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Abstract

A group G is representable in a Banach spaXeif G is isomorphic
to the group of isometries oX in some equivalent norm. We prove that
a countable groug- is representable in a separable real Banach space
in several general cases, including whgn~ {—1,1} x H, H finite and
dim X > |H|, or whenG contains a normal subgroup with two elements
and X is of the formey(Y) or £,(Y), 1 < p < +oo. This is a conse-
guence of a result inspired by methods of S. Bellenot andhgtétat under
rather general conditions on a separable real Banach spau®d a count-
able bounded grou@’ of isomorphisms onX containing—Id, there exists
an equivalent norm oX for which GG is equal to the group of isometries on
X.1

1 Introduction

The theory of representation of groups studies the posegplieesentations of a
given group’ as some group of isometries, or of isomorphisms, on a Hifipexte

(or more generally on a Banach space). In this mini-courssivedl ask a more
restrictive question: what grou@s may be seen ae group of isometries on a

1This minicourse is inspired from an article with the samike titnd written in collaboration
with E. Medina Galego from IME - USP.



Banach spac&? This question may be formulated by the following definition
given by K. Jarosz in [6].

Definition 1 (K. Jarosz, 1988) A groufr is representable in a Banach spage
if there exists an equivalent norm dhfor which the group of isometries oXi is
isomorphic toG.

In [6], Jarosz stated as an open question which groups weresentable in a
given Banach space. The difference with the classical yheforepresentation of
groups on linear spaces is that here we require an isomaonphith the group of
isometries on a Banach space, and not just some group of isesner isomor-
phisms.

Fact 2 A group which is representable in a real Banach space mushydvweon-
tain a normal subgroup with two elements.

Proof : Indeed{—1d, Id} is always a normal subgroup of the group of isometries
on a real Banach space. O

Conversely:

Theorem 3 (J. Stern, 1979) For any grou@ which contains a normal subgroup
with two elements, there exists a real Hilbert spatsuch thatG is representable
in H. Furthermore ifG is countable ther may be chosen to be separable.

For an arbitrary Banach spacé it remains open which groups are repre-
sentable inX. Jarosz proved that—1,1} is representable in any real Banach
space (that is any space may be renormed so that the onlytisesreae— I d and
1d), and that the unit circlé’ is representable in any complex space (the separable
real case had been solved previously by S. Bellenot [1]). IBi@ groved that for
any countable grou@, {—1, 1} x G is representable i@'(]0, 1]), and that for any
group(G there exists a complex spagesuch that” x G is representable iX.
These results led Jarosz to the following conjecture:

Conjecture 4 (Jarosz, 1988) The group-1, 1} x G is representable inX for
any groupG and any real spac& such thatlim X > |G|.

In this mini-course we give a much more general answer to tlestipn of
representability by partially answering the conjecturdaosz:
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e the group{—1,1} x G is representable iX whenevelG is a finite group
and X a separable real spa¢esuch thatlim X > |G|, Theorem 30,

e the groupG is representable iX whenevelG is a countable group admit-
ting a normal subgroup with two elements akids a separable real Banach
space with a symmetric decomposition either isomorphieytd”) or to
¢,(Y) for someY andl < p < +o0, or to a dual space, Theorem 32,

e the group{—1, 1} x G is representable itk wheneverG is a countable
group andX an infinite-dimensional separable real Banach space eontai
ing a complemented subspace with a symmetric basis, Thedtem

As an application of our results we obtain that a countabbegt- is repre-
sentable iz, (resp.C([0,1]), ¢, for 1 < p < 400, L, for 1 < p < +o0) if and
only if it contains a normal subgroup with two elements, dlary 33.

Our method is to ask, given a groGpof linear isomorphisms on a real Banach
spaceX, whether there exists an equivalent normofor which G is the group of
isometries onX. Once the problem of representability is reduced to reptese
a given group as some group of isomorphisms on a given Bampack sit is much
simpler to address, and this leads to Theorem 30, Theorean8Z heorem 34. In
other words, we explore in which respect the question ofasgmtability of groups
in Banach spaces belongs to the renorming theory or rathgbmeeduced to the
purely isomorphic theory.

If a group of isomorphisms is the group of isometries on a(realp. complex)
Banach space in some equivalent norm, then it must be boudathin—1/d
(resp.)\Id for all A € (), and be closed for the convergencelond7 ! in the
strong operator topology. Therefore the question is:

Question 5 Let X be a real (resp. complex) Banach space andidie a group
of isomorphisms oX which is bounded, contains/d (resp.AId forall A € (),
and is closed for the convergence®find 7! in the strong operator topology.
Does there exist an equivalent norm &nfor which G is the group of isometries
on X?

A positive answer was obtained by Y. Gordon and R. Loewy [4mN = R"
andd is finite; this answered a question by J. Lindenstrauss. ingaper, we
extend the methods of Bellenot to considerably improvertéssit:



e Let X be a separable real dual Banach space. Then for any countable
bounded groujg- of isomorphisms onX which contains-/d and is sepa-
rated by some point with discrete orbit, there exists anved@it norm on
X for which G is equal to the group of isometries oy Theorem 26.

e Let X be a separable real Banach space. Then for any finite groap
isomorphisms onX which contains—1d, there exists an equivalent norm
on X for which G is equal to the group of isometries 6, Theorem 27.

Therefore for separable real spaces and finite groups, thgtiqn of repre-
sentability really does not belong to renorming theory. cAlsote that a count-
able group of isomorphisms oK which is equal to the group of isometries in
some equivalent norm must always be discrete for the coamesgofl’ and7—*
in the strong operator topology and admit a separating pbhenhma 28. It re-
mains unknown however whether this implies the existenaesdparating point
with discrete orbit, that is, if the implication in Theoreré B an equivalence for
countable groups.

We deduce Theorem 30, Theorem 32 and Theorem 34 essentiaiiylheo-
rem 27 and Theorem 26. We also prove that Theorem 30 and Thé¥are op-
timal in the sense that there exists a real space in whicleseptable finite groups
are exactly those of the forf-1, 1} x G, Proposition 35, and a real space con-
taining a complemented subspace with a symmetric basis ichwhpresentable
countable groups are exactly those of the fdral, 1} x G, Proposition 36. On
the other hand we have the classical examples,of'([0,1]), {,,1 < p < 400
andL,,1 < p < +oo for which Corollary 33 states that representable count-
able groups are exactly those which admit a normal subgrotptwo elements,
and we also provide an intermediary example of a space inhnthie class of
representable finite groups is strictly contained in betwibe above two classes,
Proposition 37.

In a first part of this minicourse we shall present some regiflthe isometric
theory about renormings of Banach, mainly about locallyarmly rotund (LUR)
renormings. We shall also recall a few topological progsriof the group of
isometries on a Banach space. This first part should be seeweay incomplete
introduction to the theory of renormings, concentratingttom results which are
needed for the proofs of our main theorems. Our referenceefarrming theory
is the book of R. Deville, G. Godefroy and V. Zizler [2], and fdassical results
in infinite dimensional Banach space theory, the book of ddénstrauss and L.



Tzafriri [9]. In a second part we shall sketch the proof of diean 30, Theorem
32, Theorem 34.

2 Renorming theory and topological properties of
iIsometries

Questions of differentiability have led to study the setadgible equivalent norms

on a given Banach space. A typical question in this areavengh Banach space

X with a specific norm, whether there exists an equivalent e with some

additional property. The unit ball of is denotedBx and the unit spher&y. Any

norm on a spac is by definition convex, i.e. forany, y in By, “’”T” € Bx. Dif-

ferent stronger notions of convexity have been considénllist some of them
here, starting from the weaker and ending with the strong@n bf convexity.

Definition 6 Let X be a Banach space an(d|| be a norm onX. Then

X strictly convex <

vw#yESX,M<1, (1)

X locally uniformly convex (LUR) <
Vo € Sx,{z,} C Sx, (lim ||xg + z,|| = 2) = limz,, = zo, (2)
X uniformly convex <
V{@n, yn} C Sx, (lim ||z, + yn|| = 2) = lim ||z, — yu|| =0, (3).

Example 7 The norm o, is not strictly convex. There exists a space with a
norm which is strictly convex but not LUR. The spageadmits an equivalent
norm which is LUR but not uniformly convex. Thenorm,1 < p < +oo is
uniformly convex.

Proof : Exercise (hint: you may use results which will be given |ate). O

Property (3) is a very strong form of convexity. Indeed hgvam equivalent
uniformly convex norm is equivalent to the space being s@flexive (see [2] for
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details). Property (2) turns out to be the strongest cotygxioperty which is
satisfied, up to equivalence of norm, by most natural spdéiest we give a list
of properties which are equivalent to the LUR property:

Proposition 8 Let X be a Banach spacd, || a norm onX, andz, € Sx. Then
the following are equivalent:

e The norm|.|| is LUR atx,.

e Wheneve{z,} C X is such thalim, ||z,|| = 1 andlim, ||z¢ + z,| = 2,
thenlim,, x,, = xo.

e Whenevefz,} C X is such thatim,, 2(||zo||* + ||zn]|*) = ||#n + 20||* = 0,
thenlim,, x,, = .

Proof : See [2] p 42 Proposition 1.2. O

The most important result for us in the theory of LUR renorgsimvill be the
following.

Theorem 9 (M. Kadec 1967) LeX be a real separable Banach space. The€n
admits an equivalent LUR norm.

Proof : The theorem is a direct consequence of the next two lemmatharfect
that the norm orY, is uniformly convex and therefore LUR. Recall that a dual
norm on a dual spacE* is an equivalent norrfi.||* on X* which is the dual norm
of some equivalent norrf.|| on X.

Lemma 10 Let X andY be two Banach spaces such thais a dual space which
admits a dual and LUR norm, and such that there existsY — X a bounded
linear operator, weak* to weak continuous wifft” norm dense inX. ThenX
admits a LUR norm.

Proof : (sketch) Let||.|| be the original norm otX and|.| be an equivalent dual
LUR normonY. Forz € X andn € N, define

. 1
[l = inf{lz = Tyl" + ~|y*y € Y},

and .
llzl? =) 27"}
n=1
Check that this defines an equivalent LUR normon O



Lemma 1l If X is a separable Banach space, then there is a bounded linear
weak* to weak continuous operatér: X* — /¢, such thatl™ : (5 ~ (, — X is
weak* to weak continuous arid(¢5) is norm dense itk *.

Proof : (sketch) Let{z;}*, C Sx be dense inSx. DefineT by Tf(i) =
27 f (), i =1,2,. ... O O

For the spaces, and/; it is possible to verify directly Theorem 9 by con-
structing an LUR norm which also respects the symmetriesexd spaces.

Example 12 Day’s norm orx,, defined forr = (z,),, by
x| = sup((z x?k/llk)l/Q,n € N,iy, ..., i distinct)
k=1

isan LUR norm.

Proof : See [2] p 69 Theorem 7.3. O
Example 13 The norm defined ofy by
]| = (Jal? + [ T[5)"2,

where|.|; (resp. |.|2) is the canonical norm o#; (resp. ¢,) and I the canonical
“identity”’map of ¢, into /5 is an LUR norm.

Proof : See [2] p 72 Theorem 7.4. O

The theorem does not generalize to nonseparable spaces:

Example 14 The spacé,, does not admit an equivalent LUR norm. However it
admits an equivalent strictly convex norm.

Proof : See [2] p 48 Theorem 2.6 and p 74 Theorem 7.10. O

We shall also use the following result from [8].

Theorem 15 (G. Lancien, 1993) LeX be a separable dual Banach space. Then
X admits an equivalent norm which does not diminish the grdupametries.



2.1 Topological properties of the group of isometries on a Ba
nach space

In this subsection a few basic topological properties ofgitweip of isometries on
a Banach space are recalled.

Definition 16 If X is a Banach space, the strong operator topology/giX ) is
defined by

fo—= fe Ve X lim f,x = fo.

If 7,,,n € NandT belong toGL(X) then we say thal,, converges td" in
the strong operator topology for the convergenc&'adnd 7! if 7,, —* T and
Tt —sT-1

Proposition 17 The group of isometries on a Banach spaces closed for the
convergence df' andT~! in the strong operator topology.

Proof : Exercise. O

Corollary 18 A group G of isomorphisms on a Banach spa&ewhich is the
group of isometries oX for some equivalent norm must be bounded, contdia
and be closed for the convergenceloind T~ in the strong operator topology.

Example 19 The group of rational rotations oR? is not the group of isometries
onR? in some equivalent norm.

Proof : This group is not closed for the convergenceloand7 ! in the strong
operator topology. O

Example 20 The group of rotations oR? is bounded, contains Id and is closed
for the convergence @ and7~! in the strong operator topology. However it is
not the group of isometries d&* in some equivalent norm.

Proof : An equivalent norm invariant by rotations is a multiple oé tauclidean
norm and therefore the associated group of isometries nomsaio the symme-
tries with respect to the axes. O



3 Representation of countable groups on separable
real Banach spaces

3.1 G-pimple norms on separable Banach spaces

We recall the result of Bellenot from [1].

Theorem 21 (Bellenot,1986) Any separable real Banach spacemay be re-
normed to admit only trivial isometries, i.e. so that theyordometries onX
are —Id andId.

In this subsection we extend the construction of Bellenatnf{ —Id, Id} to
countable groups of isometries. So in the following,is real separable;; is
a countable group of isometries on, and under certain conditions dr, we
construct an equivalent norm on for which G is the group of isometries oi .

Let us give an idea of our construction. Bellenot renotkhsvith an LUR
norm and then defines, fag in X of norm1, a new unit ball (the "pimple” ball)
obtained by adding two small conesip and —x,. Any isometry in the new
norm must preserve the cones and therefore sgrnd +z,. Repeating this for
a sequencéz, ), with dense linear span, chosen carefully so that one can add
the cones "independantly”, and so that the sizes of the caressufficiently”
different, any isometry sends, to +z,,. Finally, if eachz, was chosen "much
closer” tox, than to—z(, any isometry fixingr, must fix eache,, and therefore
any isometry is equal téd or —Id.

In our case one should obviously put cones of same size ingach € G,
defining a "G-pimple ball”; therefore any isometry presertige orbitGz,. Then
one repeats a similar procedure as above, adding other aoges, g € G for
a sufficiently dense sequence,),,, so that any isometry preservés:,, for all
n. Thesex,’s for n > 1 are called of typel. Finally, a last step is added to
only allow as isometries isomorphisms whose restrictioG'ig is a permutation
which corresponds to the action of some G on Gx,. This is technically more
complicated and is obtained by adding cones at some poirsgaai:z, which
code the structure @’ and are called of typg.

The reader may get a geometric feeling of this proof by loglahthe group
G = {£Id,£R} of R-linear isometries oiC where R is the rotation of angle
7 /2. By adding cones on the unit ball &l and+:, one allows the isometries in
G but also symmetries with respect to the axes. A way of cangchis is to add
one well-placed smaller cone next to each elemer{tiof, +i} so that the only
isometries in the new norm are thoseCaf
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Definition 22 Let X be a real Banach space with norm|, let G be a group of
isometries onX such that-7d € G, and let(xy) e be a possibly finite sequence
of unit vectors ofX. LetA = (\y)rex be suchthat /2 < A\, < 1forall k € K.
TheA, G-pimple at(zy ), for ||.|| is the equivalent norm oX defined by

lyllae =m0 [l v = ik

where[[y]]a,c = Ak |ly]|, whenever € Vect(g.z,) for somek € K andg € G,
and|[y]]a.c = |ly|| otherwise.

In other words, the unit ball fof. ||, , may be seen as the convexification of
the union of the unit ball foff. || with line segments betweeyx;, /A, and—gxy /A,
foreachk € K andg € G.

Some observations are in order. First of @bf.c Ap) ||| < [[llx g < |11
Any g € G remains an isometry in the norfn||, . In [1] Bellenot had defined
the notion ofA-pimple atz, € X, which corresponds to\), {—1d, Id}-pimple
in our terminology. We recall a crucial result from [1].

Proposition 23 (Bellenot [1]) Let( X, ||.||) be areal Banach space and |et,|| =
1 so that

e (1) ||| is LUR atz,, and

e (2) there exists > 0 so that if||ly|| = 1 and ||zy — y|| < ¢, theny is an
extremal point (i.e. an extremal point of the ball of radjlg|).

Then givens > 0, B > 0and0 < m < 1, there existsareal < \g < 1
of the form\, = max(m, A\o(¢, 0, B, AM(zo, (€, 9, B)))) < 1, so that whenever
Ao < A< land|.|, istheX-pimple atz,, then

o @)m|.I <y <11
o (A)if1=[lyll > [lyll thenllzo —yl| < dor [[zo +yll <9,

e (5) xy = A\ 'z is the only isolated extremal point ¢f||, which satisfies
lz/ [J]] = ol| < e,

e (6) if w is a vector so that, andx), + w are endpoints of a maximal line
segment in the unit sphere pf|,, thenB > |w|| > A™! — 1.
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For more details we refer to [1]. We generalize this resultMa’)-pimples in
a natural manner which for the part is inspired from1]. Write A < A’ to mean
A < A forallk e K, if A= (Ap)r andA’ = (\,).

Proposition 24 Let (X, ||.||) be a real Banach space, |ét be a group of isome-
tries on X containing—/d and let(z;)rcx be a possibly finite sequence of unit
vectors ofX. Assume

e (1) ||| is strictly convex onX and LUR inz;, for eachk € K, and
o 2y forall k € K, ¢, = inf{|lz; —gxi| : 7 € K,g € G,(J,9) #
(k,Id)} > 0.

Then givery > 0, B = (b)), > 0and0 < m < 1, there exists\ = (4, with
do < dandforallk > 1, 6, < min(dx_1,cx/4,1 — Azg,cx)), and0 < Ay =
()\Ok:)k < 1 with for all k, Ao = max(m, )\6(6143, 6143, bk, )\(1’0, U(Ek, 6143, bk)))) < 1,
so that whenevek, < A < 1and|.||, . is theA, G-pimple at(x}), then

o @y mlll <llllaeg < I
o (Aif 1=yl > llyllycthendg € G,k € K : [lgzr —yl| < 0k

e (5) z1, = )\ 'z, is the only isolated extremal point 0fl| ,  which satis-
fies||z/ ||z]] — zx| < ex,

e (6)' if w is a vector so that;, , andz; , + w are endpoints of a maximal
line segment in the unit sphere |pfj, ., thenb, > [Jw| > A" — 1.

Proof : Proposition 23 corresponds to the cése- {—1d, Id} and K a singleton.
We shall deduce the general case from Proposition 23 andtfmerfact that for
well-chosenA, the closed unit ball of the, G-pimple at(xy), is equal toB,,
the union ovek € K andg € G of the closed unit ball$3; , of the \,-pimples
[-1,., @tgzx. Let B denote the closed unit ball fjr|].

Note that by (1)’, Proposition 23 (1)(2) apply in any, £ € K, for anye > 0.
Lete, = Ck/2 Let A\, > max(m, )\G(Gk, 5k, bk, )\(l’k, U(Gk, (Sk, bk)))) given by
Proposition 23 inx; for e = ¢, with 1 — )\g,j < ¢/6 for all k € K and with
limy .0 Ao = 1 1f K is infinite. The limit condition on\y, ensures that
is closed. Assuming,y € By and*t¥ ¢ B let (k,g) and(l, h) be such that
r € B} andy € Bl'. By convexity of B{ and B}", eitherk # [ (e.g. k < ),
ork =landg # +h, andz € B} \ B,y € B\ B, i.e. |z|, , < |lz] and
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lyll\,.» < llyll. Therefore by (4) applied to for the A;-pimple atgz, and up to
replacingg by —g if necessaryl|gzy — || < ;. Likewise||hz; — y|| < &;. Then

r+y g+ ha
2 2

O + 0
<k+l

< 0.

Since|| gz, — hay|| > ¢ by (2), it follows by LUR of ||| in gz, that

?

gri + hx;

5 < Mgaw, k) = Mz, cr),

<0 + Mag, c) < 1,

ar—i-y’

a contradiction. Thereforg, is closed convex ané, is equal to the closed unit
ball of the A, G-pimple at(xy ). Equivalently

s = ot [y

In fact, since whenever € By \ B andy € B} \ B with B] # Bl"andk < |,
and up to replacing by —g or h by —h if necessary, we have

Iz = yll = llgx — harll = [lo = gawll = lly = hall = ek = 0, — 0 = /3,

it follows that for anyx such that|z||, ., < ||z[], there exists a uniqug, Ax) such
that ||, , < ll=], and||zll, & = [l],.,-

We now prove (3)-(6)". (3) is obvious from (3) for eadh|, ,. For (4)
assumel = ||y|| > ||y||, - then as we have just observed, there exigt such
thatl = [ly[| > [lyll,, 4+ SO from (4),||gz), — yl| < dy or |—gzx — Y| < I

To prove (5)' note that if|x/ ||z|| — x| < € then whenevey # Id or
k1,
2/ |zl = gl > g — zill = llee — zrall — e
> — (1= N — e > a/2— (1= Ng) > 6.
Therefore by (4)||z] = ]|x||Ahg wheneverg # Id ork # [, and soz[, , =

||, - Now if 2 is an isolated extremal point ¢f||, ,, it is therefore an isolated
extremal point of|.||, and by (5)x = @ a.

12



The proof of (6)" is a little bit longer. Writej] the unit sphere fof. ||, S¢
the unit sphere foff. |, ., S the unit sphere fofl. ||, 5" the set of points ot on
which [|.[[, & = [I.Il. As we know,S§ = 5" U (Up4(S{ \ 9)).

As we noted before, whenevere S7\ S,y € S\ S, with S7 £ SI, it follows
that||z — y|| > cmin@/3. So forz € SP\ S, ||z —y|| > %min{ci,i < k}
whenevery belongs to somé&) \ S, with S{ # SI'. Therefore a line segment
in Sy ¢ containing points both iy \ S and.S!" \ S with SY # S must have a
subsegment included i}, but this contradicts the strict convexity 0.

We deduce that ifzy A, 14 + w] is @ maximal line segment i, ¢, it is a
line segment irs?. It is now enough to prove that it cannot be extendedjif
then by (6) applied foff. ||, 4 bx > [lw] > X' — 1.

But for any strict extensiofxy, , y] of [zy.a, Tx.A +w] in S1%, either[z;, , y] C
Sid\ S c S§ and the maximality irt§' is contradicted, or there exists a sequence
(yn)n Of distinct points converging to, » + w in [z », y| with y,, € S for all n,
but this again contradicts the strict convexity|of . O

Theorem 25 Let X be a separable real Banach space with an LUR-n¢rjrand
let G be a countable group of isometries ghsuch that—/d € G. Assume that
there exists a unit vectat, in X which separates; and such that the orbitzx,
is discrete. TherX admits an equivalent norrfl.||| such thatG is the group of
isometries onX for |||.|||

Proof : Since Gz, is discrete andr, separatess, let a €]0, 1] be such that
|xo — gzol| > «, forall g # Id.

Let Vo = span{gzo, g € G} and lety, = x,. If Vj # X then itis possible to
pick a possibly finite sequence,,),,~; such that, ifV}, := span{gyx, k < n,g €
G}, we have thay,, ¢ V,,_; foralln > 1 andu,V,, is dense inX.

Let (u,),>1 be a (possibly finite) enumeration ¢§xy,g € G \ {£Id}} U
{yr, k > 1}. Then define a (possibly finite) sequerieg),, of unit vectors ofX
by induction as follows. Assuma, ..., z,,_; are given.

If w, = y, for somek > 1 then letEl = span(Vi_1,yx). Pick somez, € E
such that|z,|| € [«/10,a/5] andd(z,, Vi—1) = «/10, and letz,, = a,x¢ + 2,
wherea,, > 0 is such that|z,, || = 1. Such anz,, will be called of typel.

If u, is of the formgx, then we shall pick some,, € [«/10, «/5] and define
Zn = Qugxg, Tp = ayTo + 2, With a,, > 0 and||z,|| = 1. Such anz,, will be
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called of type2. The choice ok, will be made more precise later. Let us first
observe a few facts.

By construction,X is the closed linear span §§z,, g € G,n} (actually only
xo andz,’s of type 1 are required for this). Note that for afl, ||z,| < «/5
and therefore:,, € [1 — /5,1 + «/5]; and obviouslyzr, may also be written
Ty = apTo + 2o With these conditions. We now evaludte,, — gz,,| for all
(n, Id) # (m, g).

If g # Idthen||x, — gz, = ||lanzo + 20 — gamzo — 2| therefore

2 = gam 2 [0 = gzoll = [1 = an| = |1 = am| = [|2a]| = [lzm[| = /5.

If ¢ = Id, without loss of generality assume> m. If z, is of typel then, if&
is such thatr,, is associated tgy, the vectorgz,, is in V,_, and||z,, — gx,,| >
d(xp, Vk—1) = a/10. If z, is of type2 andx,, of type 1 then ||z, — gz,|| =
T — g s > d(zm, Vo) > a/10.

It now remains to study the more delicate case whgandz,, both are of type
2, or one is of type and the other is;,. We describe how to choose thg’s of
type2, i.e. how to choose each correspondinge [a/10, «/5] in the definition
of z,, to obtain good estimates fdjr,, — x,,|| in that case. This will be done by
induction. To simplify the notation, we shall dendt€)),.cn the subsequence
(xk, Jnen corresponding to the;’s of type 2, with N = {1,...,|G| — 2} or
N = N according to the cardinality @¥, and we shall write:), = b,,z¢ + 5,,gn o0,
whereg, is the associated element@f\ {£Id}, b, = ax, andg, = «ay,. Write
Ty = Xo.

LetVm > 1,1 = [a/10,a/5]. For € [a/10,a/5], letz], (3) = by (B)xo +
Bgmxo Whereb,,(3) > 0 is such that|z,,(3)|| = 1.

We observe thafz;, (3) — z,,(7)|| = 518 — |- Indeed ifz;, () — z,,(v) =
(8 — v)ewith |le|| < a/2 andf # v, then

(b (B) = bm (7))o = (v = B) (gmz0 — €),

S0gmTo — € = % ||gmxo — €| zo. If for examplet+ = — in this equality, then
gm0 + 2ol| = [l + (1 = [[gmmo — €[)zo]| < 2][e]| < a,

and by separationy,,, = —Id, a contradiction. Similarly the case = + would
imply g,, = Id.
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Now for all m > 1 divide I, = [«/10, «/5] in three successive intervals of
equal lengthy/30. Since

2

« «

! o > _ . >

I (8) = (I 2 18 =71 = o
whenevers is in the first andy in the last interval, it follows that there exists an
interval I, c I? of lengtha /30 (which is either the first or the last subinterval),

such that )

(0%
]’1 / o >
We then picks; in I} and fixz| = 2 (3;). Therefore we have ensured

2
Qo
/ /
— >
Hxl Io” =~ 120

Assume selected,, . .., 5,-1, 2}, ...,2,_, associated, and for< i < n—1and
m > i, decreasing in intervalsI}, of length- ;. For anym > n — 1, dividing
I"~1in three subintervals and picking the first or the last, we Bigdhe same

reasoning as abov@, C 1;'~" of length %= with

o2
40.37

We then picks,, in I} and fixz!, = =) (3,). Therefore for alk < n, 5, € I} C
I*! and we have ensured

Bely = [2,08) -z, =

062

VO<k<mn g, — ol 2 5o

We have finally proved that for afl,

2

. «
Hlf{”l‘n - gka y Z k>g € Ga (nag) 7é (k71d)} 2 W>

and so )

inf{[[z, — gzell,n, 9 € G, (n,9) # (k, [d)} >

therefore (2)' in Proposition 24 is satisfied; and (1)' isatlg satisfied sincd. ||
is LUR.

We then defind||.||| as theA, G-pimple at(z,,),, for A = (),),, associated to
€n, b, SO that Proposition 24 applies and such that> b1, 1/2 < A\, < Aya1

o
40.3k+1’
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and\, ' —1 > 2b,,, for all n. This is possible by induction and the expression of
Ay in Proposition 24.

Observe that? = {gz,/\., g € G,n} is the set of isolated extremal points
of |||.|||. Indeed for a pointr of Sy either||z/ x| — gzk|| < e for some
g, k, in which case by (5)z = ). 'gx, if it is an isolated extremal point; or
lz/ ||| — gzk|| > ex > 0 for all g, k then by (4)’||.]] = |||.]|| in @ neighborhood
of z and thenz is not an isolated extremal point sin¢dl is LUR atzx.

Therefore any isometry for |||.||| mapsE onto itself. Ifn < m, g € G, then
T cannot map\, 'z, to A\ lgz,,. Indeed ifw (resp.w’) is a vector so thak 'z,
and\ 'z, +w (resp.\,'gz,, and\ lgz,, +w') are endpoints of a maximal line
segment in the unit sphere {pf|||, then since is an isometry foi||.||| we may
assumey = Id, and then by (6)’,

n

1 1, _
lwlll = 5wl = 500" = 1) > baga 2 b 2 [Jw/]] 2 [[[w]]]
It follows that for each, the orbitGz,, is preserved by

We finally prove thatl” belongs necessarily tG. Without loss of generality
we may assume thdtz, = xo and then by density it is enough to prove that
Tgz, = gz, forall g € G and anyz,, of typel or equal tax,.

Letg € G, g # +1d. Letx’ be the associated vector of typeof the form
x' = axy + Bgxo. Then

Tx' = axo + T gxe = h(axe + Bgxo)
for someh € G. Solal| ||zg — hxol| = G ||Tgxe — hgxo|| and

a/b
1—a/b

therefore by separatiodn= Id. It follows immediately that

(6]
[0 — haol| < (1 +2[[[Tgzolll) < - (

1+ 2[[[zol]) < a,

T'gxo = gzo.
and this holds for any € G. Finally if z,, is of typel, andg € G, then
Tgx, = T(angzo + g2n) = angzo + T g2y,
and sincel'(gz,,) is of the formhz,, for someh € G,

Tgx, = a,hxg+ hz,.
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Thereforen,, ||gxo — hao|| = || T92, — hz,|| and by similar computations as above,

3a/H
lgxo — hao|| < 1 _aé/'g) < a,
whence again by separatign= h and
Tgx, = gx,.

3.2 Representable groups of linear isomorphisms

In this subsection, we give sufficient conditions for a grofipsomorphims on a
Banach spacg& to be representable iX.

Theorem 26 Let X be a separable real dual Banach space &nhfe a countable
bounded group of isomorphisms an containing—/d, and such that some point
separatesy and has discrete orbit. TheK admits an equivalent norm for which
G is the group of isometries oN.

Proof : We may assume that everyin G is an isometry onX by using the
equivalent normsup, . ||gz||. Then by Theorem 1X may be renormed with an
LUR norm without diminishing the group of isometries. We #ren in position
to apply Theorem 25. O

Theorem 27 Let X be a separable real Banach space ardbe a finite group of
isomorphisms such that/d € G. ThenX admits an equivalent norm for which
G is the group of isometries oN.

Proof : By Theorem 9 we may assume that the ndrfnon X is LUR. Then we
define an equivalent norip||, on X by

Izl = O llgz)I)*>.
geG

Since this is thé,-sum of the LUR nornj|.|| with an equivalent norm, it is clas-
sical to check that it is also LUR, see [2] Fact 2.3, and obsipanyg € G
becomes an isometry fd||,. To apply Theorem 25 it therefore only remains to
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find somer, such thatcy # gx for all g # Id. But if such anz didn’t exist then
Ker(Id — g) would have non-empty interior for some+# Id, but by linearity
this would actually imply thay = Id. O

Note that the condition in Theorem 26 that some point sepafatand has
discrete orbit implies directly tha¥ is closed (and discrete) in the strong oper-
ator topology and therefore also for the convergenc& ahd7'~! in the strong
operator topology. Conversely to Theorem 26:

Lemma 28 Let X be a separable real Banach space aficbe a group of iso-
morphisms which is the group of isometries in some equivalem onX. If G
is countable thert: is discrete for the convergence fand 7! in the strong
operator topology, and- admits a separating point. X is finite dimensional
andG is countable therd- is finite.

Proof : The existence of a separating point is a consequence of ther&im of
Baire. Indeed for any € G, g # Id, the set of points which separatdérom Id,

i.e. the setX \ Ker(g — Id), is dense open, therefore the set of separating points
is a(Gs dense set.

To prove that= is discrete we may assume that the norm is such@hatthe
group of isometries oX. It is classical to check that is Polish. Indeed since
X is separable, the unit ball, (X) of L(X) with the (relative) strong topology is
Polish [7], page 14. We define: G — L (X) x Ly (X) by ¢(T) = (T,T~') and
note thaty(G) is closed inL; (X ) x Ly (X) (this follows immediately from the fact
that if (7,,),en converges td" in Ly(X) and (L, ),y converges td. in L;(X),
then,,L,, converges td'L in L;(X)). Hencey(G) is a Polish space, and as
is a bijection onto the imagé; is a Polish space with the induced topology by
¢. We then conclude using the fact that every countable Pglistp is a discrete
space. Indeed ifr is a countable Polish group, then by [7], Theorem 6:25 not
a perfect space, that i& has an isolated point, therefore by the group property
all points are isolated.

Finally if X is finite dimensional then the strong topology{.X') coincides
with the usual one for whiclk, (X') is compact. S@(G) as a discrete subset of
L, (X) x Ly (X) is therefore finite. O

Note however that it seems to remain unknown whether a g iso-
morphisms, which is the group of isometries on a real BanpeleX in some
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equivalent norm, and which is countable, must have someatpg point with
discrete orbit.

The next question remains open in general (i.e. for a spacehvignot iso-
morphic to a dual space):

Question 29 Let X be a separable real Banach space anddébe an infinite

countable bounded group of isomorphismsXrsuch that—/d € G, and some
point separatess and has discrete orbit. Doe§ admit an equivalent norm for
which is the group of isometries o ?

3.3 Representation of countable groups in Banach spaces

Jarosz conjectured that any group of the fofml, 1} x G (or C' x G in the
complex case) could be represented in any Banach spgo®videddim X >

|G|. From Theorem 27 and Theorem 25 we obtain rather generaleasgw his
guestion for countable groups and separable real spaces.

Theorem 30 Let G be a finite group andX be a separable real Banach space
such thadim X > |G|. Then{—1,1} x G is representable itX.

Proof : The group{—1,1} x G may be canonically represented as a group of
isometries orty(G): denoting(e, ), e the canonical basis df(G), associate to
any(e, g) in {—1,1} x G the isometryI. , defined orts(G) by

ng(z )\heh) =€ Z )\hegh.
hed heG

Sincedim X > |G/, the spaceX is isomorphic to thé, direct sumiy(G) ®, Y,
for some spac&’. By associating to anye, ¢g) in {—1,1} x G the isometryA, ,
defined orty(G) @2 Y by

AG,g(t’ y) = (Te,g(t)a 6y)>

we see tha{—1,1} x G is isomorphic to a group of isometries 65(G) ©2 YV
containing—Id. Therefore Theorem 27 applies to deduce that, 1} x G is
isomorphic to the group of isometries ghin some equivalent norm. O
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By Lemma 28 an infinite countable group is representable irah space
X only if X is infinite dimensional. For finite groups, it seems to rentwgen
whether the condition on the dimension is necessary in Hmed@&0. This is not
the case wheft7| is an odd prime. Indeed, letting= |G|, G is then isomorphic
to Z/pZ and so{—1, 1} x G is isomorphic tdZ/2pZ and therefore may be repre-
sented as the groue®*™/?1d,0 < k < 2p—1} ofisometries oiC; so{—1,1} x G
is representable iR?, and by the proof of Theorem 30, in any separable real space
of dimension at least. For other values ofG| the question remains open:

Question 31 For arbitrarily large n € N, does there exist a groug with |G| =
n, such that{ —1,1} x G is representable in a separable real Banach spac#
and only ifdim X > n?

A group which is representable in a Banach space necesadnijts a normal
subgroup with two elements. Recall that reciprocally aeggt countable) group
which admits a normal subgroup with two elements is repitabéain a (resp. the
separable) Hilbert space [10]. The next theorem showshiséktends to a wide
class of spaces, including the classical spages'(]0, 1]), £,,1 < p < 400, and
L,,1<p<+oc.

A basis(s,)s of a Banach space is said to besymmetric if for any per-
mutationo and any eventually zero sequence of coefficients||) . a,s,| =
3=, anso@m||- This is the case of the standard basisbr /,, 1 < p < +oco. A
Banach spacg is said to have a symmetric decomposition if it is isomorpgbic
a space of the form) © @Y)s, for some spacé with a 1-symmetric basigs;, ).,
i.e. an equivalent norm oX is given by||(y,)n |l = [|>_,, [lynll snll-

Theorem 32 Let G be a countable group which admits a normal subgroup with
two elements and’ be an infinite-dimensional separable real Banach space with
a symmetric decomposition which either is isomorphie@”) or to /,(Y") for
someY and1 < p < +o0, or to a dual space. Thefd is representable it .

Proof : We first assume that is infinite. Let{1,;} be a normal subgroup of
G with two elements, thereforgcommutes with any element 6f. Let G’ be a
subset of7 containingl and such that = G’U G’ andG' NG’ = (). Forg € G
lete, = 1if g € G" ande, = —1 otherwise, and lefy| denote the unique element

of {g,jg} NG".
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Write X = () @Y)s and index the decomposition 6#, i.e write an element
of X as(y,)secr- We associate to anyin G the isomorphisnt, defined onX by

Ty ((Yn)neer) = (€g-1nYjg-1h] ) hecr-
Observe that if, k € G, then

TkTg((?/h)h) = Tk((ﬁg—lhwg—lh\)h) = (Gk—lhEg—l\k—lh\y\g—1|k;—1h||)h-

Since;j commutes with any element 6f, we havelg~ |k~ 'h|| = |¢g~'k'h| and
itis easy to see thaj,-1,€,-1)5-14) = €,-15-15, therefore

TkTg((yh)h) = (E(kg)—lhy(k:g)—lh)h = Tkg((yh)h)-

From this we deduce that the map— 7, is a group homomorphism, and there-
fore we may assume thétis a bounded group of isomorphisms &ncontaining
—1Id (here identified withy).

Let xo be a unit vector in the summand of the decomposition indexetl b
We observe thafz, — (—x¢)|| = 2 and that for any € G, g ¢ {—1d, Id},

[0 — goll = ¢,

wherec is the constant of the bas(s, ), of S. Thereforer, separates: and
has discrete orbit. Finally, whek is a dual space, Theorem 26 applies.

When X is isomorphic tax(Y') or £,(Y") for somel < p < +oo, we use the
existence of a LUR norm oX for which theT’s are isometries. The existence of
the LUR norm may be found in the Appendix, Lemma 384gi"), Lemma 39 for
co(Y'), modulo the result of Kadec that any separable spatas an equivalent
LUR norm. Therefore is representable as a group of isometries containing
—1Id for an LUR norm onX. Any unit vectorz, in the first summand of the
decomposition separatésand has discrete orbit, therefore Theorem 25 applies.

Finally in the case wheé' is finite, we may index a symmetric decomposition
of X on U,;nG), where theG are disjoint copies o&’. We may then use the
previous method to represe@t up to renorming, as a group of isometries con-
taining —/d on each space spanned by the sum of the summands indexgd on
and therefore globally as a group of isometries contairiig on X. The rest of
the proof is as before. O

Corollary 33 A countable group is representable in the real spageesp.C([0, 1]),
l,forl <p < +o0, L, for1 < p < 400, if and only if it admits a normal sub-
group with two elements.
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From Theorem 32 we may also deduce the following theorem.

Theorem 34 Let GG be a countable group and” be an infinite-dimensional sep-
arable real Banach space which contains a complementecpsgbsvith a sym-
metric basis. Thefd—1,1} x G is representable irX.

Proof : By Theorem 30 we may assume tl@itis infinite. LetY be a com-
plemented subspacé of X with a symmetric basis, and writ§ = Y & Z.
Since a symmetric basis is unconditionigljs either reflexive or contains a com-
plemented subspace isomorphicdoor [;, therefore we may assume thatis
isomorphic to a dual space or is isomorphiegoBy Theorem 32 we may assume
that{—1,1} x G is a group of isometries ol containing—Id (here identified
with (—1, 15)).

WhenY is a dual space, we may by applying the result of Lancien, fidrao
15, also assume that the new norm is LUR. Siaces separable we may also
assume it is equipped with an LUR norm, and we equiigvith the [;-sum norm
I].1]],i.e. X =Y @y Z. Itis classical that the nortfl.||| is LUR on X.

Furthermore, for anye, g) in {—1,1} x G, the mapA, , defined onX =
Y Do A by

Aﬁg(ya Z) = ((67 g)'y> EZ)
is an isometry onX for |||.|||. Therefore{—1,1} x G is isomorphic to a group
of isometries or( X, |||.|||) containing—Id. As in the proof of Theorem 32, the
pointx, = e; separate&’ and has discrete orbit, whereis the first vector of the
symmetric basis oY, so finally Theorem 25 applies.

WhenY is isomorphic tay, we may use Lemma 39to s¢e 1,1} x G as a
group of isometries containing/d for an LUR norm onY’. The rest of the proof
is as in the first case. O

Observe that Theorem 34 applies whene¥eis a subspace of,, 1 < p <
+00, or, by Sobczyk's Theorem, [9] Th. 2.f.5, wheneugris separable and
contains a copy of,.

Because of Theorem 32, itis natural to ask whether Theoream80' heorem
34 extend to the case when one replaces groups of the{fedml } x G by groups
which admit a normal subgroup with two elements. We providaeples to show
that the answer is negative in general.

The space denotell;,, is the real HI space of W.T. Gowers and B. Maurey
[5]. Every operator otX ), is of the formA\/d+ .S, A € R, S strictly singular, and
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therefore every isometry is of the forta/d + S. The complex version oK), is
such that every isometry is of the forkid + S, A € C, S strictly singular. For
the definition of the ideal of strictly singular operators keéer to [9].

Proposition 35 Any group which is representable in the real (resp. the cexjpl
Xgu is of the form{—1,1} x G (resp. C' x G). In particular a finite group is
representable in the reat,, if and only if it is of the form{—1, 1} x G.

Proof : The last part of the proposition is a consequence of thalmpart and of
Theorem 30. We prove the initial part. L&t be the group of isometries on the
real (resp. complexX sy, in some equivalent norm. Lét be the subgroup aoff

of isometries of the fornid + S, S strictly singular. Forl' € H, let Ay be the
element of —1, 1} (resp.C) such thatl’— \rId is strictly singular. It is then easy
to see, using the ideal properties of strictly singular aps, that by mapping

to (A, T'/Ar) we provide an isomorphism @f onto the groug —1, 1} x G (resp.
C x Q). 0

Proposition 36 Let S be a Banach space with a symmetric basis. Any group
which is representable i§ & X, is of the form{—1,1} x G in the real case
(resp. C x G in the complex case). In particular, in the real case, a cabig
group is representable if @ X, if and only if it is of the form{—1, 1} x G.

Proof : The last part of the proposition is a consequence of thalmpart and of
Theorem 34. We prove the initial part. L&t = S @ X4,,. We observe that, since
S and X, are totally incomparable, any operatbron X may be written as a

matrix of the form
A S1
S9 )\T]d +s ’

where A € L(S), ands; € L(Xgum,S),s2 € L(S, Xem),s € L(Xgu) are
strictly singular; and\y # 0 if 7" is an isomorphism. If" is an isometry then
sinceT|x,,,, Is a strictly singular perturbation of-ix,,,, x, whereix,,,, x denotes
the canonical injection oK, into X, Az must belong td —1, 1} (resp.C).

Let H be the group of isometries dhd X, for some equivalent norm. Let
G be the subgroup off defined byG = {T € H : Ay = 1}. Clearly mapping
T to (Ar, T/Ar) we provide an isomorphism df onto the group{—1,1} x G
(resp.C' x G). O
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It remains open for a given separable infinite dimensioralspaceX exactly
which finite (resp. countable) groups are representable.h&Ve the maximal
case ofk, C([0,1]), ¢,,1 <p < +oco0rL,, 1< p< +oo,inwhich all countable
groups admitting a normal subgroup with two elements areesgmtable, and the
minimal case ofX,,, in which only groups of the forr{—1, 1} x G are rep-
resentable. Apparently quite various situations may ockwteed we also show
that a space constructed in [3] provide a third example wisi¢im between” the
cases of!, and X, in the following X (C) denotes, seen as real, the separa-
ble complex space defined in [3] on which ev&ifinear operator is of the form
Md+ S, where) € C andS is strictly singular.

Proposition 37 The class of finite groups representableXiiC) is neither equal
to the class of finite groups which admit a normal subgrouwito elements,
nor to the class of finite groups of the fofm1,1} x G.

Proof: Foranyn € N,n > 1, the group{e?™/?"1d,0 < k < 4n—1} ~ Z/4nZis
a finite group of isomorphisms aki (C) containing—/d. Therefore by Theorem
27 itis representable iX (C); however it is not of the forrd—1,1} x G.

On the other hand, l€tl, i, j, £} be the generators of the algelifieof quater-
nions, and lety be the groug{£1, i, £j, £k}. The group{—1,1} is a normal
subgroup ofG with two elements, and we prove th@tis not representable in
X(C).

Assume on the contrary thatis an isomorphism frond onto H, where H
is the group of isometries o (C) in some equivalent norm. Sinceld € H,
(—Id)* = Id and—1 is the only element of squatten G'\ {1}, we haven(—1) =
—Id. Therefore fromj = —ji we deducex(i)a(j) = —a(j)a(i). Let, forT an
operator onX (C), Ay be the unique complex number such that \;-/d is strictly
singular. The maf’ — A7 induces an homomorphism éf into C'. We deduce
Aa(i)Aa(j) = —Aa(j)Aa(i)» Which is impossible i O

4  Appendix

We give the proof of two lemmas used in Section 4. They areiiespy [2]
Theorem 7.4 page 72 and by the properties of Day’s norm, pas studied in [2]
page 69.

Lemma 38 LetY be a Banach space with an LUR norm, le p < 400, and
let X = [,(Y). Then there exists an equivalent LUR norm.Jrfor which any
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map7’ defined onX by T'((y,)nen) = (€nYo(n) Jnen, Wheree, = +1foralln € N
ando is a permutation oflN, is an isometry.

Proof : Fix an equivalent LUR nornfl.|| onY’, and let||.|| = |[|.||, be the corre-
sponding,-norm onX, whenp > 1. Whenp = 1, let||.||, denote the correspond-
ing [;-norm, ||.||, denote the correspondirigcnorm (via the canonical "identity”
map froml, into /;), and let||.|| be the equivalent norm defined éhby

1 = Iz} + |5
as in Example 13. To prove thdt|| is LUR letz = (y)r € X andz, =
(Yni)r € X With lim,, ||z, || = ||z|| andlim,, ||z 4+ 2,| = 2|z|. We need to
prove thatim,, z,, = x.
We first assume that= 1. We have that

lim 2|z]* + 2 | * ~ ll + @ * = 0. (1)
Using [2] Fact 2.3 p 45, (1) implies

lim 2|} + 2 |z [} = [lo + za]l} = 0 (2)

and
. 2 2 2
lim 2 [[z]ly + 2 [[znlly = [+ znll; = 0. (3)

By [2] Fact 2.3 again, (3) implies, for all € N,
lim 2 lyell” + 2 [ sll* = lyk + vaill* =0,
whence, since the norm anis LUR, by [2] Proposition 1.2. p 42,
lign Ynk = Yk, Vk € N, (4)
and from (2) we have, see [2] p 42,
i [|z, [l =[]l - (5)
Now assume > 1. We have that

i [|z, |, = [l]], (6)

25



which means that

im )y flyasll” = Iyl (7)
k k

Let|.|, also denote the norm df). Since

[0 + 2l = [Clynk + velDrlo < 1Ykl + lyelDalo

< [(lynklDrlo + 1 CyslDely = llzall + [l]
and both||z,, + x| and||z,|| + ||z|| converge ta ||z||, we deduce that

o [([[yn ]l + s lDely = 21ClyelDelp- (8)

Since. |, is LUR ont,, we deduce from (7) and (8) thian,, |([[yn &l —[lyxll)el» =
0, in particular
vk € N, lim [Jyn || = [ly]l - (9)

Since||x + x,,|| converges tQ ||z|| we also have

iy g+ yall” =22 Iyl (10)
k k
Fix ky € N ande > 0. We may find somé; > k, such that
> llull” <e (11)
k>k1

Therefore by (7), (9), and (11), forlarge enough,

D Iyl < 2. (12)

k>ky

Using (9), (11) and (12), we deduce that folarge enough,

S llyns +uel” <22 N gl e+ 223+ Jyago Fuill”s (13)
A k#ko,k<ki

while by (10) and (11), for. large enough,

S llyas +wll? > 20 3wl + 22 g P — 2%e—e. (14)
k k#ko,k<ky
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From (13) and (14) we deduce that fotarge enough,
2 {[ynoll” < (2 + 4.27)€ + [[Ynko + Uk lI”
and we deduce, using also (9), that
i ([, + Yo [l = 2 1Yk - (15)
From (9) and (15), and from the fact that the norm}ors LUR, it follows that
Vk € N, liinyn,k = Y. (16)

Going back to the general case, tx> 0 and letk; € N be such that
Zkzkl lyell” < e, then

|z — zall, = Z lye — Ynill” + Z vk = Ynrell”

k<ki k>kq
< lye = vkl 223 Ml +27 D llgnsl”
k<ki k>k1 k>k1
= D Mk =yl 272 Y Nl + Uy = e l15) + D il = yns”)-
k<k1 kal k<k1
So by (4) and (5) whep = 1, or by (6) and (16) whep > 1, we obtain that
| — z, || < 3.2%¢ for n large enough. O

Lemma 39 Let Y be a Banach space with an LUR norm and }et= c¢,(Y).
Then there exists an equivalent LUR norm ®rfor which any magl’ defined
on X by T((Yn)nen) = (€nYo(n))nen, Wheree, = 1 foralln € Nando is a
permutation orN, is an isometry.

Let|.|p denote the equivalent Day’s norm endefined in Example 12, that is
forz = (x,)n € co,

k
[z|p = SUP(Z $ii/4i)1/2>
=1

where the sup is taken ovére N and allk-tuples(n,, ..., ny) of distincts ele-
ments ofN. let ||.|| denote the corresponding norm ah= ¢,(Y"), therefore for

xTr = (yk)k - X,
k
]| = sup(> (1Y,
=1
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and let||.|| , denote the sup norm oH, ||z||, = sup, |lyx| . Note that isomor-
phisms associated to a permutationm@and a sequence of signs are isometries
on X for ||.||. It remains to prove thaf.| is LUR. Letz = (yx)r € X and

Tn = (Ynk)r € X be such that

i [|zz, || =[] (17)
and
lim ||z + 2, || = 2]z . (18)

We need to prove thadim, ||z — z,|| = 0 or equivalentlylim,, ||z — z,|, = 0.
Since(zx,), is arbitrary satisfying (17) and (18) it is enough to provattiome
subsequence ¢, ),, satisfiedim, ||z — z,[|, = 0.

Since, by elementary properties|df,,

[+ 2all = [(lys + ynklDrlo < 1Clyell + lgnilDelo < fll] + [zl

we deduce from (17) and (18) that
o [([[gll + [[ynk[Dxlo = 2|ClyklDxl p- (19)
Since|.|p is LUR oncy, [2] Theorem 7.3 p 69, we deduce from (17) and (19) that
i [([[yxll = [[ynrl)elo =0,

therefore
tim e | |y | = 1l | = 0. (20)

For anyn € N, letk,, € N be such that

2 = Znlloe = [1Yk0 = Yl - (21)

Note that iflim,, k, = +o0, then|lz — z,|| < 2||yk, || + maxy | ||ynkll — Y&l |
converges td. So passing to a subsequence we may assuméithatis con-
stant equal to somé, € N. If y,, = 0 then by (20),lim, y,x = 0 and
lim, |z — .|, = lim, ||yk, — Ynkol| = 0. Therefore we may assume that
Yko 7& 0.

Letm € N be such thatn > [{i € N : |jy;]| > 3 |lys||}|. Lets = %”Z’j,?”.
We prove that for large enough,

1Yro + Ynoll = 5. (22)
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Indeed if (22) is contradicted then it is easy to see by theesgion of|.|, that
we may assume that for ail

X vy + v ||
|z + 2| < ; n + 3

for some sequendg?’);>; of distinct integers different from,. Let e be positive.
By (20) we deduce, for large enough,

|z + za* <

So

o+ 2l < (1+¢ 42“% -,

where(]|y;,||)i>1 IS @ non-increasing enumeratlonﬁ[ykﬂ  k # ko}. Passing to
the limit in n ande, and using (18), we deduce

4l <4Z v 42 Wall ¢ 2 3 L4
i=m+1
therefore
2 2
4H$H2+ ”yk’oH Z ”y]z ”ykoH )+ Hyk’o” +62 < 4H$||2+ ”ykoH "—62

We deduce thaf> lyw |I” < 52, a contradiction. Therefore (22) is proved. Now

+QZ Hynzn Z =~ [9nmz + vy H

where(||ys, 1)r (||¥nr])is @nd(||ynmr + ymr||): are non-increasing enumerations
of (llvxl) ks (1Ynkl)x» @nd(||yr + yn.rl)x, respectively. Therefore

‘yz

[y ]I”
2 [ll*+2 [|zal*~ [z + 24| —22

2

2 |z]242 |z P = ||z + 20 ]* > 2 +2
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Since by (17) and (18),
Hm 2 [|z))* + 2 ||lza||” = ||z 4 2n])* = 0,
we deduce by [2] Fact 2.3 p 45 that

Vi € N 2 [y [|* + 2 [y [ = g + 3" = 0. (23)

Let K € N be such that fok > K, ||y| < g. By (20), we have fom large
enough and: > K,

~1D

<

SIS

Nk + Uniell < 2 ||yell +

By (22) we deduce that for large enoughk, € {m7},...,m}}. There exists
¢ such thatk, = m? for infinitely manyn’s. Therefore from (23) we deduce,
passing to a subsequence,

1m0 2 [l 1”2 lgmsol” = 1o + s * = 0.

Since the norm|.|] on Y is LUR, this implies by [2]Proposition 1.2 p 42 that
limy, Yk, = Yk, FiNally

lim ||z — 2, ||, = im [|yky — Ynkoll = 0.
n n

O
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