetH be the group of isometries on the
real (resp. complex)XGM in some equivalent norm. LetG be the subgroup ofH
of isometries of the formId + S, S strictly singular. ForT ∈ H, let λT be the
element of{−1, 1} (resp.C) such thatT −λT Id is strictly singular. It is then easy
to see, using the ideal properties of strictly singular operators, that by mappingT
to (λT , T/λT ) we provide an isomorphism ofH onto the group{−1, 1}×G (resp.
C × G). �

Proposition 36 Let S be a Banach space with a symmetric basis. Any group
which is representable inS ⊕ XGM is of the form{−1, 1} × G in the real case
(resp. C × G in the complex case). In particular, in the real case, a countable
group is representable inS ⊕ XGM if and only if it is of the form{−1, 1} × G.

Proof : The last part of the proposition is a consequence of the initial part and of
Theorem 34. We prove the initial part. LetX = S⊕XGM . We observe that, since
S andXGM are totally incomparable, any operatorT on X may be written as a
matrix of the form

(

A s1

s2 λT Id + s

)

,

whereA ∈ L(S), ands1 ∈ L(XGM , S), s2 ∈ L(S, XGM ), s ∈ L(XGM) are
strictly singular; andλT 6= 0 if T is an isomorphism. IfT is an isometry then
sinceT|XGM

is a strictly singular perturbation ofλT iXGM ,X , whereiXGM ,X denotes
the canonical injection ofXGM into X, λT must belong to{−1, 1} (resp.C).

Let H be the group of isometries onS ⊕XGM for some equivalent norm. Let
G be the subgroup ofH defined byG = {T ∈ H : λT = 1}. Clearly mapping
T to (λT , T/λT ) we provide an isomorphism ofH onto the group{−1, 1} × G
(resp.C × G). �
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It remains open for a given separable infinite dimensional real spaceX exactly
which finite (resp. countable) groups are representable. Wehave the maximal
case ofc0, C([0, 1]), ℓp, 1 ≤ p < +∞ or Lp, 1 ≤ p < +∞, in which all countable
groups admitting a normal subgroup with two elements are representable, and the
minimal case ofXGM , in which only groups of the form{−1, 1} × G are rep-
resentable. Apparently quite various situations may occur. Indeed we also show
that a space constructed in [3] provide a third example whichis ”in between” the
cases ofℓp andXGM : in the followingX(C) denotes, seen as real, the separa-
ble complex space defined in [3] on which everyR-linear operator is of the form
λId + S, whereλ ∈ C andS is strictly singular.

Proposition 37 The class of finite groups representable inX(C) is neither equal
to the class of finite groups which admit a normal subgroup with two elements,
nor to the class of finite groups of the form{−1, 1} × G.

Proof : For anyn ∈ N, n ≥ 1, the group{eikπ/2nId, 0 ≤ k ≤ 4n−1} ≃ Z/4nZ is
a finite group of isomorphisms onX(C) containing−Id. Therefore by Theorem
27 it is representable inX(C); however it is not of the form{−1, 1} × G.

On the other hand, let{1, i, j, k} be the generators of the algebraH of quater-
nions, and letG be the group{±1,±i,±j,±k}. The group{−1, 1} is a normal
subgroup ofG with two elements, and we prove thatG is not representable in
X(C).

Assume on the contrary thatα is an isomorphism fromG ontoH, whereH
is the group of isometries onX(C) in some equivalent norm. Since−Id ∈ H,
(−Id)2 = Id and−1 is the only element of square1 in G\{1}, we haveα(−1) =
−Id. Therefore fromij = −ji we deduceα(i)α(j) = −α(j)α(i). Let, forT an
operator onX(C), λT be the unique complex number such thatT−λT Id is strictly
singular. The mapT 7→ λT induces an homomorphism ofH into C. We deduce
λα(i)λα(j) = −λα(j)λα(i), which is impossible inC. �

4 Appendix

We give the proof of two lemmas used in Section 4. They are inspired by [2]
Theorem 7.4 page 72 and by the properties of Day’s norm onc0, as studied in [2]
page 69.

Lemma 38 Let Y be a Banach space with an LUR norm, let1 ≤ p < +∞, and
let X = lp(Y ). Then there exists an equivalent LUR norm onX for which any
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mapT defined onX byT ((yn)n∈N) = (ǫnyσ(n))n∈N, whereǫn = ±1 for all n ∈ N

andσ is a permutation onN, is an isometry.

Proof : Fix an equivalent LUR norm‖.‖ on Y , and let‖.‖ = ‖.‖p be the corre-
spondinglp-norm onX, whenp > 1. Whenp = 1, let‖.‖1 denote the correspond-
ing l1-norm,‖.‖2 denote the correspondingl2-norm (via the canonical ”identity”
map froml1 into l2), and let‖.‖ be the equivalent norm defined onX by

‖x‖2 = ‖x‖2
1 + ‖x‖2

2 ,

as in Example 13. To prove that‖.‖ is LUR let x = (yk)k ∈ X and xn =
(yn,k)k ∈ X with limn ‖xn‖ = ‖x‖ and limn ‖x + xn‖ = 2 ‖x‖. We need to
prove thatlimn xn = x.

We first assume thatp = 1. We have that

lim
n

2 ‖x‖2 + 2 ‖xn‖
2 − ‖x + xn‖

2 = 0. (1)

Using [2] Fact 2.3 p 45, (1) implies

lim
n

2 ‖x‖2
1 + 2 ‖xn‖

2
1 − ‖x + xn‖

2
1 = 0 (2)

and
lim

n
2 ‖x‖2

2 + 2 ‖xn‖
2
2 − ‖x + xn‖

2
2 = 0. (3)

By [2] Fact 2.3 again, (3) implies, for allk ∈ N,

lim
n

2 ‖yk‖
2 + 2 ‖yn,k‖

2 − ‖yk + yn,k‖
2 = 0,

whence, since the norm onY is LUR, by [2] Proposition 1.2. p 42,

lim
n

yn,k = yk, ∀k ∈ N, (4)

and from (2) we have, see [2] p 42,

lim
n

‖xn‖1 = ‖x‖1 . (5)

Now assumep > 1. We have that

lim
n

‖xn‖p = ‖x‖p (6)
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which means that
lim

n

∑

k

‖yn,k‖
p =

∑

k

‖yk‖
p . (7)

Let |.|p also denote the norm onℓp. Since

‖xn + x‖ = |(‖yn,k + yk‖)k|p ≤ |(‖yn,k‖ + ‖yk‖)k|p

≤ |(‖yn,k‖)k|p + |(‖yk‖)k|p = ‖xn‖ + ‖x‖

and both‖xn + x‖ and‖xn‖ + ‖x‖ converge to2 ‖x‖, we deduce that

lim
n

|(‖yn,k‖ + ‖yk‖)k|p = 2|(‖yk‖)k|p. (8)

Since|.|p is LUR onℓp, we deduce from (7) and (8) thatlimn |(‖yn,k‖−‖yk‖)k|p =
0, in particular

∀k ∈ N, lim
n

‖yn,k‖ = ‖yk‖ . (9)

Since‖x + xn‖ converges to2 ‖x‖ we also have

lim
n

∑

k

‖yn,k + yk‖
p = 2p

∑

k

‖yk‖
p . (10)

Fix k0 ∈ N andǫ > 0. We may find somek1 > k0 such that

∑

k≥k1

‖yk‖
p < ǫ. (11)

Therefore by (7), (9), and (11), forn large enough,

∑

k≥k1

‖yn,k‖
p < 2ǫ. (12)

Using (9), (11) and (12), we deduce that forn large enough,

∑

k

‖yn,k + yk‖
p < 2p

∑

k 6=k0,k<k1

‖yk‖
p + ǫ + 2p.3ǫ + ‖yn,k0

+ yk0
‖p , (13)

while by (10) and (11), forn large enough,

∑

k

‖yn,k + yk‖
p > 2p

∑

k 6=k0,k<k1

‖yk‖
p + 2p ‖yk0

‖p − 2pǫ − ǫ. (14)
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From (13) and (14) we deduce that forn large enough,

2p ‖yk0
‖p < (2 + 4.2p)ǫ + ‖yn,k0

+ yk0
‖p ,

and we deduce, using also (9), that

lim
n

‖yn,k0
+ yk0

‖ = 2 ‖yk0
‖ . (15)

From (9) and (15), and from the fact that the norm onY is LUR, it follows that

∀k ∈ N, lim
n

yn,k = yk. (16)

Going back to the general case, fixǫ > 0 and letk1 ∈ N be such that
∑

k≥k1
‖yk‖

p < ǫ, then

‖x − xn‖
p
p =

∑

k<k1

‖yk − yn,k‖
p +

∑

k≥k1

‖yk − yn,k‖
p

≤
∑

k<k1

‖yk − yn,k‖
p + 2p

∑

k≥k1

‖yk‖
p + 2p

∑

k≥k1

‖yn,k‖
p

=
∑

k<k1

‖yk − yn,k‖
p +2p(2

∑

k≥k1

‖yk‖
p +(‖xn‖

p
p−‖x‖p

p)+
∑

k<k1

(‖yk‖
p−‖yn,k‖

p)).

So by (4) and (5) whenp = 1, or by (6) and (16) whenp > 1, we obtain that
‖x − xn‖

p
p < 3.2pǫ for n large enough. �

Lemma 39 Let Y be a Banach space with an LUR norm and letX = c0(Y ).
Then there exists an equivalent LUR norm onX for which any mapT defined
on X by T ((yn)n∈N) = (ǫnyσ(n))n∈N, whereǫn = ±1 for all n ∈ N and σ is a
permutation onN, is an isometry.

Let |.|D denote the equivalent Day’s norm onc0 defined in Example 12, that is
for x = (xn)n ∈ c0,

|x|D = sup(

k
∑

i=1

x2
ni

/4i)1/2,

where the sup is taken overk ∈ N and allk-tuples(n1, . . . , nk) of distincts ele-
ments ofN. let ‖.‖ denote the corresponding norm onX = c0(Y ), therefore for
x = (yk)k ∈ X,

‖x‖ = sup(

k
∑

i=1

‖yni
‖2 /4i)1/2,
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and let‖.‖∞ denote the sup norm onX, ‖x‖∞ = supk ‖yk‖ . Note that isomor-
phisms associated to a permutation onN and a sequence of signs are isometries
on X for ‖.‖. It remains to prove that‖.‖ is LUR. Let x = (yk)k ∈ X and
xn = (yn,k)k ∈ X be such that

lim
n

‖xn‖ = ‖x‖ (17)

and
lim

n
‖x + xn‖ = 2 ‖x‖ . (18)

We need to prove thatlimn ‖x − xn‖ = 0 or equivalentlylimn ‖x − xn‖∞ = 0.
Since(xn)n is arbitrary satisfying (17) and (18) it is enough to prove that some
subsequence of(xn)n satisfieslimn ‖x − xn‖∞ = 0.

Since, by elementary properties of|.|D,

‖x + xn‖ = |(‖yk + yn,k‖)k|D ≤ |(‖yk‖ + ‖yn,k‖)k|D ≤ ‖x‖ + ‖xn‖ ,

we deduce from (17) and (18) that

lim
n

|(‖yk‖ + ‖yn,k‖)k|D = 2|(‖yk‖)k|D. (19)

Since|.|D is LUR onc0, [2] Theorem 7.3 p 69, we deduce from (17) and (19) that

lim
n

|(‖yk‖ − ‖yn,k‖)k|D = 0,

therefore
lim

n
max

k
| ‖yn,k‖ − ‖yk‖ | = 0. (20)

For anyn ∈ N, let kn ∈ N be such that

‖x − xn‖∞ = ‖ykn
− yn,kn

‖ . (21)

Note that iflimn kn = +∞, then‖x − xn‖∞ ≤ 2 ‖ykn
‖ + maxk | ‖yn,k‖ − ‖yk‖ |

converges to0. So passing to a subsequence we may assume that(kn)n is con-
stant equal to somek0 ∈ N. If yk0

= 0 then by (20),limn yn,k0
= 0 and

limn ‖x − xn‖∞ = limn ‖yk0
− yn,k0

‖ = 0. Therefore we may assume that
yk0

6= 0.

Let m ∈ N be such thatm ≥ |{i ∈ N : ‖yi‖ ≥ 1
2
‖yk0

‖}|. Let β = 1
2

‖yk0
‖

2m .
We prove that forn large enough,

‖yk0
+ yn,k0

‖ ≥ β. (22)
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Indeed if (22) is contradicted then it is easy to see by the expression of|.|D that
we may assume that for alln,

‖x + xn‖
2 ≤

+∞
∑

i=1

∥

∥ykn
i

+ yn,kn
i

∥

∥

2

4i
+ β2,

for some sequence(kn
i )i≥1 of distinct integers different fromk0. Let ǫ be positive.

By (20) we deduce, forn large enough,

‖x + xn‖
2 ≤ (1 + ǫ)4

+∞
∑

i=1

∥

∥ykn
i

∥

∥

2

4i
+ β2,

So

‖x + xn‖
2 ≤ (1 + ǫ)4

+∞
∑

i=1

‖yji
‖2

4i
+ β2,

where(‖yji
‖)i≥1 is a non-increasing enumeration of{‖yk‖ , k 6= k0}. Passing to

the limit in n andǫ, and using (18), we deduce

4 ‖x‖2 ≤ 4

+∞
∑

i=1

‖yji
‖2

4i
+ β2 ≤ 4

m
∑

i=1

‖yji
‖2

4i
+ ‖yk0

‖2
+∞
∑

i=m+1

1

4i
+ β2,

therefore

4 ‖x‖2+
‖yk0

‖2

4m
≤ 4(

m
∑

i=1

‖yji
‖2

4i
+
‖yk0

‖2

4m+1
)+

‖yk0
‖2

3.4m
+β2 ≤ 4 ‖x‖2+

‖yk0
‖2

3.4m
+β2.

We deduce that 2
3.4m ‖yk0

‖2 ≤ β2, a contradiction. Therefore (22) is proved. Now

2 ‖x‖2+2 ‖xn‖
2−‖x + xn‖

2 = 2

+∞
∑

i=1

‖yli‖
2

4i
+2

+∞
∑

i=1

∥

∥yn,ln
i

∥

∥

2

4i
−

+∞
∑

i=1

∥

∥yn,mn
i

+ ymn
i

∥

∥

2

4i
,

where(‖yli‖)i, (
∥

∥yn,ln
i

∥

∥)i, and(
∥

∥yn,mn
i

+ ymn
i

∥

∥)i are non-increasing enumerations
of (‖yk‖)k, (‖yn,k‖)k, and(‖yk + yn,k‖)k, respectively. Therefore

2 ‖x‖2+2 ‖xn‖
2−‖x + xn‖

2 ≥ 2
+∞
∑

i=1

∥

∥ymn
i

∥

∥

2

4i
+2

+∞
∑

i=1

∥

∥yn,mn
i

∥

∥

2

4i
−

+∞
∑

i=1

∥

∥yn,mn
i

+ ymn
i

∥

∥

2

4i
.
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Since by (17) and (18),

lim
n

2 ‖x‖2 + 2 ‖xn‖
2 − ‖x + xn‖

2 = 0,

we deduce by [2] Fact 2.3 p 45 that

∀i ∈ N, lim
n

2
∥

∥ymn
i

∥

∥

2
+ 2

∥

∥yn,mm
i

∥

∥

2
−

∥

∥yn,mn
i

+ ymn
i

∥

∥

2
= 0. (23)

Let K ∈ N be such that fork > K, ‖yk‖ ≤ β
4
. By (20), we have forn large

enough andk > K,

‖yk + yn,k‖ ≤ 2 ‖yk‖ +
β

4
≤

β

2
.

By (22) we deduce that forn large enough,k0 ∈ {mn
1 , . . . , m

n
K}. There exists

i such thatk0 = mn
i for infinitely manyn’s. Therefore from (23) we deduce,

passing to a subsequence,

lim
n

2 ‖yk0
‖2 + 2 ‖yn,k0

‖2 − ‖yk0
+ yn,k0

‖2 = 0.

Since the norm‖.‖ on Y is LUR, this implies by [2]Proposition 1.2 p 42 that
limn yn,k0

= yk0
. Finally

lim
n

‖x − xn‖∞ = lim
n

‖yk0
− yn,k0

‖ = 0.

�
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